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il
ABSTRACT

Earthquakes and wind loadings constitute dynamic effects that often
must be considered in the design of buildings and structures. The pri-
mary purpose of this research study was to investigate the common
features of general dynamic analysis procedures employed for evaluating
the effects of wind and earthquake excitation.

Another major goal was to investigate and develop a basis for generating
response spectra for wind loading, which in turn would permit the use of
modal analysis techniques for wind analysis in a manner similar to that
employed for earthquake engineering. Random vibration techniques were
applied for developing response spectra for wind loading. In order to
generate wind response spectra, the wind loading is divided into two parts,

a mean load that is treated as a static component and a fluctuating load
that is treated as a dynamic component. The spectral representation of
the wind Toading constitutes a simple procedure for estimating the forces
associjated with the dynamic component of the gusting wind.

Several illustrative examples are presented to demonstrate the common
application of modal analysis and response spectrum techniques for evaluating

the effects of wind and earthquake excitation.
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CHAPTER 1
INTRODUCTION

1-1 Objectives of the Investigation.

Practically all buildings and structures are subjected to forces
arising from natural hazards. Among those, earthquake and wind forces
are of primary concern to the designer of building structures. As a re-
sult of their random properties earthquake and wind forces are difficult
to predict and must be estimated on the basis of judgement, experience and
statistical analyses.

In the design of buildings and structures, the geographic location
plays an important role in the determination of the earthquake-wind hazard.
There are zones known to be especially earthquake prone; there‘are locations
where high winds may be the dominant parameter; there is also a third |
category where both the seismic and the wind hazard may be nearly equally
important. The type of structure also plays a role in arriving to the design
criteria. As a rule, structures with high natural periods of vibration are
especially sensitive on an overall basis to wind loading; structures with’
intermediate to Tow periods of vibration are 1ikely to experience strong
lateral forces during an earthquake.

In dynamic problems there are two general types of analysis procedures;
one is carried out in the time domain and the other is carried out in the
frequency domain. Time domain analysis is preferred for highly transient
short duration loadings, while frequency domain analysis is better suited
for long duration and/or more steady state type loadings. In addition,
loadings commonly are estimated through either deterministic or probabilistic

procedures.



In the past, earthquake resictant design has been treated generally as
a deterministic procedure wherein the forcing load is usually approximated
by an equivalent static Toading coefficient. More recently fhe loading co-
efficients have been determined on the basis of statistical analysis of a
selected sample of acceleration time histories. Present code recommendations
based on deterministic time domain analysis of earthquake base excitation
permit three general procedures for evaluating the dynamic forces on
structures. These procedures are: (1) equivalent lateral load procedure
involving specification of a base shear coefficient, (2) modal analysis
and response spectrum techniques, and (3) step by step integration of the
time history.

Wind forces, on the other hand, constftute a more steady long duration
loading, where frequency domain techniques are a more suitable procedure
of analysis. In addition, specific problems of wind loading such as corre-
lation of pressures, which are better treated by statistical means, and
the stationary properties of the wind flow make random vibration theory
the most appropriate procedure for evaluating the response of structures
subjected to strong winds. Present code specifications for wind loading
are derived partially through the use of standard random vibration theory.

The principal objectives of this research study were to investigate
the relationship between dynamic analyses for earthquake and wind loading,
to demonstrate the commonality between the analysis techniques and to
develop response spectra for wind loading which could be employed with modal
analysis techniques to compute the response of structures subjected to strong
winds. In order to achieve clarity it is noted that wind response spectrum
is presented as a plot of effective pressures and it is divided into two

parts a mean pressure and a fluctuating effective pressure.



In addition, and in order to compare the effects of earthquake and
wind loading, the base shear was used as a reference frame for determining
which of the dynamic loadings, namely earthquake or wind, was the governing
factor in design. Consequently, another goal of this investigation was to
develop a simple procedure to evaluate the base shear associated with the
wind loading.

The foregoing should not be construed as suggesting that the design
criteria for earthquake and wind hazards are the same. Indeed quite
different criteria commonly are involved. For example in the case of
earthquake resistant design the approach may be one of accepting the possi-
bility of some Timited damage yet desiring to prevent serious damage or
collapse. In the case of wind damage design the approach may be one of
desiring to preclude undesirable building motion in strong gusting wind and
to preclude localized building damage. The goal is to provide a structure
which remains serviceable under all design wind loading, including Tower
level wind loadings that may occur often and routinely. In spite of these
differences there are features common to the analysis of the building
structure as a whole for both wind and earthquake excitation, and it is
these approaches, centering around modal analysis and response spectrum
techniques, which are the subject of this research investigation. Although
it is believed the features (principles and techniques) of the commonality
of approaches are clearly delineated herein, it is appreciated that design
application may follow only after further study and after additional load-

ing data for wind becomes available.



1-2 Background.

In the past few decades, with the worldwide population increase and
concentration into metropolitan areas and the proliferation of man-made
structures the consequences of natural disasters have become increasingly
important. Natural hazards such as strong earthquakes and high winds have
brought attention to dynamic loadings which in turn have led engineers to
search for improved approaches for analysis and design.

Earthquake ~- Although it is recognized that earthquakes are a random
process which can best be evaluated through the use of statistical techniques,
the deterministic analysis based on modal decomposition and response spectrum
techniques 1is commonly used in earthquake resistant design. Modal analysis
procedures, which are extensively discussed in the literature, can be found
in such standard references as Newmark and Rosenblueth (1971), Clough and
Penzien (1975), and Blume, Newmark and Corning (1961). Statistical analysis
of acceleration records summarized as guide lines for the estimation of the
response spectrum as a function of frequency and damping have been presented
by Newmark and Hall (1969, 1973 and 1978), Hall, Mohraz and NeWmark (1976),
and Newmark, Blume and Kapur (1973).

Present approaches for earthquake resistant design can be divided into
three areas. The first and most general procedure, step by step integration
of the equations of motion, requires a formidable computational effort and
is used only for complex problems. The second procedure consists of modal
analysis and response spectrum techniques. This approach also requires a
considerable amount of computation for evaluating the mode shapes of the
structure and to combine the various modal contributions. The third approach

-is the base shear coefficient or equivalent lateral load procedure. In this



case a base shear coefficient is specified as a percent of the total weight
of the structure. Once the base shear is evaluated it is distributed to
the various nodal points of the structure. A1l three procedures may in-
clude consideration of inelastic properties and soil structure interaction
effects.

In the United States base shear coefficients procedures are specified
by various code authorities including, for example, the Uniform Building
Code (U.B.C.), the National Building Code (N.B.C.) and the American
National Standards Institute (A.N.S.I.). These procedures, in some cases,
present great variations from one code to another and between editions of
the code.

More recently the Applied Technology Council (A.T.C. (1973)) has pre-
sented a comprehensive tentative specification for earthquake design of
buildings. An attempt has been made to explicitly evaluate in a rational
manner the various parameters that enter into the analytical procedure.
Procedures pfesented in A.T.C. (1973) include consideration of response
spectra for different types of structures and soil conditions, and the
analytical techniques for computing earthquake response including in-
elastic properties of the structures, and soil-structure interaction
effects. It seems fairly certain that the modern principles delineated
in A.T.C. (1973) will find their way into building codes in the years ahead.

Wind -- Historically, concepts of isotropic turbulence have been used
for studying wind forces, and wind Toading has been customarily described
utilizing statistical formulations. One of the techniques frequently used
is to divide the turbulent wind flow in two parts. The first is a mean
flow and the second a fluctuating flow. Therefore, the wind velocity is

divided into a mean velocity which has a constant time history which is



customarily treated as a static loading, and a fluctuating velocity which
varijes with time and which is treated as a dynamic Toading.

Since the beginning of the century considerable effort has been de-
voted to the study of the velocity pressure relations and the evaluation of
drag coefficients. Drag coefficients for wind flow obtained from experi-
mental studies are reported throughout the Tliterature.

In more recent time, the response of structures to the dynamic com-
ponent of the wind loading usually has been treated as a stochastic pro-
cess, with random vibration techniques being used to predict the behavior of
structures under wind excitation. Different spectral representations for
the dynamic component of the wind velocity have been developed by Davenport
(1961), Simiu (1973), and Kaimal et. al1.(1972). As a result of the appli-
cation of such spectral representations and random vibration analysis, a
- gust response factor has been proposed by various investigators, including
principally, Davenport (1967), Vellozi and Cohen (1968), Vickery (1971),
and Simiu and Lozier (1975).

Earthquake and wind -- Extensive research has been undertaken in both

earthquake and wind analysis as separate subjects. However, little re-

search has been conducted in the area of similarities between the behavior

of structures under both earthquake and wind excitations. Newmark (1966)
proposed that since the equations of motion are practically the same for
earthquake and wind vibrations, the procedure of analysis should be similar

in both cases. Newmark points out that some of the experience and knowledge
available in earthquake engineering could be advantageously used in the de-

sign of structures subjected to strong winds. Newmark and Hall (1968) suggested

that it is possible to draw a diagram similar to the earthquake response



spectrum for loading such as wind making use of the relationship between
the response of dynamic systems to motion or to external loading and
inertial loadings. More recently, Novack (1974) suggested that such con-
cepts as soil structure interaction, developed for earthquake engineering,
could be included in wind resistant design. These studies have suggested,
for some time, the possibility that there are common analysis procedures

that need to be explored in detail.

1-3 Scope of the Investigation.

In this dissertation the commonality of analysis techniques for earth-
quake and wind loading was investigated. Also techniques for developing
of response spectra for the dynamic component of the gusting wind were
studied intensely.

In chapter two a brief overview of structural dynamic methods for
deterministic and stochastic analyses is presented. Special attention is
devoted to the derivation and interpretation of the participation factors
fundamental to a complete understanding of the modal analysis technique.
Continuous and discrete systems are discussed, and rules for the computa-
tion of participation factors for the case of wind loadings (distributed
loads acting on discrete systems) also are given. Power spectral density
functfons and input-output relations as well as mean squére response and
peak factors are described briefly for random vibration analysis. In every
case an attempt is made to explain the physical meaning of the expressions
and an attempt has been made to keep the mathematical complexity of the
random vibration theory to a minimum. In addition, the commonality of the

solution procedures for the equation of motion for earthquake excitation



and a general dynamic loading is discussed. - Moreover a solution technique
for a general dynamic loading is presented as a function of the well known
modal procedure employed for earthquake analysis. Finally, the similarity
of deterministic and random vibration analysis is presented.

In chapter three, the most important physical properties of wind
velocity, pressure, and velocity-pressure relationships are outlined.
Special consideration ié given to the wind-structure interaction properties
such as drag coefficients and correlation of pressures. Also, the geo-
metrical distribution of wind pressures on the various faces of the structure
is discussed.

In chapter four, various procedures for the computation of response
spectra for’the dynamic component of the wind loading are presented. The
result is a spectrum of effective pressures for the fluctuating component
of the wind Toading. The response spectra are calculated using the power
spectral density functions proposed by Davenport (1961) and Simiu (1973).

A simplified procedure is presented for arriving at the response spectrum
for wind. This procedure includes specific recommendations for computing
the spectral base}ﬁines (unamplified lines) and the amplification factors.

In chapter five, a deterministic procedure for the analysis of wind
loadings is presented and demonstrated. Such procedure includes the compu-
tation of the participation factors and the use of the response spectrum
derived in chapter four. In this chapter the following topics for wind
analysis receive special attention:

Development of a simplified procedure to compute the lateral

forces using the concept of the distribution of base shear.



A simplification of the deterministic procedure, using a

first mode approximation, to obtain a gust response factor.

A comparison of the gust response factors computed using the

response spectrum procedure with the gust response factors

specified by various code authorities such as A.N.S.I. and the

National Building Code of Canada (N.B.C.C.) and some independent

authors such as Vickery (1971) and Simiu and Lozier (1975).

Finally, to demonstrate the applications of the response spectrum
approach for wind loading and its commonality with earthquake analysis
one simple building is analyzed for earthquake and wind excitations, and
three for wind alone. Particular attention is given to the computation of
base shear and the distribution of lateral forces in the structures for

both earthquake and wind loading.
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CHAPTER 2
OVERVIEW OF STRUCTURAL DYNAMICS

Only a brief description of the principles of structural dynamics
employed in this investigation are presented in this chapter. For
additional information on the subject, readers are referred to such standard
sources as Newmark and Rosenblueth (1971), Clough and Penzien (1975),

and Hurty and Rubinstein (1964).

2-1 Definition of the Equation of Motion.

The movement of a Tinear system with N degrees of freedom, as shown
in Fig. 1, can be written in a general way as a set of coupled differential
equations which include parameters such as time or frequency, geometry,
mass, stiffness, and damping. The equation of motion for a Tumped mass
system is usually derived by using eithér the d'Alembert principle or

equilibrium relations and has the following form:
[m] (x} + [c] {x} + [k] {x} = F (z,t) (2-1)

where

Y

o123 o e,
Lifig 1 Lne

5
[c] is the damping matrix,

[k] is the stiffness‘matrix,

{x} is the displacement vector,

{x} is the velocity vector,

{;J is the acceleration vector,

F(z,t) is the forcing function which is dependent on the/time history

or frequency content of the record and the geometric distribution of the

forcing load.
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2-2 Solution of the Equation of Motion.

In the solution of the equation of motion the forcing Toad F(z,t) is
usually separated into two independent functions. As a result, the forcing
function F(z,t) is separated into the product of two components. The
first is a geometry dependent part, p(z), which is a function of the
spatial distribution of the forcing load. The second, f(t), represents
the variation of the load as a function of time or frequency. As a result
of the separation of variables hypothesis, the forcing function may be

expressed as follows:

F(z,t) = P p(z) f(t) (2-2)

where
PO is a constant, or reference value, usually taken as the maximum value
of the forcing load,
p(z) is the geometric distribution of the forcing load,
f(t) is the time history of the forcing load.
The response function, X(z,t) is separated into a set of geometric functions,
G.(z), and a set of time history distributions Ti(t)° The response, then,

i
is written as follows:

X (x,t) = X, Y G;(z) T,(t) (2-3)

1

where
XO is a constant, or a reference value of the response,

Gi(z)is the geometric distribution of the response,

Ti(z)is the time history of the response.
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The solution procedure consists of finding a relationship between
p(z) the input, and Gi(z) the output geometric functions, and f(t) the
input time history and Ti(t) the output response function. In obtaining
the response it is obvious that the input forcing load is modified by the
resisting system with its inherent mass, stiffness and damping properties.
The parameters p(z) and f(t) as well as the geometry and properties of
the resisting system can be considered to be given quantities. On the other
hand, the response obviously is a function of the resistance, or in one
sense the resisting system can be thought of as a transfer function in re-
lating loading and response. The response is of particular theoretical
and practical interest, and in the following section attention will be
focused especially on two aspects of the total response function, namely
the participation factor one part of the response that accounts for the
space distribution of the forcing load and the time dependent part of the
response. The time dependent'part is conveniently expressed for practical
interpretation in the frequency domain.

Generalized coordinates -- In the solution of the equations of motion

a series of operations is required. One of the techniques frequently used

is the transformation of the equations of motion, written in Cartesian co-
ordinates, into a new set of real variables known as generalized coordinates
that will uncouple the system of equations. Langhaar (1962)‘gives the
following definition for generalized coordinates: "If a mechanical system
consists of a finite number of material points, its configuration can be
specified by a finite number of real variables called generalized coordinates”.
To transform the equation of motion into the generalized coordinates the
displacements are defined as a function of a set of vectors {¢i}° which

are known as "mode shapes" and are dependent only on the geometrical
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configuration and structural parameters; and a new set of generalized time

dependent coordinates q;- This transformation is written as follows:

{x) =) {¢i} q.

2-4
i=1 1 ( )

o~

Upon transformation to the new set of generalized coordinates the

equation of motion will yield an eigenvalue problem of the form:
il _
¢L + My = 0 (2-5)
Or expressed in a more convenient way:
2 -
[k - m] {¢1} =0 (2-6)

where
w; is the ith circular frequency of vibration, and {¢i} is the ith normal
mode of vibration.
With the help of the orthogonality properties of {¢i}’ the equations
of motion can be written in their uncoupled form in terms of the generalized

parameters as follows:
[M] {a} + [C] (&) + [K] {a} = (Q) (2-7)

where by definition

[M] is the generalized mass matrix, = @T [m] o

[C] is the generalized damping matrix, = @T [c] o
[K] is the generalized stiffness matrix, = ¢T [k] @
{Q} is the generalized load, = ¢{P}

¢ is the matrix of the vectors {¢i}a
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It is important to note that the forcing load F(z,t) is transformed
into a set of generalized 1oads; Qi; The meaning of the generalized Toads
Qi can be derived conceptually from the work done by the forcing load when
the structure is vibrating in its ith natural mode. For Tumped mass systems,
the generalized load associated with the ith mode of vibration may be

written as:
P f(t) (2-8)

where
j is the jth point of location, or nodal point.

As a result of the assumption that the time and the geometry can be
separated into two independent functions, it is easy to see that the .
generalized load has a part, defined as Pi’ which accounts for the geometric
variations of the forcing function and a time dependent function f(t). The
quantity T, may be thought of as a measure of the extent to’which the 1ith
normal mode participates in synthesizing the total Toad of the structure.
For discrete systems, I'; is written as follows:

j

N , ,
T, =P Z' b..P. (2-9)

for continuous systems, the summation is replaced by an integral and 1“_i

becomes :

] .
Iy =Py WL [ o5 (2) p(z) dz - (2-10)
0
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The factor 1/L is introduced in order to make Eq. (2-10) dimensionally con-
sistent with Eq. (2-9). Therefore, the generalized force can be written

in a general form as:

0, = Iy f(t) (2-11)

There are also cases where a distributed Toad is applied on a lumped mass
system. For those cases, the load should be concentrated at the discrete
points of the structure. Guidelines for computing the equivalent concentrated
loads are presented by Newmark and Rosenblueth (1971), and summarized as
follows for the case of uniformly spaced discrete points:

Let h denote the distance between uniformly spaced points a,

b, ¢, etc. (see Fig. 2), and Pa> P> P the value of the dis-

tributed load at points a, b, and c. Define P, . as the

equivalent concentrated load at point a of span a-b, and Pb-a

as the equivalent concentrated load at point b of span a-b.

For a polygonal approximation, the equivalent concentrated loads

are:

(2-12a)

B~
Q
H
o
il
i
—_
(A
]
j=3]
-+
he)
lon
~—

(2p, +p,) (2-12b)

7
o
=

The treatment of more complex cases as higher order approximations and
nonedua]]y spaced discrete points is found in Newmark (1943), Newmark and

Rosenblueth (1971), and Salvadori and Baron (1952).
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2-3 Deterministic analysis.

The deterministic analysis, based on modal decomposition and the re-
sponse spectrum technique is widely used for engineering applications.
The following derivations are based on the assumption that the equations
of motion can be uncoupled and solved as a system df "equivalent" single
degree of freedom systems that Tater are combined to obtain the complete
response of the structure.

For convenience, the damping term is excluded from the equation of
motion and is included in the response spectrum. This procedure is usually
preferred because of the difficulties involved in the evaluation of the
damping matrix. In addition the solution procedure is simplified because
the system is now treated as a combination of undamped single degree of
freedom systems. The equation of motion for the ith generalized coordinate

is then simplified to:

0e 2 B '
9 *uy 95 = G/ | (2-13)

The decoupled ith equation of motion can be solved using the Laplace
transformation technique or any other suitable procedure. The solution
yields the well known expression in terms of the participation factors Ci’
which are a function of T'ss and the response function ei. The solution

of the ith generalized coordinate then may be written as follows:

qi = Ci ei (2-]4)

For linear systems, e_i is obtained from the evaluation of the Duhamel

integral. Therefore ei is defined as follows:



0, = £ e sin wy; (t-t) f(r) dr (2-15)

where

wp 5 is the damped frequency of vibration = wi/l - Bi

In general, for transient excitation it is difficult to find a closed
form solution for the response integral. Therefore numerical procedures
such as Newmark-Beta-Method (Newmark, 1963) are commonly used.

Participation factors -- The participation factor‘Ci requires additional

attention. Ci is the ratio of Tis the geometric component of the ith
generalized load (Eq. (2-9) and Eq. (2-10)) and M, the generalized mass
corresponding to the ith mode of vibration. Therefore Ci is written as

follows:

C_i = Fi/Mi ’ (2-16)

The quantity Fi can be derived from the work done by the forcing load
when the structure is vibrating in its ith natural mode of vibration. Since
r; is dependent on the structure mode shapes and the geometric configuration
of the forcing load, a different value of s must be expected for different
types of structures and geometrical configurations of the forcing load.
The generalized mass M; is independent of the forcing ]oad, and therefore
it isva constant regard]ess of the type ofbexcitation app]ied to the structure.
Newmark (1966) has proposed that the numerator of the participation

factor, I'y, can be written in the following general form:
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Ly = {Cb-i}T [m] {p} (2-17)

where

{p} is a vector which depends on the geometry of the applied load and the
mass distribution of the structure.

The vector {p} can be easily calculated by Eq. (2-9) and Eq.

(2-17) as follows:

r, =P %‘ b5 P = P {o;} (P} = (4.} [m] {o}
17 70 2y %17y T Mo i P

and after some manipulation the following expression is obtained:
(o} = P [m]"! (P} | (2-18)

where
[m]“l is the inverse of the mass matrix,
{P} is the geometrical distribution of the forcing load applied at dis-
crete points 1, 2, 3, .. s Js..N |

For earthquake excitation the discrete forcing ]dads are dependent
only on the mass of the structure and the ground acceleration. In this case
the vector {p} is reduced to é unit vector. It should be pointed out that
since {p} is independent of the mode shape {¢1} it must be calculated only
once durihg the solution procedure of any given vibration problem.

In the solution of a vibration problem the participation factor does not have
a unique value. The’numericaT value of the coefficienﬁ Ci depends on the
7 normalization procedure used for the computation of the ith mode of vibration.
The variation in the numerical value of the participation factor is not sur-

prising, because the participation factor has the mode of vibration in the
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numerator and the square of the mode of vibration in the denominator,
therefore the normalization constant for Ci does not cancel out. Fortunately,
this apparent inconsistency does not affect the solution of the problem be-
cause the quantity that must remain constant is the product {¢1} X Ci’ and
it can be seen that the mode normalization constant, for this product is
thus cancelled out. There are various ways of normalizing the modes of
vibration. Some engineers normalize the modes of vibration in such a way
that the resulting participation factors have a numerical value equal to
one, whereas other analysts will prefer a set of modes of vibration that
yield a unit generalized mass. The two approaches have different compu-
tational advantages and simplify the calculation of the response.

In general, summarizing the concepts presented in this section, the

participatidn factor for earthquake base excitation is written as:

(3" [m] (1} ,
C, = T (2-19a)
() [m] ;)

and the participation factor for a general loading as:

{¢1}T[m] {p}
C; = = (2-19b)
{p; 37 [m] {94}

Combination of modes -- In the previous Section the solution of only

one of the generalized coordinates was presented. To obtain a complete
solution of the equation of motion it is necessary to combine and transform

the generalized coordinates into the original set of Cartesian or material
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coordinates. In order to attain this transformation Eq. (2-15) 1is substituted
into Eq. (2-4) and the final form of the displacements written as a linear

combination of the generalized coordinates, is given by the expression:

: %55 Cy 8 (2-20)

ho~12

Y3) 7,
In earthquake engineering it is customary to define the maximum ab-
solute value of 6; as the amplification factor Di‘ The value of Di is
usually given by the response spectrum which is a function of the natural
frequency of vibfation and the amount of damping present in the system. In
general, the same response spectrum technique can be used for other types
cads such as wind and blasting, as noted by Newmark (1966)
Newmark and Hall (1968). The displacements can now be rewritten as a

function of the response spectrum as follows:
¢i' Ci Di i (2-21)

Since D_i is the maximum absolute value of the response of an equivalent
single degree of freedom system, Eq. (2-21) represents an upper bound of
the response given as the sum of the maximum absolute values of each modal
cohtribution. This upper bound is conservative because it is highly im-
probable that all the maximum responses would occur at the same time. Con-
sequently, other techniques for the combination of modal contributions
normally are used.

It is shown by Goodman, Rosenblueth and Newmark (1955) and Rosenblueth

(1956), that for structures exhibiting linear behavior with uncorrelated or
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statistically independent modes of vibration the expected numerical value
of the response is the square root of the sum of the squared contributions
associated with the various modes of vibration. Therefore the most probable

value of the response can be written as follows:

1/2

D. )2 (2-22)

(Ci ¢1j i

N~z

X< =

J‘)pr‘obab]e i=1

Rosenblueth (1956) has noted that the same technique could be used to calcu-
late quantities other than displacements if the response of the desired
quantity is equal to the sum of the responses of the natura] modes, where
each modal contribution is regarded as an independent, Tinearly damped,
single degree of freedom system. If the particular desired quantity (for
example base shear, story shear, overturning moment, stress, etc.) is
designated as Y and the particular response of the nth mode of vibration

as Yn the maximum value of Yn is given by:

] Cn Yn Dnl (2-23)

N
Viiax = z

n=1

and the most probable value of Y as:

oy

o | 1/2
(Cn Y, Dn) (2-24)

o~

Y =
probable =1

Moreover, Rosenblueth (1956) observed that the condition of statistical in-

dependence of the normal modes is satisfied even for relatively close natural
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periods and that Eq. (2-24) may be expected to hold with sufficient accuracy
in practically all cases of interest in design. However, in cases where the
frequencies are very close, the use of Egqs. (2-22) or (2-24) may result in a
large underestimation of the response. It is an accepted practice to include
the cross-products of the responses associated with each pair of natural
modes, in the computation of}the total response, when the difference be-
tween the natural frequencies is less than ten percent. The ten percent

Timit is defined as follows:

AT o010 (2-25)

N is the number of modes used in the computation of the response.
If all the cross-terms are included, the equation for combining the

modal contribution of the response is written as:

= -

1/2
N 5 N N ,
Y = -Z (C, Yy D5)° + 'Z .Z Y. vj Ci Cj Dy Dy wyy (2-26)
i=1 i=1  j=1
i , |
where
wij is a weighting factor which varies between 0 and 1 according to the im-

portance of the contribution of the cross-product.
In the cases where the cross-terms are included in the computation of the

response, the resulting value will be somewhere between the values predicted
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by Eqs. (2-23) and (2-24). If the numerical value of the weighting factors,

, are equal to one Eq. (2-25) will yield Eq. (2-23), whereas if all wij

are equal to zero Eq. (2-25) would simplify into Eq. (2-24).
Procedures used to evaluate the importance of the cross-term's con-

tributions vary from (1) considering w.. equal to one if the difference

]
between the frequencies w; and W is less than ten percent and zero in

any other case (ten percent procedure) to (2) evaluation of the weighting
factor for each cross-term contribution.

Sometimes, for special structures, modes associated with high frequencies
may be present in the computation of the response. In those cases the com-
bination of the contributions of such higher modes requires special attention.
If those high modes correspond to the unamplified high frequency region of
the response spectrum (unamplified acceleration in earthquake analysis) that
portion of the loading will behave just like a static load. Therefore, those
modes should be combined in an algebraic manner and independent of the
modes associated with the amplified region of the response spectrum.

In earthquake engineering only massive structures, as for example
nuclear power plants, have significant contributions at such high fre-
quencies (over 33 hertz). However in wind problems, most of the energy
is associated with the low frequency range and the response spectrum
(which will be developed in Chapter 4) converges to the unamplified high
frequency line at frequencies as Tow as 2 to 5 hertz.

Buildings subjected to wind forces have modes with significant con-
tributions even in the rigid region of the spectrum. In this case the modal
contributions are divided into two groups. The first includes the modes

with frequencies associated with the amplified region of the spectrum. The
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second group consists of the modes with frequencies corresponding to the
rigid region of the spectrum. The first group of modal contributions is
combined in a square root of the sum of the squares fashion. The second
group represents a set of essentially static loads and its modal contribution
should be added in an algebraic manner. The high frequency static con-
tributions can be condensed into a single residual term. A procedure for
carrying out this computation has been presented by Biswas and Duff (1979).
Those high mode contributions become more critical for effects associated
with the lower levels of the structure.

Forces and Base Shear -- Once the modal displacements, either absolute

or relative, have been computed the lateral forces induced on the structure
by these displacements can be easily calculated. The operations are per-
formed for each mode of vibration and the forces are combined using any of
the rules previously discussed.

In the beginning of this section it is established that the displace-
ments associated with the nth mode of vibration are given by the following
expressions:

for the absolute displacements:

X, = {¢n} Ch Dn (2-27a)
for the relative displacements:

Un = {¢n} o Dn (2-27b)

Since the displacements are known, their associated modal Tateral forces

can be calculated using the following statical relationship:
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for the absolute displacements:

{F} = [k] X} (2-28a)
for the relative displacements:

{f} = [k] {u} (2-28b)

As has been previously shown in Eq. (2-6), the mass and the stiffness

matrixes are related by the characteristic equation:
- 2
(k1 fop} = [m] {9} v (2-29)

The forces associated with the nth mode of vibration are calculated sub-
stituting Egs. (2-27) and (2-29) into Eq. (2-28). Therefore the resulting

forces vector is written as follows:

2 (2-30)

{fn} = [m] {¢n} Cn Dn W,
where

{fn}is the vector of the lateral forces associated with the nth mode of

vibration.

The modal base shear v__ is the sum of the components of the modal

on
forces vector {fn} If matrix notation is used, the sum is obtained by pre-

multiplying Eq. (2-30) by a unitary row vector. Thus the base shear associated

with the nth mode of vibration is written as:

2

vy = (T Imd 4o} €D, wy (2-31)
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2-4 Forces and Base Shear for a General Loading as a Function of the Earth-
quake Participation Factor.

Historically, for civil engineering structures, modal analysis pro-
cedures have been used to study the response of structures subjected to
earthquake base excitation. Therefore it is convenient to express the
solution of the equation of motion, for the case of a general load, in
terms of the earthquake participation factors modified by a constant, Yio
to account for the geometric differences of the forcing load.

For each mode of vibration the constant Y; can be calculated by equating
Eq. (2-19b), the participation factor for a general load, with Eq. (2-19a),
the participation factor for earthquake base excitation, modified by the con-

stant Y- This relation is written as follows:

0Tl 03 (6,17 [m] {1}

T ml ey T tept Il Gy

Since the result of all four matrix triple products are scalars, it is

possible to solve for Yi» and the following expression is obtained:

3" [n] (o}

Y. = (2-32)
Yoo 1 (1

For earthquake base excitation Y4 has a numerical value equal to one.
The participation factor for a general load can now be rewritten as a -
function of the earthquake participation factor as follows:

C; = v, (:E_i (2-33)
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where

CE is the participation factor for earthquake base excitation associated
i

with the ith mode of vibration.
Therefore the expanded form of the participation factor for a general

type of loading is:

¢ [m] {1}
C; = v, — (2-34)
¢ [m] ¢1j

Once the participation factor has been calculated the lateral forces
and modal base shear can be found using the same procedures discussed in
Section 2-3. It will be apparent later that the constant Yy will appear
in the expressions for lateral forces and modal base shear, but it will not
be present in the equation for the distribution of the base shear.

The modal lateral forces are obtained replacing Eq. (2-34) into Eq.

(2-30). Therefore the lateral forces are:

[n] Lo} (o, 37 [w] (1)
{fi} =Y T ! Dy wy (2-35)

In a similar way the modal base shear is calculated by substituting Eq.

(2-34) into Eq. (2-31). Then the modal base shear is expressed as:

()] D, w:’ (2-36)
Vg = Y, W -
of ! ¢ [m] {¢ T
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Eq. (2-36) can be rewritten in a form similar to that proposed by A.T.C.
(1973), Eq. (5-2), as follows:

voi= W vq Cy; (2-37)

where

Y4 accounts for the variation of the participation factor for a general

load as a function of the earthquake participation factor.

W is given by A.T.C. (1973) Eq. (5-3). W is defined as a measure of the
force synthesized by the ith mode of vibration and is given by the following

expression:

_  ea! 1 0
T 2 {6} [W] .} (2-38)
Z W, (¢..) i i

where
wj is the weight of the structure at level j,
[W] is the matrix of the weights of the structure

C_ . is the amplification factor which is dependent on the frequency content

oi
and time history of the forcing loading. For earthquakes A.T.C. (1973) has

defined the amplification factor as follows:

c .=+ (2-39)

g is the acceleration of gravity.
Once the base shear is calculated, the factor Y5 is absorbed into the

base shear coefficient and the equation for the distribution of forces
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becomes independent of the forcing load. Hence, the lateral forces are

réwritten as a function of the modal base shear as follows:

[m] {3
{f.} =

V. (2-40)
Topa oy O ;

For the case of a diagonal mass matrix, Eq. (2-40) is similar to A.T.C.
(1973) Egs. (5-4) and (5-4a). In A.T.C. (1973) Eq. (5-4) the force at

level X associated with the mth mode of vibration, Fxm’ is given by:

Fym = Cvxm Yom (2-41)
where Cvxm accounts for the force distribution at different levels of
the structure and is given by A.T.C. (1973) Eq. (5-4a)
W, ¢
_ X Txm
Cvxm TN (2-42)
Y W, ¢. m
iz

Therefore, it becomes apparent (regardless of the type of forcing load
that is applied to the structure) that once the modal base shear is computed,
the force distribution obeys the same relation for any type of forcing load
applied to the structure. Moreo&er, if a linear mode shape is assumed, Egs.
(2-41) and (2-42) can be simplified to the following expression used in

earthquake engineering for the distribution of base shear:

_ VO wX hX

- (2-43)
» 1 My Ny

F

where
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FX is the lateral force at level x,

wx is the weight at level x,

hX is the height of the level above the base,

Y wx hX is the sum of all weights Wmultiplied by their respective
heights h above the base and

VO is the base shear force.

2-5 Random Vibration Analysis.

For completeness in this study and because wind loading is normally
handled by random vibration procedures, it was felt deéirab]e to present
a brief description of these techniques and to demonstrate their commonality
with deterministic analysis. One objective of this study was to demonstrate
the practical applications of random vibration procedures and also to show
that these techniques can be conveniently employed for generating response
spectra. As will be presented in this section once the response spectrum
has been evaluated the same modal analysis techniques usually employed in
deterministic analysis may be used for random vibration analysis.

Before discussing the response of dynamic systems to random excitation
it is convenient to review briefly the deterministic solution of a single
degree of freedom system using the frequency response method. It should be
noted that random vibration techniques and frequency response analysis are
relatively unfamiliar to most structural engineers. The solution of vibra-
tion problems in the frequency domain requires the use of mathematical tools
such as the Laplace transform and concepts of Fourier analysis. Normally

Fourier analysis techniques are used to represent the forcing function in
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the frequency domain. If the forcing function is periodic such representa-
tion is attained by employing a Fourier series expansion, whereas if the
forcing function is nonperiodic, as is generally the case in vibration
problems, the frequency representation of the forcing load is obtained
vthrough the use of the Fourier integral.

.Solution of a S.D.0.F. system in the frequency domain -- Only a summary

of the most important points of the frequency response method is presented
here. A complete and rigorous treatment of the method can be found in
Hurty and Rubinstein (1964).

The equation of motion of a single degree of freedom oscillating system

is written as:
mx + cx + kx = f (t) (2?44)
Eq. (2-44) has a time domain solution of the form

t
X(t) = [ h(t-rt)f (1) dt (2-45)
0

where

_ _ 1 -Bw (t-T1) .
h(t - 1) = 5755 e sin wy (t-1)
This representation of the time domain response (as presented in Section
2-3) is commonly referred as the Duhamel integral.
To solve the equation of motion using the frequency response method,
the first step is to represent the loading in the frequency domain by

evaluating the Fourier transform of the forcing function f(t). This
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frequency representation of f(t) is defined as F(w). Therefore F(w) is

expressed as follows:

[o 0]

Flw) = [ f(t) e 1wt 4¢ (2-46)

- 00

In the frequency response method the output function or response X(w)
is also given as a function of frequency. Furthermore the relationship

between the forcing function and the response is written as follows:

X(w) = H(w) F(w) x (2-47a)
mw

where

H(w) is known as the frequency transfer function and defined as:

H(w) =

g1]e

1-—‘5’7 +i28
w

is the natural frequency of the S.D.0.F. system

gl

B is the damping as percent of the critical.

It can be shown, see Hurty and Rubinstein (1964), that h(t-t) and H(w)
are a Fourier transfofm pair.

The relationship between the input force and the output force can be

written as follows:

F(w) = |H(w)| Flw) (2-47b)

A summary of the solutions for time and frequency domain are presented

and compared in Table 1.
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Random Vibration Techniques -- In the random vibrations techniques

presented in this section, the Tevel of statistics has been reduced to

a minimum. Explanations are made in terms of familiar statistical con-
cepts such as mean, variance and standard deviation. It is assumed that
the random process can be characterized by two statistical descriptors
which are its mean value and its variance or its standard deviation.
Furthermore, any random process can be divided into two independent

random processes, one is a mean process with zero variance, and the other
is a zero mean process representing the variance of the original process.
Moreover, the variance of a zero mean process equals its mean square value.
Therefore the original random process is split into a mean process and a
mean square process. It should be pointed out that the mean of the forcing
function will yield a mean response and the mean square of the forcing
function will yield a mean square response.

Solution of a S.D.0.F. Subjected to Random Input -- Now consider the

same single degree of freedom system described by Eq. (2-44). 1In this case
the forcing function is a random function defined as Fr(t), then Eq. (2-44)

is written as:

mx + ck + kx = F_ (t) (2-48)

Using the principle of superposition Fr(t) can be divided into two
parts. One F} is the mean value of the forcing function and the other Frl(t)
is the variation of Fr(t) from the mean value ?}. The forcing function is

then written as:

Fo(t) = Fo+ FLo(t) (2-49)
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The solution of Eq. (2-48) is now split into the solution of two equations,
the mean response which is treated as a quasi-static problem and is given

by the solution of:

mx + cx + kx = ?} (2-50a)

which can be solved as

Fr (2-50b)

kx

and the mean square response can be obtained from the solution of the

expression:

mx + cx + kx = Fr. (t) (2-51)

Computation of the mean square response -- The quantity F} (t) is

a random function having a zero mean. Hence, it represents the variance
(as a function of time) of the random function Fr(t). Consequently, the
solution of Eq. (2-51) will consist in finding the mean square response
as a function of the mean square forcing function. In order to obtain a
solution it is necessary to represent the mean square of the forcing load
in the frequency domain. |

The frequency representation of the mean square can be derived from
the Parseval theorem of Fourier analysis. Parseval's theorem can be
written as follows (Spiegel 1972): |

] o

_{omx1(t) x(6) dt = [ Xy (w) Xy (@) do (2-52)

where
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x](t) and X](w) are a Fourier transform pair, and x2(t) and Xz(w) are
another Fourier transform pair. In this case for the computation of the

mean square

x(t) and

x
r—
—
o+
~—
i
>
N
—
-t
~—
H

X(w)

>
el
—_
=
~
|
>
nNo
—
>
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i

o o o

[ X @))% dw (2-53)
0

5 [—

Changing the limits of integration and dividing by 2T one obtains:

Tim 1 T 1im T 2

' 5 2 1 X (u

A O R T Rl g, (2-54)

The left hand side of Eq. (2-54) is precisely the definition of mean square.
The expression |X(w)|2/T is defined normally as the power spectral

density function of x(t). This relation is written as follows:

X(w) = T (2'55)

Therefore the mean square is equal to the integral along the frequency line
of the power spectral density function divided by 2w, A graphical repre-

sentation of this relation is shown in Fig. 3. It should be noted that the
power spectral density function can be computed from statistical procedures,
if one has sufficient data, by employing the autocorrelation function. Con-

struction techniques for the power spectral density function employing the
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autocorrelation function are presented by Crandall and Mark (1963), Robson
(1964) , etc.

Computation of the response of a single degree of freedom system--

The solution of Eq. (2-51):
mx + cx + kx = Fro(t)

can be written using the frequency response procedure as follows:

X (w) = H (w) F; (w) (2-56)

If each side of Eq. (2-56) is multiplied by its complex conjugate the

following expression is obtained:

X (w) X (w) = H (w) F; (w) H (w) F; (w)

which can be rewritten as

X (@)% = [H @)% |F ()]

If now we divide by T, the following expression is obtained:

| X ()] ¥ IF. (w)]2

- (257)

2
From Eq. (2-55) it can be seen that _Jl%jgﬁl_ is the power spectral density

2
Fp ()]
|
function of x(t), and —-l;7r—-— is the power spectral density function

of F, (t). Therefore the power spectral density function of the response
js the power spectral density function of the forcing function multiplied
by the square of the frequency transfer function |H (w)lz.

Therefore the mean square response can be written (using Eq. (2-55) and
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and Eq. (2-57)) as follows:

¥ o(t) = 0oL II x2 (t) dt =51 [ [H (@)]% F' (&) do (2-58)
where

L (w)[2 is the square.of the frequency transfer function and commonly

known as the mechanical admittance function.

F;(w) is the power spectral density function of F} (t).

Root mean square response for multi degree of freedom systems. --

In Section 2-3 it has been shown that the ith decoupled equation of motion

has the form:

. _ )
Qi * 285 05 95wy 4y = Gy F(L) (2-59)

The decoupled equation of motion can be solved in the frequency domain
as an equivalent single degree of freedom system. The steady state

solution of the ith generalized coordinate is:

C.
q;(t) =-l§ 1 > (2-60a)
1 - (w/wi) + 1 28 w/wi

Ws
1

where

w is frequency,

w; is the ith natural frequency of the system,

If the definition of mechanical admittance, Eq. (2=48) is now recalled,

Eq. (2-60a) can be written in a more compact form as follows:

C.
q;(t) = =5 Hy (w) F (t) (2-60b)
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The response X(z,t) of a point zon the system at time t can be expressed
in terms of the normal modes {¢i} and the generalized coordinates qi(t),

as previously defined in Eq. (2-4) as:
N
X.(t) = .k d.: qL(t) (2-61)

Moreover, the mean square value of a zero mean response can be written as:

T

72 Tim 1 2
X“z,t) = 0, 57 fT X° (z,t) dt (2-62)

To obtain an expression for the mean square response Eq. (2-60b) is
substituted into Eq. (2-61) and then into Eq. (2-62) and the following

result is obtained:

gy . T N N Hy(w) H.(w)
2 Tim 1 : i 2
X(z,t) = 1,7, [0 1 0y by € e (FL())7dt
T > Vil 0 ST R ML R B B 2 ij r
(2-63)
The response can be simplified interchanging the order of integration
and summation as follows:
N N . T H.i(w) H.(w)
. o Tim 1 ity 2
2 = Y ) ¢: ¢ C. Co e T [ s (FL(t))dt
X“(z,t) 91 9 LA T I 2T Tt wiZ ij r
(2-64)

The integral in the last expression requires further consideration. The

following approximation may be used to get a more treatable solution.
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oG fe ¢]

[ oHy () Hy () (FL(0)2dt = [ [H ()] [H; ()] (FL (£))? dt

. - J

(2-65)

Thomson and Barton (1957) have shown that this approximation disregards
phase relations, which will tend to result in a lower mean square value.
Therefore, this is a conservative approximation.

With the help of Eq. (2-54) the forcing function F;(t) is transformed

into the frequency domain and the mean square response is written as:

X z,t) = b, ¢ —LJ_ 5., (w:y w.) (2-66)
i=1 j=1 ' Y miz wja W

where

Sij (wi’ wj) is the response function defined as:

S.. (w:y w:) = ?%- / |H (w) | F; (w) dw (2-67)

A general forcing load may also have spatial correlations as is the
case of wind loads which have correlation functions which vary with the
frequency and the size of the structure. To account for this variation
of the forcing load, a correlation function |J (w)|, is included in the
forcing load. Now, the mean square value of the response function for a

general type of forcing load may be written as:

where
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|d(w)| is the correlation function which accounts for the spatial variation
of the forcing load (|J(w)| is discussed in Chapter 3). If now in Eq.
(2-66) the similar terms and cross-terms are separated the mean square

response can be written as:

— N S.. (ws) N N Ses (wys wy)
2 _ 2 ~ 2 7ii i ig ‘i’ )
X“ (z,t) = ) ;" G ——g—+ I 1 ¢; ¢.C.C.
i=1 ! ! r i=1 j=1 T m12 mg
i# 3] (2-69)

It is important to note the similarity between Eq. (2-69) and Eq.
(2-26) (the combination of modes for deterministic analysis). The same
observations made in Section 2-3 for evaluating and ignoring the contri-
bution of the cross-terms may apply here. In addition, it is noted that
the products lHi(w)IlHj(w)I for i # j are relatively small when compared
with the same products for i=j. Moreover, terms with i # j may be nega-
tive as well as positive depending on the product ¢i¢j Cicj’ while terms
with i=j are always positive. The contribution of the cross product terms
to the mean square response will therefore be sma11; Based on these ob-
servations, it can be concluded that the cross-terms of the response could
be neglected. This approximation has been extensively used in random
vibration analysis. The simplified (approximate) form of the mean square

response of the displacements may be expressed as:

2 2 Syi () (2-70)
0.2 ¢.2 i
i i 4 .
1 wy

ie~—122

X2 (z,t) = _
i



41

2-6 Peak Factors

In engineering problems the maxima or peak values of the response
are usually required. The techniques presented in Section 2-5 yield a
mean square value of the response, but they do not allow a consideration
of the maximum values.

The peak factor, defined as the ratio of the maximum value of the
response to the root mean square value, provides a tool for assessing
the maximum values of the response. Davenport (1961), using a statistical
approach, has presented a derivation of the peak factor as a function of
the equivalent frequency of vibration and the time interval over which the
record has been averaged, as noted below.

The mean value of the peak factor, g, and its standard deviation,
o_ can be computed employing the first crossing probability. For a narrow

g
band process, Davenport has proposed the following expressions:

g=/ZmvT + 22 (2-71)
v24nvT

o =_l/~_~6._____ (2_72)

9 2T

where

v is the equivalent or apparent frequency

NEEp— (2-73)

T is the time interval over which the record has been averaged.
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The range of values of g is generally between 2.5 to 4.5. In lieu
of computing the first crossing probability, Vickery (1971) has suggested

that g could be taken as 3.5 for most of the cases in design.

2-7 The Random Vibration Techniqges Applied to the Response Spectra.

The same techniques used for deterministic ana1ysis can be used for
random vibration analysis if a suitable definition of a response spectrum
function is attained. It will be shown that a response spectrum computed
from random vibration techniques is very useful for practical applications.

There are some loadings in engineering, such as wind, that can be best
described by statistical means. However the random vibration theory re-
quires a great deal of computation and a rigorous mathematical treatment
which makes random vibration techniques applicable only to a few highly
idealized problems. The development of a response spectrum from random
vibration will permit the treatment of more reé]istic problems including
for examp1é differences in the mass and stiffness distribution on the
structure.

In order to remain consistent with the deterministic philosophy of
analysis, the response spectrum should be calculated for an equivalent
single degree of freedom system with various natural frequencies of vibra-
tion and amounts of damping. For random vibration analysis two types of
response spectra can be calculated: a root mean square response spectrum
and a peak or maximum response spectrum.

Root mean square response spectrum -- The root mean square response

spectrum is given by the square root of the function Sii (wi)/wi4’ which
represents the mean square value of the response. Such a function may be

evaluated for various natural frequencies of vibration and amounts of
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damping. The root mean response spectrum for a given value of frequency

and damping is defined as:

S.” (wa U).i:B)
D; (wy, B) = i (2-74)

! w
i

where

wy is the natural or resonant frequency of vibration

Bi is the damping expressed as percent of critical Sii (wi’ w, B) is the
power spectral density function of the response as defined in Eq. (2-68).

Peak response spectrum -- The peak response spectrum can be calcu-

lated by multiplying the root mean square spectrum, times the peak factor

g given by Eq. (2-71).

Dmaxi (wys B) = Dy (w;5 B) x g (2-75)

This definition of a maximum value for an equivalent single-degree-
of-freedom system is consistent with the philosophy of the’response
spectrum technique.

With this convenient definition of response spectra the modal forces
and base shears can be computed by employing the same equations derived
in Sections 2-3 and 2-4 for deterministic analysis.

The two spectra described in this section are calculated for wind
loading 1in Chapter 4, using the power spectral density function of the

wind velocity as input.




44

CHAPTER 3
PHYSICAL PROPERTIES OF THE WIND

3-1 Introduction

In order to study the behavior of structures subjected to strong wind
loading it is necessary to review the principal physical properties of
winds. Strong winds constitute a turbulent phenomenon with statistical
descriptors being used to study and_quantify the wind flow.

From an engineering point of view the most important properties of
the wind are its velocity and intensity of turbulence, the velocity pressure
relations and the distribution of pressures (associated with the wind) on
the various faces of the structure. In addition, the aerodynamic properties
of the structure also play an important role in the computation of the
wind forces. Statistical formulations are used commonly for describing the
fluctuation and intensity of the wind velocity, and some of the aerodynamic

properties such as the correlation of pressures.

3-2 Wind Velocity.

The wind velocity is the most accepted parameter employed for classifying

(]

the various types of winds. Since the beginning of the century the measure-
ment of the wind velocity has been a topic of study and concern among
practicing engineers. With the invention of modern anemometers many wind
records have been taken at different geographic locations, terrain roughness
conditions and varying altitudes. Unfortunately those records have been

averaged over different intervals of time; and various types of anemometers,

having different response properties, have been employed.
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The difference in the time interval for averaging the wind velocity
presents serious problems. The numerical value of the average wind velocity
has large variations depending on the chosen interval used for averaging
the wind velocity. Drust (1960), and Deacon (1965), have presented pro-
cedures to normalize the wind velocity averaged over different time in-
tervals to a uniform period of one hour. In this study, as generally is
the case in wind engineering, the velocities are averaged over an interval
of one hour. In other words and in order to be consistent with previous
research all the computations are carried out in terms of hourly mean

velocities.

3-3 The Wind Boundary Layer.

Moving along the surface of land or water wind develops a boundary
layer in a manner similar to the boundary Tayer developed when a fluid
flows over a rough plate. However, the thickness of the earth boundary
layer is larger than those found in man-made aerodynamic bodies. In
steady winds the thickness has been stated to be higher than 1000 ft.
Statistical observations measured by Goddard (1935) and reported by
Hoerner (1965) indicate that the boundary layer thickness (measured in
feet) is on the order of 30 to 50 times the speed V (in ft/sec) above the
layer. A.N.S.I. recommends the use of 900 to 1500 ft depending on whether
or not the wind is blowing in open country or in the center of a large city.

Vertical Distribution of the Wind Velocity -- Inside the earth

boundary Tlayer the wind velocity is not constant. The wind velocity
suffers some retardation near the ground because the terrain produces a

friction drag which steadily decreases the wind velocity.
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The effects of the friction drag decrease rapidly with the a]tifude
through the thickness of the layer and become negligible outside of the
boundary layer.

The altitude where the wind velocity is independent of the terrain
friction drag is called the geostrophic altitude. The thickness of the
boundary layer, or geostrophic altitude, is a function of the friction
drag and consequently a function of the terrain roughness. Values of the
boundary layer thickness for various exposure conditions are presented
in Table 2. Therefore the wind velocity is largely dependent on the con-
ditions of the terrain over which the wind flows.

Two models are generally employed for describing the vertical dis-
tribution of the wind velocity, namely the power law and the logarithmic
law distributions.

The power law -- The power law is the model used in the majority of

the present building codes such as A.N.S.I. and N.B.C.C. Early studies
reported by Hoerner (1965) suggested that the wind velocity is proportional
to the nth root of the altitude, n being somewhere between 2 to 7. This

relationship may be stated generally as follows:

V(z) « V' z (3-1)

where
z is the altitude.
Recently Davenport has concluded that, for engineering applications,

the mean wind velocity is well represented by the following power law:

V(z) =V, (52) (3-2)
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where

z is the altitude,

z, is a reference altitude taken as 33 ft (10 m),

Vr is the velocity at the reference altitude Z.s

a is a constant which depends on the conditions of the terrain.

The conditions of the terrain (exposure of the sfructure) are usually
divided into three broad categories, i.e., A.N.S.I. gives the following
classification:

Exposure A: Center of large cities and rough hilly terrain.

Exposure B: Rough wooded country, towns and city outskirts.

Exposure C: Flat open country, open flat coastal areas and

grass land.

The values of the constant a for exposures A, B, and C are given in
Table 2. Also, in Fig. 4 a plot of Eq. (3-2) for various values of a and
their corresponding geostrophic altitude is presented.

Logarithmic law -- More recently, Simiu and Lozier (1975) on the

basis of theoretical derivations and experimental measurements, have
recommended the use of a logarithmic relationship for describing the
vertical distribution of the wind velocity. The logarithmic distribution
has the following form:

Z-Zd
V(z) = 2.5 V* an (—

) (3-3)
r

where

V(z) is the mean wind velocity at height z,

z4 is the zero plane displacement that should be taken as zero except for

city centers where the smaller of 60 ft (20 m) or 0.75 h (where h is the

average height of the surrounding area) must be taken.
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z, is the roughness length given in Table 3 for various terrain conditions.

V* is the friction velocity defined as follows:

V(Zr)

"o (Zr " 4d )
z
0

2.5 4n

zyis areference altitude usually taken as 33 ft (10 m),

V(z,.) is the wind velocity at the reference altitude.

3-4 Velocity Pressure Relations.

In engineering problems the momentum model is generally accepted as
a good representation of the velocity pressure relation. The momentum
model assumes that the pressure is proportional to the square of the
velocity plus an added mass term. The pressure P(z) at a point p of
elevation z on the surface of a building immersed in an unsteady flow

can be expressed as:

P(z) + P'(2) (3-4)

il

P(z)

H

P(z) = 1/2 p Cy (V(z) + V' (2))% + ¢ b(z) ¥ (z,t) | (3-5)

D

where

P(z) is the mean pressure,

P'(z) is the fluctuating pressure,

V(z) is the mean velocity,

V'(z) is the fluctuating velocity

V(z,t) is the first time derivative of the velocity,

Cp is the drag coefficient,
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p is the air density (0.00252 if the velocity is in ft/sec, or 0.00512
if the velocity is in mph),

qn is the added mass coefficient,

b(z) is the width of the structure.

This expression of the momentum model for the velocity pressure re-
lationship is accurate under the assumption that the transverse building
dimension is small compared to the scale of the energy containing the
eddies of turbulence (Simiu and Lozier, 1975). In addition, the assumption
that the pressure is proportional to the square of the velocity is reasonable
for the range of velocities usually found in ordinary wind flow. The im-
portance of the added mass term has been analyzed by Vickery and Kao
(1972), Kao (1971), Bearman (1972), and Petty (1972). Al1 these authors,
using wind tunnel tests, have concluded that for bluff bodies immersed in
turbulent flow the added mass term is negligible. The velocity pressure

relationship is therefore simplified to:

2

P(z) = 1/2 p ¢y V2 (2) (1 + 2 LL2) o (V12D (3-6)
V (z) V (z)
Further information from wind tunnel tests by Vickery and Kao (1972)
¢ 2
has shown that the contribution of the quadratic ratio term (¥70 is in

v
the order of 3 to 5 percent. A more recent study by Soize (1978) indicates

that this term may account for as much as 10 to 25 percent of the total
pressure for structures smaller than 150 ft tall (50 m) located in city
exposure. However, the influence of the quadratic ratio term decreases as
the terrain friction decreases and the height of the structure increases.
In this study the influence of the quadratic term in the velocity pressure

relationship will be neglected.
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3-5 Distribution of Wind Pressure, Drag Coefficients.

The drag coefficients and pressure distributions are quantities
that must be determined experimentally. Drag coefficients are largely
dependent on the shape and aerodynamic properties of the structure.

There are two types of drag coefficients: (1) the over-all drag
coefficient which affects the whole structure, and (2) the local dfag
coefficients which are related to specific parts or portions of the
structure.

A summary of drag coefficients for various types of structures are
presented by Hoerner (1965), A.S.C.E. Wind Committee Report (1961) and
Sachs (1972). Coefficients for the distribution of local pressures on
roofs and walls can be found in A.N.S.I. and the A.S.C.E. Wind Committee
Report (1961).

Horizontal distribution of the wind pressure -- For rectangular

structures N.B.C.C. and A.N.S.I. have recommended the use of a drag
coefficient of 0.80 and a 1ift coefficient of 0.50. In addition, A.N.S.I.
recommends a 1ift coefficient of 0.60 for narrow structures in which the
ratio height-width (h/b) or height-length (h/d) is larger than 2.5. For
straight wind normal to the face of the structure a typical horizontal
distribution of the wind velocity is presented in Fig. 5. It can be seen
that at the windward face the pressures are larger in the center of the
structure than in the corners of the building. At the leeward face, the
pressures (actua!iy suction or negative pressure) are more uniform and

of smaller magnitude than those occurring in the windward face. At the
lateral sides of the structure high pressures occur ciose to the windward
edge, decreasing steadily to a minimum close to the leeward face of the

structure.
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Generally, in the computation of the along wind response of a structure,
the variations of the horizontal distribution of wind pressures may be
ignored and an equivalent uniform design value can be used. However, special
attention should be given to the design of windows and cladding, principally
close to the center and corners of the structure. Drag coefficients for
the design of parts or portions of a building are given by A.N.S.I. and
N.B.C.C.

Vertical distribution of pressure -- The vertical distribution of

wind pressure on the windward face of the structure is proportional to

the distribution of wind velocity which has been defined by Eq. (3-2).

The mean wind pressure can be assumed proportional to the square of the wind
velocity for the range of velocities considered in this study. Therefore
the vertical distribution of mean wind pressure in the windward face of

the structure is given by the following expression:

P(z) =P, (55 (3-7a)

The vertical distribution of the fluctuating pressure is:

(%) (3-7b)
r r

8 —
P'(z) = P,

In the Teeward face of the structure suction rather than pressure
occurs. The distribution of wind suction is somewhat more uniform than

the distribution of wind pressure. It is recommended by N.B.C.C. and
A.N.S.I. that a uniform distribution can be used. This distribution has

a value equal to the pressure computed at the mid height of the structure

employing the exponential law described by Egs. (3-7a) and (3-7b).
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A summary of the pressure and suction coefficients discussed in the
preceding paragraphs is presented in Table 4 and illustrated in Fig. 6.
These distributions of pressures will be used in Chapter 5 to compute the

participation factors associated with wind loading.

3-6 Statistical Description of the Wind Turbulence.

Concepts of isotropic turbulence have been used to study and quantify
wind forces. Therefore winds have been customarily described using
statistical formulations.

The wind velocity is generally divided into a mean component and a
fluctuating component having a zero mean. Thus, the wind velocity will
produce two separate effects, one is a static effect associated with the
mean component, and the other is a dynamic effect associated with the
fluctuating component. Since the fluctuating effect has a zeko mean, it
is characterized by the second statistical descriptor, namely, the variance.
The variance for a zero mean process is equal to the mean square value,
j.e. the statistical treatment of the fluctuating component will yield the
standard deviation of the process.

The fluctuating component of the wind is generally analyzed by employ-
ing random vibration techniques. Therefore statistical functions that
characterize the fluctuating wind velocity must be developed. As has been
discussed in Chapter 2, Section 2-5, those are the power spectral and the
correlation functions.

Wind Power Spectral Density Function -- The power spectral density

function is generally employed for representing the energy content of the
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wind fluctuation associated with a specific frequency. One of the first
efforts to quantify the fluctuating component of the wind velocity was
reported by Van der Hoven (1957), as cited by Davenport (1961). With
the data obtained at Brookhaven, N.Y., over a large number of years,

Van der Hoven was able to present the energy content of the wind turbu-
lence over a wide range of frequencies. This spectrum is presented in
Fig. 7.

For strong winds such as those associated with a wind storm, the wind
velocity should be averaged over a shorter period of time. For those cases
Davenport (1961) has proposed an energy spectrum in which the mean square
values of the energy of the wind are given as a function of the wave length.

Davenport's spectrum is defined as follows:

[¢]

f SV (f) i ax* (3-8)
2 2,4/3
C, V° (2) (1 + X°)
where
f is the frequency in hertz,

SV (f) is the spectral energy at frequency f in ft/sec Hz,

x = 4000 f

vV (2)
Ct is the dimensionless terrain frictional drag coefficient.

C, has a range of values between 0.0005 for wind flow on sea surface
to 0.050 for flow over an urban area. Values of the coefficient Ct’ for
various terrain conditions, are listed in Table 4.

Davenport's spectrum covers a range of wave ]engths from 50 to 5000

ft, but can be extrapolated with some reliability for shorter wave lengths
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(Sachs, 1972). A plot of Davenport's spectrum is shown in Fig. 8, it can
be seen that the spectrum has a peak at a wave length of 2000 ft., showing
that there is a high energy concentration in the low frequency range.

For a mean wind speed of 100 ft/sec (68 mph or 33 m/sec) the spectrum
covers a frequency band between 0.02 and 2 hertz which includes the funda-
mental frequency of most structures. For this specific velocity, the
spectrum has a peak at a frequency of 0.05 hertz.

Although the wind flow is mainly horizontal near the ground, in the
upper regions the boundary layer may have vertical components of considerable
value. A spectrum of vertical gustiness, which is strongly dependent on
the height above the ground, has been proposed by Panofsky and McCorning

(1960). The spectrum is defined as follows:

Fs,(f -
-——{7‘2’——(-)-——— o F (3-9)
c, V2 (2) (1+4F

where
F is the reduced frequency f x z/V(z),
bsvv (f) is the vertical spectral energy at frequency f.

The vertical spectrum is important only for structures having a vertical
degree of freedom such as suspension bridges and suspended cables.

More recently, Simiu (1973) has proposed a spectrum which accounts for
both the horizontal and the vertical fluctuations of the wind velocity.
Simiu's spectrum is expressed as follows:

f §v (f) _ 200 %

(3-10)

¢, ¥ (z2)  (1+50 )3
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where

The various representations of the wind power spectral density function
discussed in this section are employed in Chapter 4 for computing the dynamic
response associated with the fluctuating component of the wind flow.

Correlation of Wind Pressure. -- A wind gust should be at least as

large as the structure for full effectiveness. The turbulent flow contains
gusts of various sizes, many of these smaller in size thah the structure,
and therefore not completely effective over the whole area.

To compute the overall response of a structure a value of the equivalent
pressure acting over the complete area should be estimated. Obviously, to
assume that the equivalent pressure is equal to the largest peak pressure is
a safe assumption, however it may yield results that are unrealistically
high. Correlation functions are needed for the computation of the effective
pressure coefficients described in Section 4-3 and Appendix A.

One of the principal parameters used to quantify the effective pressure
is the size of the structure. Early work in aeronautical engineering suggested
that the effective pressure decreases with an increase in the size of the
structure. Another way to quantify the relative intensity of the pressure
peak; is to measure the separation that exists between peaks of high in-
tensity.

For some time, in aeronautical and wind engineering, the correlation
of pressures has been used to describe the average or equiva]ent'effect

of the various pressure gusts acting on a structure. Generally, the
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correlation of pressures has been expressed in terms of the coherence

functions (defined as the square root of the absolute value of the corre-
lation). Various authors in aeronautical engineering and, more recently,
Davenport in wind engineering have suggested that the coherence function

for wind pressure is an exponential function which decreases with the fre-
quency and separation of the wind flow and the size of the structure. Usually
it is assumed that the coherence can be represented as an exponential fuhction
of the reduced frequency quantity, j§f
where

f is the frequency,

Ak is the separation,

V  is the mean wind velocity.

Therefore the coherence function in the vertical direction can be

written as follows:

~—

L—

—~
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Vertical Coherence = exp {- CZ (

The quantity Cz is a constant that has to be determined experimentally.
A plot of the vertical coherence function is presented in Fig. 9.
Similarly the coherence function in the horizontal direction is written

as follows:
A
Horizontal Coherence = exp {-C (—:95} (3-12)
v

Davenport has suggested that the horizontal and vertical correlations of
wind pressure could be written as the square of the coherence functions as

follows:
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| f

2cC |7, -1
z 1 72 3 (3-13a)

Vertical Correlation = exp | —
v

| f

20 | Yy - Y, }

Horizontal Correlation = exp { (3-13b)

v

After extensive wind tunnel testing, Davenport has recommended the

use of the values CZ = 10 and CY = 16.

In order to obtain the overall effect of the wind pressure it is
necessary to combine the vertical and horizontal correlation functions.

Davenport has proposed that such combination can be attained as follows:

| ]]/2

2
2 fIC, 7y -2 2 . (3-14)

|
R, = expl- — 2 —
v (z]) +V

Equation (3-14) with values of CZ = 10 and CY = 16 will be used in

-

Chapter 4 for computing the effective pressures acting on a structure.

Cross-correlation of Pressures -- In order to provide a complete picture

of present knowledge in wind engineering, the cross correlation of pressures
between the windward and leeward faces of the structure is presented. How-
ever this function will not be used in the present study for the computation
of wind response spectrum. For deep structures, the distance between the
windward and the leeward faces could be large. In those cases, the windward
pressure and the leeward suction are not in phase. Therefore a reduction in
the dynamic response of the structure can be expected.

It is easy to see that as the size of the structure increases (especially
the distance between the windward and leeward faces) the cross—corre]ation of

pressures acting on the’opposite faces of the structure should decrease.
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This effect will introduce a reduction in the overall response of the
structure. Simiu and Lozier (1975) have suggested that, for regular
rectangular structures, this reduction due the cross-correlation can be

written as follows:

1 -2¢ | |
N == - —= (1-27%%) (3-15)
u £ 2(22 .
and £ is defined as
£ = §;§_5_7°_AX (3-16)

v

and A is the smallest of 4h, 4b, or 4d (being h, b and d the dimensions
of the building).

In addition, for computing the mean square response Simiu and Lozier
(1975) have recommended the use of this reduction function only in the
high frequency range, and to take Nu = |1 for frequencies smaller than ~ 0.9
of the natural frequency of vibration.

A simpler procedure to account for the cross-correlation oprressures,
and also proposed by Simiu and Lozier (1975), is to reduce the equivalent

pressure by the following factor:

(C2 +2N, c.C, +c2)l/2
o ooty Ob * G (3-17)
N R

~This reduction coefficient (RN) can have vaiues as low as 0.71 when
CD = CL and Nu = 0, or be equal to one if Nu = 1. In most cases the co-
efficientRN will decrease the dynamic pressure of the structure by as much

as 10 to 20 percent. The cross correlation of pressures, Eq. (3-15) can
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be included in the computation of the response. However if the simplified
form, Eq. (3-17) is employed, it could be applied directly in the computation

of the participation factors.

3-7 Response Spectrum Formulation for Wind Loading.

In order to obtain the representation of the wind dynamic problems as
a combination of single degree of freedom systems, the response spectrum
procedure could be employed. This deterministic representation may be
achieved in the following way:

The pressure as defined in Eq. (3-6) is written as follows:

7l

P(z) =1/2 0 Cy V" (2) + p ¢y V (2) V' (v, 2, t) (3-18)

D

It can be seen that the first term is a static force, and the second repre-
sents a dynamic force. Therefore the governing equation of motion (Eq. (2-1))

can be written as follows:

[m] {x} + [c] {x} +[k] {x} =F+F (3-19)
where
_ b o
F= [ 1/2p Ch Ve (z) dy
A |
b —
eo_ [ eCy V(@) V (y, 2, t) dy
(0]

Moreover if the horizontal distribution of the wind pressure is assumed to

be uniform the forces can be written as follows:
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i
i

= 1/2 0 b ¢ VQ'(;)' | | (3-20a)

Fl

o b CD V (z) V' (y, z, t) - (3-20b)

Now the distributed forces can be discretized at the nodal points

of the structure. In this way we obtain the following force vectors:

F 2 (F) (3-21a)

F' oV (F') Fly, 2, t) (3-21b)

where
V0 is a reference value of velocity,
f(y, z, t) is a function of the correlation of wind pressure.

Therefore Eq. (3-19) can be divided into two equations
[k] {x} = {F} (3-22a)

[m] {x) + [c] (x) + [K] {x} = p V (F'} f(y, z, t) (3-22b)

The solution of Eq. (3-22a) is obtained from statics. However, the
solution of Eq. (3-22b) may be solved in terms of the generalized coordinates

(as discussed in Chapter 2) as follows:
q; + 208 q + wfq=CioV fly, z,t) (3-23)

where

(b} (F')
Cj = —
{¢i} [m] {¢1}
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Finally the solution of the fluctuating component of the wind loading can

be written as a combination of the modal contributions as follows:

ne~1=2

{x} = ‘

ogh & —%—
'] .

1

The quantity Peff will be computed in the following chapter as a response

spectrum of effective pressures.
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CHAPTER 4
WIND RESPONSE SPECTRA

4-1 Introduction.

In the last fifteen years there has been an increasing interest in

the study of the commonality of earthquake and wind analysis procedures.

One of the principal points addressed by various investigators has been

the need to develop response spectra for wind loading. The ability to
develop response spectra for wind excitation is attractive from two stand-
points. First, it would provide a convenient basis for comparing, measuring,
and expressing the wind loading. Second, it would enable one to interpret
and understand the behavior of structures subjected to wind Toading by
using, in part, the experience and knowledge accumulated through more than
30 years of research in earthquake and wind engineering. In addition, a |
design response spectrum for wind loading makes it possible to develop a
common analysis procedure for earthquake and wind loadings. Such a pro-
cedure may in certain situations, considerably simplify the analysis and de-
sign of structures especially those built in areas where both natural
hazards (earthquake and strong wind) are likely to occur and are of signifi-
cance.

In this chapter, during the development of wind response spectra, the
physical meaning of the quantities involved is explained and the relationships
to their common parameters occurring in earthquake engineering are presented.
It is noted that wind response spectrum is divided into two parts, a mean
component and a fluctuating component. The fluctuating component of wind

response spectra is computed using random vibration techniques. Therefore
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these calculations are carried out in the frequency domain as discussed in

Chapter 2.

4-2 Basis for Wind Response Spectra.

For the computation of wind responsé spectra, the pressures are
divided into two components. One is a mean component which is associated
with the mean wind velocity. The other is a fluctuating component which
accounts for the gusting variations of the wind velocity over the mean
value. Normally the mean component is applied statically to the structure,
and the fluctuating component is treated as a dynamic load. The total
solution is given by the superposition of both the mean and the fluctuating
components.

The purpose of wind spectra is to represent the effects of wind
fluctuating loading in a clear and practical manner common in philosophy,
but not parallel numerically, to that used for earthquake base excitation.
In the most direct sense wind response spectra can be'emp1oyed to present
the effects of wind loading as effective or amplified pressures.

To obtain a spectral representation of the wind loading a procedure
common in concept to the earthquake response spectra is developed in this
section. Such a procedure should satisfy the following conditions:

1) The procedure should be accurate over a large range of fre-

quencies andlre1ative1y high values of damping (2 to 10 percent

of critical).

2) The procedure should be clearly stated and practical. Con-

sequently, it should be developed through the use of a few principal

parameters that in turn can be presented in graphical, tabular or

analytical form.
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3) The physical meaning of the quantities involved should be re-
tained during the mathematical treatment of the problem.

4) The resulting spectra should be presented, or have the potential
of representation, in a form similar to the tripartite logarithmic
plot empToyed for the graphical description of deterministic

problems.

Historical background -- In one of the earliest papers addressed to
wind spectré] representation Newmark (1966) suggested that the response of
structures subjected to wind excitation could be treated in a manner similar
to earthquake analysis if the corresponding participation factors and re-
sponse spectra could be specified. Newmark recommended that the partici-
pation factors for general Toading could be calculated employing the follow-

ing expression (previously discussed in Chapter 2 Eq. (2-19a)):

{¢1}T [m] {p}
C, = —

(4-1)
! {¢1}T [m] {¢i}

For approximating the mean component of the response spectrum, Newmark
recomnended the use of a long sinusoidal pulse with a period of 30 seconds
to 1 minute. To account for the fluctuating component of the wind velocity
he suggested the use of a smoothed response spectrum of a typical wide-
band earthquake having the following peak ground motion values 1g, 48 in/sec
and 36 in, shifted down in the frequency scale by a factor of about 10 to
15 in order to account for the fact that the large energy contribution of
the wind fluctuation is in the low frequency range. The response spectrum °

as proposed by Newmark is shown in Fig. 10. In this example a mean pressure
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of 10 psf is presented as P1 and an unamplified fluctuating pressure of 15
psf as PZ. The amplification factors are typical values for a two percent
of damping earthquake response spectrum. As will be apparent later in this
chapter, the general shape of the spectrum is quite accurate. However,

no specific directions for the computation of the response spectrum are
presented.

As illustrated in Fig. 10, the quantities employed for drawing the
response spectrum are pressure and pseudo impulse, which are acceleration
and velocity multiplied by the mass and divided by a uhit of area.

More recently, based on the study of pressure time data and experience
Newmark and Hall (1968) presented another sketch of a possible response
spectrum for wind pressures. It is pointed out that the construction of
a response spectrum is made possible by employing the relations that exist
between the forcing loading and the intertia force (mass times acceleration).
This spectrum is shown in Fig. 11; again the shape of the spectrum is
correct but no rules for the computation of such spectrum are presented.

Basis for the computation of response spectra -- The response spectrum

has known behavior at the very high and very low frequencies. For earthquake
base excitation, the amplified ordinates of the spectrum should converge

to the maximum ground acceierafion for high frequencies and to maximum
ground displacement in the low frequency range. In general, in the high
frequency range the system behaves as a rigid body and the force (mass

times acceleration) becomes a static force. In the Tow frequency range

(when the frequency goes to zero) thé system presents a rigid body motion

degree of freedom. This relationship is illustrated in Fig. 12.
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Force response spectra as can be expected for wind loading would con-
verge to the unamplified force or pressure in the high frequency range.
However, in the low frequency range as a result of the Taw of conservation
of momentum the amplified Tine of the spectrum should converge to the un-
amplified impulse at zero frequency.

Computation of response spectra can be summarized as (1) evaluation of
the spectral base lines, (2) computation of a set of amplification factors
for the various regions of the spectra, and (3) plotting the response
spectra. For wind loading, these steps are discussed in the following para-
graphs.

Evaluation of the base line -- A base line of unamplified pressures

can be computed as the static response of a rigid system. Hence by
evaluating the response of a system having a large freqgency the value of
the base line in the high frequency range can be obtained. This terminal,
or -base line pressure, is the line pressure 1/2 pV2 multiplied by an
effective pressure coefficient (based on geometry and exposure generally)
which accounts for the reduction in wind force associated with the differ-
ences in correlation of the fluctuating wind flow.

Computation of the amplification factors -- A set of amplification

factors can be computed for the various regions of the spectra. For wind
loading the amplification factors are computed in the acceleration control
region (pressure), and in the velocity control region. In order to maintain
the meaning of the amplification factor as a function of frequency and
damping, and independent of the geometry, the correlation of pressures is

not included in the computation of the amplification factors. In other words

the amplification factors are computed for a perfectly correlated wind flow.
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Plotting wind response spectra -- To draw wind response spectra, New-

mark (1966) and Newmark and Hall (1968) have recommended the use of the
quantities pressure and pseudo impulse. Such parameters are related to
the generally used acceleration and velocity by multiplying the latter by
a unit mass and dividing by a unit of area. Thus the quantities plotted
are pressure in psf and pseudo impulse per unit of area psf x sec. Note
then pseudo impulse per unit area has the units of pressure divided by
frequency. Moreover if the spectrum is plotted for a unit mass then the
quantities pressure and pseudo velocity can be used.

The familiar tripartite logarithmic paper can be employed to plot
wind response spectra. However, the tripartite paper prepared for the
representation of earthquake response’spectra must have the scales modified.
In order to be consistent with the scales usually found in tripartite paper
for seismic effects, one must plot either pressure divided by the accelera-
tion of gravity (g) and pseudo impulse, or pressure and pseudo impulse
multiplied by the acceleration of gravity (g). In both cases special care
should be taken with the units and the frequency scale should be adjusted
accordingly.

It also is possible to develop a new tripartite paper tailored to
satisfy wind response relationships. These scales will represent the
relations P = w V and also P = 1/2 p V2. The examples presented in

Section 4-5 are plotted in this "pressure-velocity-frequency" scale.

4-3 Evaluation of Wind Response Spectra.

Although the idea of wind response spectra is similar to that used in

earthquake engineering, wind loading presents two additional pfob]ems,



68

First, the loading is divided into a mean and a fluctuating component;

and second, the computations associated with the fluctuating component
should include the correlation functions presented in Chapter 3. The
numerical procedures employed for the evaluation of the various parameters
occurring in wind response spectra are discussed in Appendix A.

Mean response spectra -- The mean response spectra is associated with

the mean wind velocity. Moreover, since the time history of the mean wind
velocity has been defined to yield an almost static behavior, the mean com-
ponent of the response spectra can be assumed to be a static force. Hence,
it has an amplification factor equal to one. In addition, the mean wind
flow is assumed to be perfectly correlated. Thus, no reduction in the mean
force associated with the correlation functions should be expected.

Fluctuating wind spectra -- As has been described in Chapter 3, pressures

associated with gusts which are large enough to envelop the complete structure
will produce significant dynamic effects in the structure. On the other
hand, short gusts can produce high Tocalized pressures which are not as
important in the overall behavior of the structure as they are for the de-
sign of parts or portions of the buildings. To account for the size of the
gusts and their relative importance in the overall dynamic response, a
correlation function for wind pressure, as defined in Chapter 3, is
necessary.

Commonly, the response spectrum is defined as the response of a single
degree of freedom damped system. The computation is carried out for
oscillators having various values of natural frequency of vibration and

percent of critical damping.
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Since the fluctuating component of the wind force has been described
by employing a statistical formulation, its response spectrum should be
computed using the random vibration téchniques presented in Chapter 2.
Therefore, the mean square value of the response spectrum as defined by

Eq. (2-68) is expressed as follows:

Sw) = . 9 12 )12 5, () do (4-2)

where

|J (w)l2 is the correlation function for wind pressures,
|H (w)|2 is the frequency transfer function,

S, (w) is the input power spectral function for wind.

|H (w)]2 has been derived in Chapter 2, and |J (w)]2 and Sy (w)
are discussed in Chapter 3.

As discussed in the previous section, three steps are required for
evaluating wind response spectra. These steps are (1) estimation of the
base line, (2) evaluation of the amplification factors and (3) plotting of
the response spectra. The first two points are addressed in this section,
however the last will be discussed in Section 4-5. The theory behind the
evaluation procedure and the numerical techniques required are discussed
in Appendix A.

Estimation of the base line -- For wind loading a general procedure

for evaluating the force or acceleration base line is based on the computation
of the response of the forcing load on a rigid system (zero period). For
‘such systems the amplification associated with the dynamic properties of

the system is equal to one. For a random vibration problem, which is computed
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in the frequency domain, the base line could be estimated by setting the
function [H (w)[2 in Eq. (4-2) equal to one (this means a rigid system).

In this case, Eq. (4-2) is simplified into the following expression:

o]

10 (w)|? S, (w) duw (4-3)

w
-
H
(S
35
o

where
Sr is the mean square pressure response (pressure that leads to a given
response) of a rigid system.

The value of the base line is then obtained by computing the square

root of Eq. (4-3) as follows:

P = AL (4-4)

Numerical integration techniques are required for the evaluation of
Eq. (4-4). For the case of wind loading the spectral base line is a
function of the shape of the structure and the correlation of wind pressures.
The results of the numerical evaluation of Eq. (4-4), emp]oying'the expression
for the correlation of pressures discussed in Chapter 3, Eq. (3-14); are
presented in Figs. 13 and 14 and Appendix A. The coefficients presented in
these Figures should be interpreted as the fraction of the Tine pressure
172 p V2 associated with the fluctuating component of the wind velocity
that will be felt by a rigid body system. In other words, the product of
the line pressure times the effective pressure coefficients will give an
estimate of the effective unamplified pressure. This concept is similar
to the idea of effective values employed in computing the base lines for

earthquake response spectra.
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Amplification factors -- Generally for vibration problems, the ampli-

fication factors are defined as the ratio of the maximum response to the
spectral base line.

In deterministic analysis the amplification factors for a representative
sample of records are computed. Then, employing statistical techniques, a
mean value and a standard deviation of the amplification factors are usually
specified. In the case of random’vibration analysis, the power spectral
density functfon is usually employed to reflect the "average value" (in
the mean square sense) of a sample of records. Therefore the resulting
values of the amplification factors have already been averaged and no’
further statistical treatment is required. The amplification factors
associated with the wind gust fluctuations can be evaluated for a perfectly
correlated system. A perfectly correlated system is choSen in order to
maintain the definition of amplification factor as a quantity independent
of the geometrical configuration of the loading. Otherwise it will be im-
possible to compute an amplification factor applicable to all types of
structures, regardless of their geometrical and material properties. In
other words, the amplification factor is kept only as a function of the
dynamic properties of the structure. This definition of amplification
factor is consistent with that currently employed in earthquake engineering.

In order to obtain an expression for the amplification factors the

2 in Eq. (4-2) is set equal to one (this means

correlation function |J (w)]
a perfectly correlated system). Therefore the mean square response of a
perfectly correlated zero mean random procedure can be evaluated from the

following expression:
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Sc (0) = o ({ H (@)[%s, () d | (4-5)

where

SpC (w) 1is the mean square response for a perfectly correlated system.
| For computing the amplification factors, Eq. (4-5) is divided by

its terminal value. The terminal value is the value of Eq. (4-5) when

the frequency approaches infinity. In computing the terminal value of

2 (see Chapter 2)

Eq. (4-5) note that the frequency transfer function |H (w)|
is equal to 1.0 for w equal to infinity. Thus the amplification factor can

be computed from the following expression:

Soe (W) |7
Amp (w) = [ —~ pc (4-6)
[f Sv (w) dw
0

Amplification factors for Davenport's power spectral representation of
the wind fluctuation, Eq. (3-8), with a wind velocity of 100 ft /sec,
and various values of damping are presented fn Fig. 15. It can be seen that
a peak occurs at a frequency of 0.04 hertz (T = 25 sec ). At very low
values of frequency (smaller than 0.04 hertz) the amplification factor
decays to values smaller than one. In the range of frequencies between
0.04 hertz to 8 hertz the amplification factor decays to roughly one third
of the maximum value. For frequencies greater than 8 hertz, the amplifica-
- tion factor decays slowly, approaching one at a very high value of frequency.
The spectrum for wind loading is a function of the wind velocity, fre-
quency and length of gusts. For this reason it is possible to represent

the amplification factors for any value of wind velocity as a function of
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the wave length (Vel/f in ft). In this form a single curve for each value
of damping will cover the complete range of wind velocities. This spectrum
of amplification factors, covering a large range of wind velocities is
presented in Fig. 16. The spectrum reaches a maximum amplification at a
wave length of 1500 to 2000 ft. For wave lengths smaller than 1500 ft

the amplification decays in an almost linear manner (in a log-log plot)
suggesting that the amplification can be expressed as an equation of the

form:

Anplification = A (Y21 B (4-7)
where
A and § are coﬁstants to be evaluated.

This exponential representation of the amplification is evaluated in
section 4-6.

At the very low range of wave lengths the amplification converges to
a value of one, independent of the amount of damping present in the system.
These low values of the wave length represent either a Tow wind velocity
or a high frequency rigid system.

It is important to note that the maximum value of the amplification
factors for wind fluctuation, as presented in Table 5, are numerically
similar to those proposed by Newmark and Hall (1978) for horizontal ground
motion earthquake response spectrum. Those values are Tisted in Table 6.
In Fig. 17 earthquake and wind maximum amplification factors are presented
as a function of damping. For the purpose of comparison four curves are

presented in Fig. 17. These are the mean and the mean plus one standard
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deviation acceleration amplification factors for earthquakes, and the wind
pressure amplification factors computed employing the representations for
the fluctuating wind velocity proposed by Davenport (1963) and Simiu (1970).
It can be seen in Fig. 17 that the amplification factors obtained
from Davenport's representation of the wind fluctuation are similar to the
mean plus one standard deviation acceleration amplification factors for
earthquake response spectra. The ampliification factors obtained from Simiu's
representation of the wind fluctuation have numerical values that are
smaller than those predicted by Davenport's spectrum and are somehwere be-
tween the mean and the mean plus one standard deviation earthquake accelera-
tion amplification factors.
In Fig. 18 it is shown that the wind pressure maximum amplification

factors can be represented with an equation of the form:

Amphﬁcatwnmax =

—

E
™| >

—

Y

&

where

B is the percent of critical damping,
A
A

0.25 for Davenport's representation,

i

0.17 for Simiu's representation.

This representation of the maximum amplification follows the form of
the narrow band approximation employed by various investigators in wind
engineering for computing gust factors.

Similarly, for earthquake engineering, empirical equations for the
amplification factors have been developed as a function of critical damping.
A set of equations proposed by Newmark and Hall (1978) are presented in

Table 7.
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4-4 Special Considerations for Wind Response Spectra.

Influence of the correlation functions -- The product of the amplifi-

cation factor times the effective pressure base 1ine is in most cases an
upper bound approximation of the response, but it may become extremely
high especially for low damped systems. In such cases a correction factor
is necessary (See Appendix A where the steps for the evaluation of the re-
sponse spectra are described). For high frequency systems, the amplification
converges to one and the behavior of the structure is essentially static. In
this range of high frequencies the product of the amplification times the
effective pressure, as discussed in Appendix A, is a good representation
of the response. However, for the Tow and middle range of frequencies this
product could be unreasonably high and a correction factor should be applied.
The correction is necessary because the spectrum as given by Eq. (4-2) is a
coupled function of frequency and geometry. Therefore the uncoupled solution
(base 1ine times amplification) is accurate only in the high frequency range.
The mean square of the correction factor can be evaluated by dividing the
response integral Eq. (4-2) by the amplification factor Eq. (4-6) and the
effective pressure coefficient Eq. (4-4). The correction factor is then

expressed as follows:

(4-9a)

The correction function can be evaluated by taking the square root of

Eq. (4-9a).

Correction = vV'S_ (w) (4-9b)

c
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The numerical evaluation of Eq. (4-9b) is presented in Fig. 19 for
1, 2 and 5 percent of critical damping. The correction factor is plotted
as a function of the reduced frequency fh/V. It can be seen that this
factof is a coupled function of the dynamic and the geometric parameters
of the structure. There are two additional points related to the
correction function that should be discussed: |

(1) The spectrum was normalized in such a way that the product

of base line times amplification factor is accurate only in the

high frequency range. Therefore the correction function should

approach one for a large value of fh/V, but does not have to

converge to one in the low range of fh/V.

(2) The function has two inflection points that could be used

as control points for the construction of the pressure line of the

spectrum, Equations for computing thosé points are presented

in Table 11. The procedure described in this chapter for the

computation of wind response spectrum is presented graphically

in Fig. 20 and in the form of a flow chart in Fig. 21.

The percentile level -- In dynamic problems such as earthquake and

wind the loading is specified by statistical means. Therefore tools
such as the interval of confidence (percentile) are necessary to define
the range of validity over which the values are applicable.

The percentile levels are generally defined by the number of standard
deviations required to attain the desired probability level. For a normal
process the mean represents a value which is larger than 50 percent and
smaller than 50 percent of the sampled population. On the other hand the
mean plus one standard deviation will guarantee that 81.4 percent of the

samples will be smailer than the mean plus o value.
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The computation and the meaning of the standard deviation varies for
deterministic and probabilistic problems. There is a difference between
the probability level in deterministic analysis and the number of standard
deviations required in a random vibration problem. In a zero mean random
process only the value of the standard deviation, namely the root mean
square, can be assessed. However the response spectrum technique usually
requires a maximum value of the response which should be calculated by
employing additional statistical procedures.

For earthquake response spectra the percentile level is employed to
select the interval of confidence of the amplification factors. Also, o
levels commonly are used to assess the values of the base Tines when records
are not available.

In wind response spectra, the o level is required for the computation
of the fluctuating component. Since wind is treated as a zero mean random
process only an average value (in the mean square sense) can be computed.
This average, for the fluctuating response, covers both the base lines and
the amplification factors.

For random vibration problems the maximum should be assessed from the
root mean square value. The evaluation of the maximum value of the response
for a random vibration problem was first treated by Rice (1945) in electrical
engineering. In order to evaluate the maximum value of a random vibration
response, Rice developed the concept of crossing a certain level line with

g
ositive slope. More details about this procedure can be found in Rice

(1945), Clough and Penzien (1975), and Crandall and Mark (1963). More
recently, Davenport (1961) applied the concept to wind engineering and
derived an expression for the so called peak factors which have been dis-

cussed in Section 2-6.
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For wind, the equation of the peak factors, Eq. (2-71) yields values
which in most cases are between 3 to 4. Vickery (1971) has proposed the
use of a universal peak factor equal to 3.5. The use of a single value for
the peak factor simplifies the computation of the response spectra. In
this study a peak factor equal to 3.5 is used in the complete range of
frequencies.

Moreover, since the peak factors apply to the computation of the com-
plete fluctuating response the 3.5 coefficient can be included either in the
amplification factors or in the effective pressure coefficients. In this
study it was found convenient to include the peak factor in the computation
of the effective pressure coefficients.

Comparison of procedures employed for computing earthquake and wind

response spectrum -- A comparison of the procedure generally employed for

computing earthquake response spectrum and the procedure proposed in this
study for evaluating wind response spectrum is illustrated in Fig. 22. In
this flow chart for the two loadings we start with a selected sample of
time histories. The left branch which represents the earthquake design
response spectrum computation starts with a single degree of freedom
oscillator where the response values for a large number of frequencies

are computed. This operation also transforms the response to the fre-
quency domain. The next step is to compute the maximum value for each
frequency, in thié manner a set of maximum response functions corresponding
to the input time histories is obtained. The following step involves the
smoothing of each of the response functions for the various amplification
regions. Finally the smoothed response functions are normalized with their
respective base lines to obtain amplification factors which are then statisti-

cally treated to obtain design amplification factors.
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For wind, the input time histories are first transformed to the fre-
quency domain through the use of the Fourier transform. This process in-
volves integration and the result is a smooth power spectral density function.
A set of power spectral density functions computed for each time history is
averaged and a single power spectral density function is employed for com-
puting the response. The average power spectral density function together
with the wind correlation functions are employed to compute the response
of a linear oscillator. Now the maximum values for each frequency can be
computed employing the first crossing probability to obtain an expected
maximum value of the response. From this last step the base lines,

amplification factors and regions of amplification can be inferred.

4-5 Plotting Wind Response Spectra.

Wind response spectra can be plotted in the same standard tripartite
paper employed for the graphical representation of dynamic systems sub-
jected to base excitation. In earthquake engineering, besides frequency
or period, the response spectrum has three ordinates which represent
acceleration (A), pseudo velocity (V) and displacement (D). In addition,
there are certain relations between the quantities represented in the re-
sponse spectrum defined as follows:

V= Dw
A=Vw=Dw2
where w 1is the natural circular frequency of vibration 2uf.

For wind, as discussed in Section 4-2, only two of the ordinates, besides

frequency, have physical meaning. The velocity ordinate now represents impuise

(mass times velocity), whereas the ordinate of acceleration in the earthquake
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response spectrum is replaced by a measure of the effective pressure associated
with a certain wind velocity and a specific frequency of the structure. The
earthquake displacement ordinate does not have an equivalent in the wind
response spectrum.

The spectrum of effective wind pressures can be computed at any height
of the structure (because the wind velocity varies with height) but it is
advantageous to draw the response spectrum for the wind velocity at the
’reference altitude (33 ft or 10 m). The vertical variation of the wind
velocity is included in the computation of the participation factors.

Drag coefficients are taken as one for the computation of the response
spectrum. The drag coefficients together with the vertical distribution of
the wind velocity and wind pressure are included in the computation of the
participation factors.

Steps to draw wind response spectra -- The steps necessary for drawing

wind response spectra can be summarized as follows:
1) Draw the mean wind velocity and wind pressure 1/2 o vz.
These lines represent the unamplified response of a singTe degree
of freedom system subjected to a perfectly correlated mean wind
flow.
2) Obtain the base lines for the fluctuating component by
multiplying the mean wind pressure times the effective pressure
coefficient presented in Figs. 13 and 14. In order to maintain
the relation P = 1/2 o V2, the velocity base line is modified
by multiplying the mean wind velocity times the square root of the

effective pressure coefficient. These reduced base lines represent

the wind pressure and the effective wind velocity that will be felt
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by a rigid body associated with the fluctuating component of the

turbulent wind flow.

3) Amplify the fluctuating base line to account for the dynamic

effects of the wind. In the velocity region of the spectrum a

single amplification factor is used, whereas in the pressure

region more than one control point should be employed to obtain

an accurate representation of the dynamic pressures. From the study

of Figs. 16 and 19 it can be concluded that the following values of

frequency can be used as control points for the pressure region:

V/1500, where velocity is in ft/sec computed employing the refer-

ence velocity at 33 ft, and the two inf]ectien points of the

correction function, points A and B. Equations to compute the con-

trol frequencies A and B are presented in Table 11. The first

point, V/1500 is the wave length where the amplification function

has a maximum value (see Fig. 16). The control point A is the

frequency where the correction function has a value equal to one,

and the control point B is the frequency where the correction

function has a minimum value. The latter two points are taken

from study of Fig. 19 and parametric analyses.

4) Combination of the mean and the fluctuating components of

the spectrum.

Together with the recommended control points, the following guide Tlines
can be used for drawing the pressure line of the fluctuating response

spectrum:
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1) Use the maximum pressure amplification (given in Table 5)
up to a frequency equal to V/1500.
2) There is a smooth decay in amplification from the frequency
V/1500 to the control frequency A.
3) In the range of frequencies between control points A and B
the amplification decays sharply approaching 1 at control point B.
Values for the pressure amplification factors for control
frequency V/1500, A and B are given in Table 8. A schematic
representation of the procedure is presented in Fig. 23.
Examples -- Two examples are given to illustrate the procedure recommended
for the construction of wind response spectra.
Example 1. Draw the wind response spectrum for a 1200 ft x 200 ft
x 200 ft building. The velocity at the top is 148 ft /sec, the reference
velocity at 33 ft 1is 42 ft /sec, the structure is located in the center
of a city and the damping is two percent of critical.
Step 1. Mean base line.
)2

Mean pressure = 1/2 o V% = 1/2 (.0024) (148)% = 27 psf.

1

Mean velocity = 148 ft /sec.

Step 2. Fluctuating base line.

From Fig. 14, the effective pressure coefficient is 0.33.

1]

Fluctuating pressure = 0.33 x 27 = 9 psf.

]

Fluctuating velocity = ¥ 0.33 x 148 = 85 ft /sec.

Step 3. Amplification factors.

The control points for the pressure region are:
V/1500 = 42/1500 = 0.028 hertz.

From Table 11:

-0.67

A = 0.020 (148) (1200) = 0.026 hertz
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Ignore the first point 0.028 hertz

-0.67 0.96 hertz.

B = 0.75 (148) (1200)
The values of the amplification factors for these control frequencies are
presented in Table 9. The velocity amplification factor is (from Table 5)
2.74. The plot of the mean and fluctuating spectrum is presented in

Fig. 24.

Example 2. A second example is presented in Fig. 25. Here the
response spectrum is presented for a 150 ft x 150 ft x 150 ft building.
The velocity at the top is 65 ft /sec, the reference velocity at 33 ft is
38 ft /sec, the structure is Tocated in the center of a city and the damp—>

ing is one percent of critical.

Step 1.

h

Mean pressure = 1/2 (.0024) (65)2 = 5 psf.

H

Mean velocity = 65 ft /sec.

Step 2.

Fluctuating pressure = 0.98 x 5 = 4.90 psf.
/ 0.98 x 65 = 64.5 ft /sec.

i

Fluctuating velocity

Step 3.
V/1500 = 38/1500 = 0.026 hertz.

A = 0.027 (65) (150)°0-71 = 0.050 hertz.
B = 1.31 (65) (150)°0-71 = 2.428 hertz.

The values for the amplification factors for one percent of damping at the
control points are shown in Table 10. The amplification factor for the
velocity control region as presented in Table 5 is 3.53.

Plotting wind spectra in orthogonal paper. -- Since the knee of the

spectrum (velocity pressure lines intersection) occurs at a very Tow
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frequency which is not likely to exist in most of the common civil engineer-
ing structures, only the pressure line of the spectrum needs to be con-
structed. It can be plotted on any kind of paper, but a five cycles semi-
logarithmic or a 3 x 5 Togarithmic paper will cover a large range of fre-
quencies. The procedure now js similar to before, the only difference is
that only the pressure line has to be constructed. The same examples dis-
cussed for the tripartite plot will be now presentedvin a 3 x5 log-Tog

paper. Example 1 is illustrated in Fig. 26 and example 2 in Fig. 27.

4-6 Empirical Representation of Wind Response Spectra.

In most cases wind response spectra can be represented by the use of

an empirical equation of the following general form:
_ -§ A
Response Pressure = A (fh/V) ~ h (4-10)

where

A 1is a constant which depends on the damping ratio and the wind exposure
of the structure,

§ 1is a constant which depends on the damping,

is a constant which depends on wind exposure,

is the height of the building in feet,

is the frequency of vibration,

< - I o

is the velocity at the top of the structure.

In order to evaluate this empirical representation of the wind response
spectra two functions are developed. One includes the amplification and the
correction functions and the other the effective pressure coefficients.

The amplification times the correction function is expressed as follows:
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Amplification = A (fh/v)™8 p? (4-11)

Similarly the effective pressure coefficients can be written as

follows:
P = E (h)"'U (4-12)

where
E and u are constants which depend on the wind exposure.

It is difficult to find an analytical expression that will cover the
whole range of frequencies. However, it is possible to develop a set
of empirical equations for the range where the fundamental frequency of
vibration of most structures is likely to occur.

The approximation that was developed in this study covérs the range of
values of frequency between 0.1 to 3 hertz, and is intended for structures
50 to 500 ft tall.

To compute the effective pressure coefficients, the aspect ratio was
taken as 1 for a 50 ft building and as 5 for a 560 ft structure. The
values in between are interpolated between the noted values as illustrated
in Fig. 28. It is believed that this formula constitutes a reasonable approxi-
mation.

Moreover, the approximation is good for values of f < 4 V/h. This
range of fh/V < 4 covers the values where the fundamental frequency of most
structures are Tikely to occur. In order to demonstrate the validity of
the last statement, the fundamental natural frequency can be approximated

by the following expression:
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f = 10/n ~ (4-13)

where
n is the number of stories.
In addition, if an average value of 12 feet per story is taken,

Eq. (4-13) can now be rewritten as follows:
f = 120/h (4-14)

where
h is the height of the building in feet.

Therefore the ratio fh/V, for the velocity in ft/sec, can be
written as 120/V. The Tatter result shows that for a design wind
velocity of 30 ft/sec, which is very low, the ratio fh/y is equal to 4.
Therefore the approximation can be used for most of the common engineering
problems. |

Expressions for the effective pressure coefficients are shown in
Table 12. These ére presented for three of the most common wind exposures
(as defined in Chapter 3) and for two levels of o.

The amplification factors for the range of frequencies f < 4 V/p
or f < 3 hertz are presented in Table 13 for values of damping of 1, 2, 5,
and 10 percent of the critical. Estimated values of the coefficients A
and § as a function of the critical damping are preéented in Figs. 28 and
29.

These approximations are employed in Chapter 5 for deriving simple

expressions for gust factors and base shear coefficients.
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CHAPTER 5
COMPUTATION OF FORCES AND DISPLACEMENTS

5-1 Introduction.

In the previous chapters the necessary concepts for performing dynamic
analyses of structures subjected to strong winds have been presented. Modal
analysis procedures as applicable to wind and earthquake engineering are
discussed in Chapter 2. In Chapter 3 the physical properties of turbulent
wind are presented, and in Chapter 4 the basis for computing response
spectra for wind loading are developed. Finally, the remaining step
necessary for the evaluation of forces and displacements associated with
strong winds is to combine the modal analysis procedures and the response
spectra.

In order to achieve these goals, the following topics are presented
herein:

i) Application of modal analysis procedures to evaluate wind

forces and displacements in structures. Special consideration

is given to the computation of participation factors.

2) Development of simple procedures for the computation of

wind forces.

3) kComparison of results obtained using the procedures presented

in this study with full-scale measurements.

5-2 Modal Analysis Procedures.

As a result of the separation of variables hypothesis the dynamic
forcing function has been separated into a geometric and a time or

frequency dependent function. The former is associated with the computation
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of the participation factors. The latter, however, is known to be associated
with the amplification factors and the response spectra which have been pre-
sented in Chapter 4. |

Once the response spectrum has been obtained, the next step in the
evaluation of forces and displacements is to calculate the participation
factors. The participation factors for wind loading, are dependent on the
geometry of the structure, the drag coefficients, the mode shapes and the
distribution of wind pressure on the various face$ of the structure. The
distribution of pressures for the mean and the fluctuating components of
the wind velocity have been discussed in Section 3-5. The drag coefficients
recommended for the design of buildings are listed in Table 4.

It should be noted that the correlation functions have been included
in the computation of the response spectra. Therefore, they do not require
further consideration for the evaluation of the participation factors.
However, the reduction associated with the cross-correlation of pressures
in the windward and the Teeward faces of the structure, Eq. (3-17), could
be included in the computation of the participation factors 1% so desired.

Modal analysis procedures.wi1] yield results that are only as accurate
as the assumptions made for the modelling (idealization) of the forcing
load and the structural properties. The modelling of the geometrical
component of the forcing load (wind pressure distributions) has been pre-
sented in Chapter 3.

Participation factors -- Once the geometrical configuration of the

forcing loading has been obtained, the participation factors can be
evaluated by employing the modal analysis equations presented in Chapter 2.

The participation factor for a distributed Toad has been defined as follows:
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In the most common case the wind loading is specified as a distributed
force. On the other hand, the mode shapes are generally evaluated for a
Tumped model and only the.va1ues of the mode shapes on the nodal points of
the structure are u§ua1]y available. Therefore the computation Qf the
participation factors for wind 1oéding is, in most cases, a mixed problem
of a distributed force acting on a discrete structure.

There are two possible approaches for the evaluation of the participa-
tion factors. The first is to compute an algebraic representation or a
numerical interpolation of the mode shapes, and then to perform the integration
of a quantity consisting of the mode shape times the force distribution.
This operation can be accomplished employing any interpolation procedure
to obtain a representation of the mode shape function. The sécond pro- .
cedure consists of evaluating an equivalent concentrated force at each
nodal point of the structure. This operation can be achieved by using
integration procedures for the forcing load as described in Section 2-2,
Egs. (2-12a) and (2-12b). In this case the participation factors can be

evaluated using the equation for discrete force systems Eq. (2-19b).

e Iml ()
¢, = - (5-2)
{CP.E} [m] {¢-i}
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A summary of the computation procedure for wind loading as well as

a comparison with earthquake modal analysis is presented in the following

page:

Problem
Identification

Mean Force

Dynamic Force

Dynamic Response

Aawmds~anadanmn

D
ralblblpu IUlI

Factor

Amplification
Factor

Modal Forces

Modal Base
Shear

Distribution of
Base Shear

Combination
Mean + Dynamic
Components

Earthquake
Ground motion
parameters
N. A.

{F} = [m] X}
{u} =] C; 95D

o o Lod! [m] {13
T )T ] 19}

Obtain from response
spectrum, A, V, and D

{f}

oi

{f}

{6}

137 {637 [m] C,A,

[m] CiAi

Voi [m] {¢}

{¢}

T ]

Wind
Wind velocity (V), mean
pressure (PO), structure
exposure.
T = Z\2a
F = P0 X b (h)
Discretize F at notes {F}

[ Zya
F' = PO PP b (h)

Peffi
(X} =) C; ¢, 5
W
i
r.ﬁT ren
_ 19y iF'}

T3 [m] (9}

" Obtain from response

spectrum Peff
{F'= {4}' [m] C, Peff,
uoi'= (13" 1637 [m] C.Peff,

Vgi Lml {4}
{f'} = =
{o}' [m] {¢}

{F} = {F} + {f)

Example -- A three story, three degree of freedom building presented

by Blume, Newmark and Corning (1961) was studied as an example to compare

earthquake and wind modal analysis procedures.

The geometry of the building

together with the mass and stiffness properties are illustrated in Fig. 37.
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The building was assumed to be at the center of a city and the damping was
taken as 2 percent of critical. The wind is assumed to flow normal to
the 60 ft x 42 ft face. The response spectrum for a 60 ft/sec wind
velocity at the top of the building and two percent of damping is shown
in Fig. 38. For eérthquake E1 Centro N-S component is employed. The
steps employed in this computation have been summarized in the previous

table.

Mass Matrix

1860
[m]= 1860 1bs.
3720
Stiffness Matrix
568
(k1= 1704 | K/inch.
2272
w% - 152.688 » f, = 1.97 hertz
wg = 610.753 > f, = 3.93 hertz
wg = 1832.258 » f, = 6.81 hertz
1
) = 12
1
1
{¢,} = 1
z 1
1/3
(og) = {573
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Earthquake Wind
- Mean Mean
P
o
N.A.
_ 2 _ 2
P =1/2 p CD Ve = 1/2 (0.0025161) (60)

-
L]

4.53 psf
N.A.

1834
3001 1bs.
1879

{F}

Fluctuating ‘ F]uctuat{ng

7

1447 .08
{F'} = 798.18

621.41




{o.
{¢

Earthquake

Participation Factor

R
1 ] o)

(]
H

8/22 =0.36

C, = 2/4 =0.50

=0.67/4.90 =0.14

Nodal Forces

C, [m] ¢ * An
4
{f,} = .36 x 1860 2
L 2
-1
{fZ} = .5 x 1860 1
2

(fy)

.3
.14 x 1860 ¢1.
2

2705.00
1352.00 ¢*
1352.00

)
—
il

-930 .00
930 .00
1860.00

84.35.00
-422.61.00
506.12.00

0

S

*
*
3
*
67 A3
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Wind

Participation Factors

oy (F'y
(017 [ml {4}

= 243.13

C] = 4005.77/22 = 182.02
C2 = 972.51/4
C3 =

Nodal Forces

Cy ] 0 * Peff,

= -559.86/4.90 = - 114.26

{f1)= 182.02
[f})= 243.13
(f3)= -114.26
728.

1f1)= < 364.
364.

-243.

(fy)= < 243
486.

-38.

[f3}= {190,
-229.

1860 g
860 |2
1860 }
1860 9,
.33
X %%g%- 1,67
2
26
13 * Peff1
13
02
.02 * Peff2
04
17
93 * Peff3
03

* Peff

* peff

1

2

* peff
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From Response Spectrum - From Response Spectrum
A; = 0.60 g. Peff, = 9.53 psf
A2 = 0.70 g. Peff2 = 8,38 psf
A3 = 0.55 g. Peff3 = 8.31 psf

1623.00 6938

{f] }= 4 811.50 {fy}= 3469
811.50 3469
-651.00 2038)

{f2}= 651.00 ‘ {fé}= 2038
$302.00 4076

46.39 -1902

{f3}= -232.44 {f§}= 1585
278.37 - 317

5-3 Simple Procedures to Estimate Wind Reponse.

For cases of preliminary analysis, at least two simplified procedures
can be developed. These procedures include a new version of the gust
response factor, and a procedure based on the computétion and distribution‘
of the base shear; both topics are presented and discussed in this Section.
The empirical representation of the wind response spectra devejoped in

Section 4-6 is employed for the derivation of both simplified procedures.

The qust factor -- For some time the results of studies of the response

of structures to wind loading have been presented in the form of gust
factors in contrast to the use of response spectra as discussed earlier
herein. The gust factor is defined as the ratio of the total displace-
ment of the structure to the mean displacement of the structure, usually
evaluated at the highest level of the buiiding. The gust factor can be
considered to be an overload coefficient which multiplies the mean pressure

to obtain the design forces for the structure. The mean force times the
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factor is intended to account for both the mean and fluctuating com-

ponents of the wind loading. Various authors such as Davenport (1967),

Vellozi and Cohen (1968), Vickery (1970) and Simiu and Lozier (1975) have

presented different versions of this approach. 1In some cases, these pro-

cedures can differ by as much as 100 percent.

plus

wind;

The gust factor usually represents a load which is the mean force

3 to 4 times the contribution of the fluctuating component of the

this combination yields values of total load that are generally be-

tween 1.8 to 2.5 times the mean value. However for the cases of structures

subjected to high wind turbulence; such as swall structures in the center

of a

large city, the gust factor may lead to total Toading values on the

order of 3 to 3.5 times the mean force.

made:

For the computation of gust factors the following assumptions are

1) The response of the structure in the fundamental mode is
dominant for both mean and fluctuating responses.

2) The masses and the stiffness of the structure are uniformly
distributed.

3) The response can be calculated using a linear mode shape.
4) The peak factor can be taken as 3.5 times the fluctuating
load (an average between 3 and 4).

The mean displacement associated with the first mode of vibration is

given by:

1 P

. R 9 -
Mean displacement = 5——5- ¢ (x) 2 (5-3)

Similarly the fluctuating displacement is given by:
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B
¢ (x) ——m—— 5-4
2 + o X M wZ ( )

Fluctuating displacement =

As has been discussed before, the gust factor is the ratio of the total
displacement to the mean displacement multiplied times the peak factor.

Thus the gust factor can be written as follows:

Gust Factor = 1 + 3.5 P Amp (5-5)

The gust factor has been customarily computed in the past by employing
a narrow band approximation, in such case it is usually represented by an

equation of the following form:
G=1+g/B+R (5-6)

where
B is the background component which represents static behavior (as for a
rigid building),
R is the resonant combonent associated with the vibration,
g is the peak factor (taken as 3.5 in this study).

In the proposéd equation for the gustAfactor, Eq. (5-5) the background
component, B, is represented by the quantity (Pr)z, and the resonant com-
2 _ 1) x (P{)2

Amp = ¥ B + R is satisfied. The gust factor can be expressed in a simpler

ponent, R, is given by (Amp s such that the relation Pr X

form as follows:
Gust factor =1 + F . (5-7)

The factor F (the latter part of Eq. (5-7)) is presented in Table 14 for

three wind exposures and values of damping equal to 1, 2, and 5 percent
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of critical, as a function of the wind velocity at the top of the structure,
the height and the fundamental freduency of vibration.

100 ft x 100 ft building. The structure is in the center of a city and
the velocity at the top of the building is 85 ft /sec. The damping is
assumed to be 2 percent of critical and the fundamental frequency of
vibration is taken as 0.5 hertz.

From Eq. (5-7) and Table 14, the gust factor is:

)_0036 (325)“0-28

Gust factor = 1 + 7.42(325 x 0.5/85 =2.16

The gust factor also can be computed employing Eq. (5-5) as follows:

From Table 12

)‘0.40 - 0.20

P = 2.05 x (325

From Table 13

-0.36 (3551012 _

Amp = 0.90 x (0.5 x 325/85) 325) 1.43
For city exposure, a = 0.35
(2+2xa)/(2+a)=1.15
Gust factor = 1 + 3.5 x 1.15 x 1.43 x 0.20 = 2.15
The gust factor for the same example computed using the procedure recommended
by the National Building Code of Canada is 2.35.
A comparison of the results obtained with the simple gust factor
equation proposed in this study and those reported in the literature by
various authors (as computed by the writer from the equations and charts

presented in the references cited in Table 15)is illustrated in Table 15,

where three buildings, located in city and open country exposures, are

Hetz Refer

Tivil Engl
B106 ©
Tniversity or L1
{rbana, Tilinois &

g
R

1801
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presented. The gust factors are given for 1 and 2 percent of critical
damping. The dimensions and properties Qf the buildings studied in these
examples are given in Table 16.

It can be seen in Table 15 that the gust factors computed using the
simple equations deve]oped in this study are in good agreement with the
values predicted by various procedures reported in the Titerature.

Distribution of base shear -- The second simple procedure is based

on the distribution of base shear. First, the base shear is computed and
distributed using a linear fundamental mode shape. Secondly, a correction
function, that accounts for the contribution of the higher modes, is
applied.

The two mode procedure -- The two modes approach is based on the fact

that the combination of the unamplified modal contr1but1ons should satisfy

the static relation:
n : : .
[m] (1} = ¥ C, [m] {0} ' ‘ (5-8)
i=1 ‘
which for a diagonal mass matrix can be written in a simpler way as follows:

{1} =

fI~13

C; {94} (5-9)

i=1

A practical and useful procedure can be developed assuming that the
computation can be carried out employing only two modes, namely the funda-
mental mode of vibration and a second mode which represents the contribution

of the higher modes. For two modes, Eq. (5-9) can be written as:

{]} = C] {¢]} + CZ {¢2} ‘ (5']0)
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In addition if the participation factor of the second mode is conveniently

defined to have a value of one the second mode can be written as:

(6,3 = {1} - ¢ {47} (5-11)

It will be shown in the examples presented in this Chapter that the
two modes procedure yields results that are in close agreement with those

obtained by modal analysis techniques.

Distribution of base shear -- The procedure . recommended for computing
the forces associated with wind loading, using the two mode apﬁroach,
is divided into four steps:
1) Computation of the forces associated with the mean
component of the response.
2) Computation of the forces associated with the background
part of the fluctuating component. |
3) Distribution of the forces associated with the resonant part
of the fluctuating component using a linear mode shape rule.
4) Correction to include the resonant response of the higher modes.
These steps are discussed in detail in the following paragraphs.
Step one -- The verticaildistribution of the average pressure is

given by the Eq. (3-7a) as follows:
P(x) = P (%)% | | (5-12)

where
~ Po_is the average pressure at the top of the building (1/2 o CD V2). The

mean forces at the various levels of the structure can be computed using

the integration formulas given by Eqs. (2-12a) and (2-12b).
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Step two -- The background pressure is given by the following expression:

(5-13)

where
Pr is the effective pressure coefficient given in Table 12.
Step three -- The resonant base shear for a linear mode shape'can

be computed as follows:

Vo =T, C¢ (Ampl - 1)
2
. bh P0 Pr
w 2+ a
Z my hx
CE"‘zm 2
X X
Where
V2 is the base shear associated with a linear mode

m, is the mass at level x,
hx is the height of level x over the base of the building,
b is the width of the structure,
h 1is the height of the structure,
Amp2 is the amplification factor associated to the lTinear mode shape which
can be computed by employing the equatibns presented in Table 13. For this
computatidn the fundamental frequency of vibration can be approximated as
f = 120/h (as discussed in Section 4-6).
Once the resonant base force has been computed, it can be distributed

using the familiar expression, Eq. (2-43):
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mX hx
F. =V —
X Q,zmh
X X

The equation for the distribution of forces can be written in a simpler way

as follows:
Fox = Cq My Ny (5-14a)
where
r  (Amp, -1)
C, = —" 22 (5-14b)
) mh
XX

Step four -- The forces associated with the higher modes can be computed

as follows:

VC (1 - CE hx) m

) me - CE ) hx my

X

FCX

where
VC is the resonant base force associated with the higher modes and is

given by the equation:

bh P_ P
Vo= r

Cc ] 2 ) T CE) (Ampc - 1)

AmpC is the amplification factor for the higher modes, which can be computed
employing a frequency that is three times the frequency associated with

the Tinear mode.
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The forces associated with the higher modes can be written in a simpler

way as follows:

x CC (1 - Ce hx) m (5-15a)

where

v
c. = £ (5-15b)

Im = CoLhem

Example -- As an example, a ten story, eight degree of freedom build-
ing, is analyzed employing the distribution of base shear technique. The
dimensions of the structure are presented in Fig. 34. The masses and
iffness of the columns are presented in Table 28. The building is assumed
to be in the center of a city and has a damping equal to oné percent of
critical. The drag coefficient is taken as 1.3. Computations ére presented
for a wind velocity of 85 ft /sec at the top of the building in the E-W
direction.

Step one.
P,= 1/2 x 1.3 x .0024 x (85)% = 11.84 psf.
The forces associated with the mean pressure are listed in the third

column of Table 17.

Step two.

F}om Table 12

P = 7.17 (114)70-%0 = 1,078
PB = 1.078 x 11.84 = 12.76 psf.

The forces associated with the background component are presented in the

fourth column of Table 17.
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Step three.

r =40 x (114)2

'x 12.76/2.35 = 2822620
y m,h = 1417

2 . ’
im o hy 120274

C. = 1417/120274 = 0.012

E
From Table 12 and taking f = 120/114 the amplification factor is:
Amp, = 1.12 (1.05 x 114/85)"0-%% (114)%-12 = 1,75

Cy = 2822620 (1.75-1)/120274 = 17.55

The forces associated with the fluctuating component of the linear mode are
listed in the fifth column of Table 17.

Step four.

Amp, = 1.12 (3 x 1.05 x 114/85) 7042 (114)0-12 = 1 10

V_ = (114 x 40 x 12.76/1.35 - 0.012 x 2822620) x (1.10-1) = 923
C, = 923/(20.91 - 0.012 x 1417) = 237

The forces associated with the higher modes (the second term representation)
are presented in Table 17. To complete the so]utfon the four contributions
are added. The total forces are presented 1n the last column of Table 17.
The total forces are illustrated in Fig. 36, where the so1ﬁtion obtained by
normal modal analysis procedures is also shown. It can be seen that the
two solutions are in good agreement.

| For the purpose of further simplifying the calculations Tables 18 to
26 have been prépared to present the effective wind pressures. These
tables are similar to thosé presented in A.N.S.I. (Tables 5A, 5B and
5C) for computation of the basic wind pressures, and»represent the wind
pressure as a function of height and wind velocity with a drag coefficient

equal to one.
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The tables are computed for the three wind exposures described in
Chapter 3, namely center of cities, suburban areas and open country. For
each exposure three tables are presented for 1, 2 and 5 percent of critical
damping. The wind velocities presented in the top row of the tables are
those that will be read from the recurrence maps presented in A.N.S.I..

For each combination of height and velocity two entries are given. The
upper figure, which is also the larger, is the total pressure (mean plus
fluctuating), and the lTower value is the fluctuating pressure. The

tables reflect a drag coefficient equal to one. In other words the basic

wind pressures should be multiplied by the drag coefficient.

5-4 Examples.

In order to demonstrate the application of modal analysis and the
simplified approaches developed in Section 5-3 three examples are presented.
The examples are three typical buildings which have been designed and con-
structued. These are a 25 story concrete building, a 10 story steel frame
building and a 3 story building.

25 story building -- An effort was made to study a typical structure

that should have most of the characteristics found in the practice and not
covered by the assumptions made for the simplified procedures. Those
characteristics are:

1) Different values of masses and stiffness at the various

levels of the structure. 7

2) Presence of taller columns in the first floor.

3) Heavy service floors at the higher levels of the structure.
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Those conditions were found in a reinforced concrete building presented
by Blume, Newmark and Corning (1961). The structure is a 325 ft x 100 ft
x 175 ft rectangular building whose plan and eTevétions are shown in
Fig. 31. The masses and the stiffness of the columns are listed in Table
27. The wind forces were calculated assuming that the structure is con-
structed in the center of a city with a wind velocity of 85 ft /sec at
the top of the building and a damping of two percent of critical. The
wind is assumed to act normal to the 325 ft x 100 ft face. In addition,
to simplify the computations, the drag coefficient was taken as 1.3 and
the 1ift coefficient as zero. The response spectrum for this structure, for a
wind velocity of 85 ft /sec and 2 percent of critical damping is presented
in Fig. 32. The story forces computed using the three procedures described
in this section are presented in Fig. 33.

10 story building -- A ten story, 8 degree of freedom building, as

studied and reported by Nielsen (1968), was also analyzed. The geometry
of the building is shown in Fig. 34. The building was assumed to be in
the center of a city and the damping was taken as one percent of critical.
The response spectrum for a 85 ft/sec wind velocity at the top of the
building is shown in Fig. 35. The wind is assumed to flow in the E-W
direction. The stiffness and mass values, as reported by Nielsen are
listed in Table 28. The story forces computed employing nodal analysis
and the two simplified procedures are shown in Fig. 36.

3 story building -- A three story, three degree of freedom building

presented by Blume, Newmark and Corning (1961) was studied as a last
example. The geometry of the building together with the mass and stiffness

properties are illustrated in Fig. 37. The building was assumed to be at the
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center of a city and the damping was taken as two percent of critical. The
wind is assumed to flow normal to the 60 ft x 42 ft face. The response
spectrum for a 60 ft/sec wind velocity at the top of the building and

two percent of damping is shown in Fig. 38. The forces computed for this
structure are shown in Fig. 39. The three examples presented in this
Section have been computed by employing modal analysis techniques as
described in Chapter 2 and the response spectrum developed in Chapter 4.
These techniques are similar to thermoda] analysis procedures employed in
earthquake engineering. Computations of the earthquake forces employing -
modal analysis procedures for the 25 and 3 story buildings can be found in

Blume, Newmark and Corning (1961).

5-5 Comparison with Full-Scale Measurements.

In an effort to present the accuracy of the various procedures developed
in this study the results are compared with the few full-scale measurements
reported in the Titerature.

Davenport, Hogan and Vickery (1970) have reported measurements of
the resonant displacement at the top of the John Hancock Center in Chicago,
I1. Observations were made under two wind conditions: July 15, 1970 and
July 17, 1970. The mean velocities at the top of the structure were 59 ft /sec
and 42 ft /sec vrespectively. The measured damping for the first mode of
vibration is reported as 0.4 percent of critical and the fundamental natural
frequency of vibration as 0.21 hertz. The principai dimensions of the
building are presented in Table 29.

For the computation of displacements, a linear mode shape (x/h), can be
assumed. For this mode the resonant displacement at the top of the building

can be computed as follows:
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The resonant displacement is given by the equation:

$:(x) C, P /R
Displacement = 5

W
1

for a mode (x/h)

and the following value is obtained for the participation factor:

¢, =3

m
The following values for the average density and average width of the
building are reported:

v =10.2 1bs /ft.3

be = 196 ft.
Therefore the mass per linear ft can be written as:

m= (10.2 x 196)/32.2 = 62.09 1bs sec/ft.

Finally, for a frequency of 0.21 hertz and multiplying by 12 to obtain
the result in inches, the displacement at top of the building is written |
as follows:

Displacement at top = 0.14 P_ /R
where
PO is the mean wind pressure 1/2 p CD V2,
R is the resonant contribution of the response.

It is interesting to note that the values of the displacements at the

top of the building are insensitive to the form of the assumed mode shape.
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For example, the deflected shape of a cantilever beam subjected to uniform
loading also could be used as an approximation of the fundamental mode
shape. In this case the displacement at the top of the building can be
computed by employing a procedure similar to that employed before. The

mode shape has the following form:
6:(x) = 1/3 (x* - 4x + 3)
the participation factor is given by the evaluation of the integral:

Vs xf - axo+ 3) (0O dx
0

Ci =

1
Of m1/3 (x* - ax + 3)7° dx

For the cantilever mode shape the following expression for the displacement

at the top of the building is obtained:

Displacement at top = 0.135 P_ v R

The values of PO for wind velocities of 42 and 59 ft/sec are presented
in Table 30.

It should be pointed out that the assumed form of the pressure distri-
bution may have a large 1nf1uehce in the numerical value of the participa-
tion factor and thereby, in the response. For this example the same results
have been analyzed in the Titerature by employing a linear distribution for
the pressure. This distribution leads to a participation factor equal to
one (which gives a displacement that is 30% lower than thaf calculated em-

)0.35).

ploying a pressure distribution of the form (x/h On the other hand,

the same studies in the Tliterature have used a distribution of pressures
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)0°35 for the computation of the resonant factor R. Therefore, this

(x/h
points out the important fact that one must be careful in interpreting
resu]té presented which in some cases may have been computed by employing
inconsistent assumptions.

The resonant contribution can be computed employing either numerical
integration or the simple equations developed in Chapter 4. The ampli-
fication factors computed by numerical integration for a frequency of 0.21
hertz and 0.4 percent of critical damping were found to be 1.37 for a
velocity of 42 ft /sec and 1.70 for a wind velocity of 59 ft /sec. The
resonant contributions computed by employing numerical integration are
presented in Table 31.

The amplification factor also can be computed employing Eq. (4-11) with

the coefficients given in Figs. 25 and 26. For 0.04 percent of damping and

city exposure the amplification can be written as follows:

Amp = 1.5 (fh/ve1) 0-20 012

The amplification factors computed using the last equation are 1.48 for
a velocity of 42 ft /sec, and 1.75 for a wind velocity of 59 ft/sec, which
are close to the above values computed by numerical integration.

The resonant response computed using numerical integration is presented
in Table 30 for the two fundamenta1 modes of vibration discussed in this
section. In addition, in Fig. 40 the results obtained from numerical

integration for both the Tinear and the cantilever mode are compared with
the experimental measurements. It can be seen that the computed values are

in reasonable agreement with the observations reported.
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As a second example, the experimental measurements of the gust factor
for a building located at Delft, Holland, reported by van Koten (1967)
were studied. The building has a height of 150 ft, a length of 240 ft,
and a width of 36 ft. The structure consists of a steel frame with pre-
fabricated concrete slabs. The mean velocity at the top of the building
was 45 ft /sec during the experimental period. The fundamental frequency
is reported to be 0.7 hertz, but no values of damping are presented.

The gust factor computed by emp]oying the results reported by van Koten,
has a value of 2.63 for a peak factor of 3.5. Since measurements of damp-
ing are not available the gust factor was computed for 1 and 2 percent of
critical. The values computed employing Eq. (5-7) were 2.59 for one percent,
and 2.34 for 2 percent of damping. It can be seen that the gust factors
predicted by Eq. (5-7) are in good agreement with the experimental results

presented by van Koten.

5-6 Comparison of Earthquake and Wind Hazard.

Earthquake and wind hazard are dependent on the geographic location
and the properties of the building. One possible procedure for the com-
parison of the earthquake and wind hazard is the evaluation of the base
shear forces. Many parameters such as size, frequency and exposure are
preSent on the computation of the base shear.

A distinction should be made between Code requirements and the actual
behavior of the structure. Both earthquake and wind Code specifications
are based on simplified approximations. Usually éarthquake requirements
are presented in the form of base shear coefficients. On the other hand,
wind loading is generally specified as a distributed pressure varying with

the altitude of the building.
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Comparison of the effects of earthquake and wind loading on structures
should be divided into two categories: the first involving Code require-
ments, the second concerning the behavior of the structure.

The procedures to compare Code requirements (useful for determining
design Toads) are relatively simple and will be discussed here briefly.

On the other hand, the comparison of the behavior of structures under both
types of loadings requires a detailed study and was not covered in this
investigation.

For preliminary analysis, the base shear can be computed by employing
the Code specifications for both earthquake and wind. Since earthquake Code
provisions are generally specified in the form of base’ shear coefficients
and wind Code provisions as a distributed pressure, one must calculate
either the base shear coefficients or the base forces for both loading
conditions. In both cases the mass or weight of the structure has to be
estimated.

For convenience the base shear was chosen as the parameter of comparison,
because earthquake loading is specified in this manner, whereas no base
force is specified for wind. For wind the base shear coefficient can be
computed by multiplying the distributed pressures times the exposed area

and then dividing by the weight of the structure:

y = P X Area
w W
As an example the seismic and wind provisions of the latest edition of
the Uniform Building Code were studied. The city of Chicago was chosen as

the geographic location for this example. In this case, the base shear
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coefficients were computed for a set of buildings having the same cross
section but varyingAaltitudes. The period of vibration was assumed to be
the number of stories divided by ten and an average value of 12 ft per
story was taken. The computed base shear coefficients for earthquake

and wind are shown in Fig. 41. For wind, two cross sections were studied.
The first is a 100 ft x 100 ft having a weight of 15 lbs./ft 3 and

the second is a 200 ft x 200 ft with a weight of 10 1bs /ft °.
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CHAPTER 6

SUMMARY

A procedure for the computation of along overall wind response of
buildings and structures has been developed and presented. Such an
approach is common to the techniques currently employed for the evaluation
of forces and displacements arising from earthquake base excitation.

The results presented in this study can be divided into four broad
categories as follows:

1) The development of a basic methodology for the computation

of response spectra employing random vibration techniques.

Specifically, in this study response spectra have been developed

for wind loading by the noted technique.

2) The analytical treatment of the equation of motion to obtain

a solution in terms of participation factors for wind excitation.

3) Development of simplified methods of analysis for wind loading.

4) Comparison of wind and earthquake loadings and analysis pro-

cedures.

The development of wind response spectra covered the three basic
steps generally employed for the computation of earthquake response
spectra, namely: 1) evaluation of the effective base parameters (in
this case pressure and velocity) to account for the various sizes and
intensities of the wind gusts; 2) computation of the amplification
factors associated with the wind dynamic (fluctuating) loading; 3) de-
velopment of a suitable scale for the spectral representation of wind

loading (similar to the tripartite plot).



114

There are various significant similarities between earthquake
analysis techniques and the proposed procedure for analysis of wind
loading:

1) The general polygonal shape and the numerical values of

the amplification factors for both spectra are similar.

2) The equations for the distribution of base shear are the

same. This fact permits the development of simple approximate

procedures for the determination of which hazard (earthquake or

wind) is the dominant parameter in design. In addition, this
similarity in the distribution of base shear will enable the de-
termination of the seismic resistance of a building that has been
designed to sustain wind Toading and vice versa.

3) Once the participation factors have been‘evaluated, the modal

analysis techniques required for computation of the response

associated with both loadings are basically similar.

On the other hand, there are also differences between both Toadings
and spectral representations. Among these the more significanf are the
following:

1) Wind forces are separated into a mean force which is treated

as a static load, and a fluctuating force which represents the

dynamic component of the loading.

2) The range of frequencies of the amplified region of the fluctuating

wind response spectra is considerably lower than the typical range

of frequencies present in earthquake response spectra. This fact
indicates that flexible structures with large periods of vibration

are more sensitive to wind loading, whereas stiff structures are
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likely to be more sensitive to earthquake forces, (with exception

of long period waves).

3. The amplified pressure ordinate for wind response spectra con-

verges to its terminal value (base 1ine) at a frequency which is

relatively Tow when compared with the 33 hertz recommended for
earthquake response spectra. For this reason special provisions
should be taken in combining high modes where loading contributions
will be more of a static rather than of a dynamic type. This fact
also suggests that the best combination of modal contributions for
wind loading may be the algebraic sum in contrast to the square
root of the sum of the squares currently used in earthquake engi-
neering and random vibration computation.

The hyperbolic equations derived in Section 5-4 for the computation
of gust factors are simple, easy to use and provide a technique for a
quick estimate of the wind loading in cases of preliminary design. The
gust factors computed using the equations are in good agreement with the
results predicted by various gust factor procedures available in the
literature.

The two mode procedure discussed in Section 5-4 is an accurate tool
of analysis (when compared to modal techniques) for the determination of
wind forces on structures.

The set of tables for the basic effective pressure are innovative in
the sense that the damping has been used as one of the explicit parameters
permitting, in this manner, more flexibility to the designer.

A procedure based on the computation of the base shear has been employed

as the technique for comparing wind and seismic effects upon buildings. This
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procedure takes into consideration the geographic Tocation and the con-
figuration of the building. The same approach can be used to evaluate

the seismic resistance of a building that has been designed to sustain

wind forces and vice versa.

Finally a comparison of the results obtained using the procedures
for wind Toading developed in this study with full-scale measurements,
shows values that are believed to be reasonable within the framework of
the approximations involved, and the accuracy of the statistical functions
employed as input, for the computation of wind response spectra.

It is appreciated that this research investigation involves only
analysis techniques and that the procedures developed and the computations
presented in this study are valid only for the elastic range. However, an
effort should be made to obtain a better understanding regarding loading
and resistance. It is believed that more and more accurate records of
wind velocity and wind pressure should be obtained. In addition, other
parameters such as cross wind vibrations and possibly soil structure inter-
action as well as moderate inelastic behavior should be included in wind
resistant design.

Comparison of earthquake and wind loading suggest that both natural
hazards need cbnsideration in design. In some cases one or the other may
be the controlling parameter, while in other cases both may be of nearly
equal importance. However, even if the analysis techniques are similar
for earthquake and wind loading, the design criteria and detailing require-
ments may be different. For example, earthquakes constitute strong events
which may never or seldom occur during the expected Tife of the structure.

On the other hand, moderate wind loading may frequently occur, and even
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strong wind condtions may be expected tb occur several times during the

1life span of the building. Moreover, little effort in the detailing of
windows, roofs, and cladding may produce a substantial improvement in

the overall wind resistance of the structure, whereas a ductile and redundant
structuraT system should be provided to withstand moderate seismic loading
and to prevent structural collapse and loss of human Tife in the event of a

strong earthquake.
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TABLE 1T COMPARISON OF TIME DOMAIN AND FREQUENCY
DOMAIN SOLUTIONS FOR LINEAR SYSTEMS

- Input Linear System
- Transfer Function

Qutput

Time f(t)
Domain
Frequency fw)
Domain

h(t-t)

H(w)

x(t)

X(w)

I

[ h(t-1)f(1)de
0

H(w) F(w)

TABLE 2 COEFFICIENT o FOR VARIOUS WIND EXPOSURES
RECOMMENDED BY VARIOUS AUTHORS AND CODES

Exposure ANSI

NBCC Vickery (1970)
A 0.33 0.40 0.35
B 0.22 0.28 0.22
C 0.14 0.14 0.14
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TABLE 3 SUGGESTED VALUES OF z_ FOR
VARIOUS TYPES OF EXPOgURE*

Type of Qutskirts of Center of Centers of
Exposure Coastal@ Open Towns, Suburbs Towns Large Cities

0.005- 0.03- 0.20-0.30 0.35-0.45 0.60-0.80
z, (meters) 5oy 0.10

a Applicable to structures directly exposed to winds blowing from open water.

*

After Simiu and Lozier (1975)

TABLE 4 RECOMMENDED DRAG AND
LIFT COEFFICIENTS

20,
Exposure Ch C, L x (0.5)

¢ W I
(an]
o
(en]
(]
ol
(@]
(an]
(€3}
=
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TABLE 5 SPECTRUM AMPLIFICATION FACTOR
FOR ELASTIC WIND RESPONSE

Damping Velocity Pressure (Davenport Pressure (Simiu
% of Critical Input) Input)
1% 3.53 5.10 4.24
2% 2.74 3.66 3.08
5% 2.24 2.60 2.10
10% 1.64 1.87 1.64

TABLE 6 SPECTRUM AMPLIFICATION FACTORS
FOR HORIZONTAL ELASTIC RESPONSE*

Damping, One Sigma (84.1%) Median (50%)
% Critical A v D A ) D
0.5 5.10 3.84 3.04 3.68 2.59 2.01
1 4,38 3.38 2.73 3.21 2.31 1.82
2 3.66 2.92 2.42 2.74 2.03 1.63
3 3.2 2.64 2.24 2.46 1.86 1.52
5 2.71 2.30 2.01 2.12 1.65 1.39
7 2.36 2.08 1.85 1.89 1.51 1.29
10 1.99 1.84 1.69 1.64 1.37 1.20
20 1.26  1.37 1.38 1.17. 1.08 1.01

* After Newmark and Hall (1978)
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TABLE 7 EQUATIONS FOR SPECTRUM AMPLIFICATION
FACTORS FOR HORIZONTAL MOTION*

v Cumulative
Quantity Probability, % Equation
Acceleration 84.1 (One Sigma) 4.38 - 1.04 2n B
Velocity 3.38 - 0.67 an B
Displacement 2.73 - 0.45 an B
Acceleration 50 (Median) 3.21 - 0.68 n B
Velocity 2.31 - 0.41 2n B
Displacement 1.82 - 0.27 a¢n B

* After Newmark and Hall (1978)

TABLE 8 RECOMMENDED AMPLIFICATION FACTORS FOR THE
PRESSURE LINE OF ELASTIC WIND SPECTRUM

Damping Frequency
% of Critical Vel/1500 Vel/h 15 Vel/h
1% 5.36 5.10 1
2% 4.21 3.66 1
5% 3.25 2.60 1
10% 2.43 1.87 1
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TABLE 9 AMPLIFIED PRESSURES FOR EXAMPLE 4-1

Control Frequency Amplification Amplified Pressure
Hertz Factor psf
V/1500 = 0.028 4.21 37.89
A =0.026 3.66 _ 15.41
B = 0,960 1 4.21

TABLE 10 AMPLIFIED PRESSURES FOR EXAMPLE 4-2

Control Frequency Amplification Amplified Pressure

Hertz Factor psf
V/1500 = 0.026 5.36 , 26.26
A = 0.050 1.10 24.09

B 2.428 ' 1 ' 4.90



TABLE 11

CONTROL FREQUENCIES A AND B FOR DRAWING THE

PRESSURE LINE OF WIND RESPONSE SPECTRUM

WIND EXPOSURE

1% Damping

2% Damping

% Damping

10% Damping

City A
B
Suburban A
B
Open A
Country
B

0.027vh™0+71

1.31 va 071

0.017vh0-27

0.84 vh~0-%7

0.013vh~0-20

0.62 vh~0-20

0.020vh~0-87

0.75 vh0-87

0.013vh~0-°0

0.48 vh~9-%0
0.010vh~0-42

0.36 vh0-42

0.015vh~0-60

0.30 vh0-90

0.009vh"0-40

0.17 vh0-40

0.006vh~0-30

0.13 vh0-30

0.011vp~0-%4

0.12 vh 0-%4

0.005vh~0+31

0.06 vh~0-31

0.004vh™0- 19

0.04 vh 019

8¢l



TABLE 12 EFFECTIVE

PRESSURE COEFFICIENTS

WIND EXPOSURE o COEFFICIENT Pr 1o Pr 3.5 0

City 0.35 2.05 p0-40 7.17 040

Suburban . =0.27 -0.27
Areas 0.22 0.76 h 2.67 h

Open Country 0.14 0.27 h'o']4 0.95 h'o']4

621



TABLE 13 AMPLIFICATION FACTORS

WIND EXPOSURE

% Damping

% Damping

5% Damping

10% Damping

City

Suburban
Areas

Open Country

1.12 (

0.93 (

0.82 (

fh)

th

v

fh
)

-0.42

-0.42

-0.42

h™

h

h

0.12

0.18

0.21

0.90 (

0,77

0.69 (

fh
)

fh
)

fh
)

-0.36

-0.36

-0.36

h

h

h

0.12

0.18

0.21

0.70 (f%)

0.59 (f—'\))

0.54 (f%)

-0.30

-0.30

-0.30

h0,12

h0.18

h0.21

0.58 (f\%l)

0.48 (f—t})

0.43 (f%)

-0.26

0.26

0.26

h0.12 |

h0.18

h0.2]




TABLE 14 PARAMETER F FOR COMPUTING GUST FACTORS

WIND EXPOSURE 1% Damping E 2% Damping : 5% Damping
-0.42 -0.36 -0.30
City 9.23 (I h~0.28 7.42 () h-0-28 5.7 (11 h~0-28
=0.42 -0.36 -0.30
- Suburban fh -0.09 fh : -0.09 ‘ fh : -0.09
Areas 2.73 (—VJ h 2.26 (—VJ h : 1.73 (—VJ h N
«
-0.42 -0.36 0.30

Open Country 0.83 (ﬁ%) h0'03 0.70 (f%J h 0.03 0.55 (f%g T p0.03°
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TABLE 15 COMPARISON OF GUST FACTORS
COMPUTED BY VARIOUS PROCEDURES

Eq. 5-7 Vickery Vellozi and Cohen Davenport

(1971) (1968) (1967)
1% 2.60 2.67 2.59 2.57
City :
Buitding 29 2.35 2.66 2.59 2.57
1 1% 2.00 1.83 1.72 1.74
~ Open
2% 1.85 1.83 1.72 72
1% 2.59 2.16 1.80 2.28
City
Building 2% 2.28 2.12 | 1.80 2.10
2 1% 2.38 1.97 1.56 1.43
Open
2% 2.14 1.88 1.54 1.78
1% 2.31 2.26 1.63 2.48
City
Building 2% 2.05 2.09 1.61 - 2.08
3 1% 2.44 2.45 1.58 2.03
Open ‘
2% 2.20 2

.18 1.52 1.95
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TABLE 16 PROPERTIES OF BUILDINGS STUDIED
FOR THE COMPUTATION OF GUST FACTORS

Building 1 Building 2 Building 3
Height 150" 500" 1200
Cross section 150" x 150" 200' x 200' 200 x 200
Frequency 1 HERTZ 0.2 HERTZ 0.1 HERTZ
Velocity Open 110 ft hec. 130 ft hec. 150 ft hec.
Velocity City 65 ft hec. 95 ft hec. 130 ft hec.

TABLE 17 FORCES AT LEVELS FOR EXAMPLE-2 SECTION 5-3

level mass h P mean P background P linear P correction P total

1 2.38 14 1527 3475 585 265 5872
2 2.38 28 2498 4464 1170 212 8344
3 2.38 42 3321 5151 1754 158 10384
4 2.38 56 4064 5700 2339 104 12207
5 2.38 70 4754 6164 2924 51 13893
6 2.38 84 5400 6571 3509 -3 15477
7 2.38° 98 6468 7444 4093 -56 17949
8 4.24 114 3727 4127 8483 =209 16138

Units:
mass: kps/g
h: ft.

férce: 1bs.
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TABLE 18 EFFECTIVE VELOCITY PRESSURES FOR
CITY EXPOSURE AND 1% DAMPING

Basic Wind Velocity (mph)

Height

(ft) 50 60 70 80 90 100 110 120 130 140
50 3 4 6 9 12 15 19 24 29 34
1 2 3 5 7 9 12 15 19 24

100 4 6 9 12 16 21 26 32 39 47
2 3 5 7 9 13 16 21 26 31

150 4 7 10 14 19 25 31 39 47 56
2 3 5 8 11 15 19 24 30 36

200 5 8 12 17 22 29 36 44 54 64
2 4 6 9 12 17 22 27 34 41

250 6 9 13 18 25 32 40 49 60 71
2 4 7 10 14 18 23 30 37 44

300 6 10 15 20 27 35 44 54 65 78
3 5 7 11 15 20 25 32 39 48

350 7 11 16 22 29 37 47 58 70 83
3 5 8 11 16 21 27 34 42 51

400 7 11 17 23 31 40 50 62 75 89
3 5 8 12 16 22 28 35 44 53

450 8 12 18 25 33 42 53 65 79 94
3 6 9 12 17 23 29 37 46 56

500 8§ 13 19 26 35 44 56 69 83 99
3 6 9 13 18 24 31 39 48 58

550 9 14 20 27 36 47 58 72 87 104
3 6 9 13 19 25 32 40 49 60

600 9 14 21 28 38 49 61 75 91 108
4 6 10 14 19 25 33 41 51 62

650 9 15 21 30 39 51 64 78 9% 112
4 6 10 14 20 26 34 43 53 64

700 10 15 22 31 41 53 66 81 98 117
4 7 10 15 20 27 35 44 54 65

750 10 16 23 32 42 54 68 8 101 121
4 7 10 15 21 28 36 45 55 67

800 10 16 24 33 44 56 70 87 104 124
4 7 11 16 21 28 37 46 57 69

850 1T 17 25 34 45 58 73 89 108 128
4 7 11 16 22 29 37 47 58 70

900 11 17 25 35 46 60 75 92 111 132
4 7 11 16 22 30 38 48 59 72

950 11 18 26 36 48 61 77 9 114 135
4 7 11 17 23 30 39 49 60 73

1000 12 18 27 37 49 63 79 97 117 139
4 8 12 17 23 31 40 50 62 75
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TABLE 19 EFFECTIVE VELOCITY PRESSURES FOR
CITY EXPOSURE AND 2% DAMPING

Basic Wind Velocity (mph)

Height
(ft) 50 60 70 80 90 100 110 120 130 140
50 2 4 5 7 10 13 16 20 24 29
o 1 2 3 5 6 8 11 13 17
100 3 5 7 10 14 18 22 27 33 39
1 2 3 5 7 9 12 15 18 22
150 4 6 9 13 17 22 27 33 40 48
1 2 4 6 8 N 14 18 22 27
200 5 7 11 15 19 25 3 38 46 55
2 3 4 7 9 12 16 20 25 30
250 5 8 12 16 22 28 35 43 51 61
2 3 5 7 10 13 17 22 271 33
300 6 9 13 18 24 30 38 47 56 67
2 3 5 8 11 14 19 24 29 35
350 6 10 14 19 26 33 41 50 60 72
2 4 6 8 12 15 20 25 31 38
400 7 10 15 21 27 35 44 54 65 77
2 4 6 9 12 16 21 26 33 40
450 7 11 16 22 29 37 46 57 69 81
2 4 6 9 13 17 2 28 3 4
500 7 12 17 23 31 39 49 60 72 86
2 4 7 10 13 18 23 29 36 43
550 8 12 18 24 32 41 51 63 76 90
3 4 7 10 14 19 24 30 37 45
600 8 13 19 26 34 43 54 66 79 94
3 5 7 10 14 19 25 31 38 46
650 9 13 19 27 35 45 56 69 83 98
3 5 7 11 15 20 26 32 39 48
700 9 14 20 28 37 47 58 71 86 102
3 5 8 11 15 20 26 33 41 49
750 9 15 21 29 38 48 60 74 89 105
3 5 8 11 16 21 27 34 42 5]
800 10 15 22 30 39 50 62 76 92 109
3 5 8 12 16 22 28 35 43 52
850 10 16 22 31 40 52 64 79 95 112
3 5 8 12 17 22 28 36 44 53
900 10 16 23 32 42 53 66 81 98 116
3 6 9 12 17 23 29 36 45 54
950 11 17 24 33 43 55 68 8% 100 119
3 6 9 13 17 23 30 37 46 55
1000 11 17 25 34 44 5 70 8 103 122
3 6 9 13 18 23 30 38 47 56
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TABLE 20 EFFECTIVE VELOCITY PRESSURES FOR
CITY EXPOSURE AND 5% DAMPING

Basic Wind Velocity (mph)

Height

(ft) 30 60 70 80 90 100 110 120 130 140
50 2 3 4 6 8 11 13 16 20 23
0 0 0 1 2 3 4 5 7 9

100 3 4 6 9 12 15 19 23 28 33
0 0 1 2 3 5 7 9 11 14

150 3 5 8 11 14 18 23 28 34 40
0 1 2 5 6 8 11 14 17

200 4 6 9 13 17 21 27 32 39 46
0 1 2 4 5 7 10 13 16 19

250 5 7 10 14 19 24 30 36 44 52
1 2 3 4 6 8 11 14 17 21

300 5 8 11 16 21 26 33 40 48 57
1 2 3 5 7 9 12 15 19 23

350 6 9 12 17 22 29 35 43 52 61
1 2 3 5 7 10 13 16 20 25

400 6 9 13 18 24 31 38 46 56 66
1 2 4 6 8 11 14 18 22 26

450 6 10 14 19 26 33 40 49 59 70
1 2 4 6 8 11 15 18 23 28

500 7 10 15 21 27 34 43 52 63 74
1 3 4 6 9 12 15 19 24 29

550 7 11 16 22 28 36 45 55 66 78
1 3 4 9 12 16 20 25 30

600 8 12 17 23 30 38 47 57 69 81
2 3 5 10 13 17 21 26 32

650 8 12 17 24 3 40 49 60 72 85
2 3 5 7 10 13 17 22 27 33

700 8 13 18 25 32 41 51 62 75 88
2 3 5 10 14 18 22 28 34

750 9 13 19 26 34 43 53 65 78 92
2 3 5 8 11 14 18 = 23 29 35

800 9 14 20 27 35 44 55 67 80 95
2 3 5 8 11 15 19 24 29 36

850 9 14 20 28 36 46 57 69 83 98
2 3 6 8 11 15 19 24 30 36

900 g 15 21 28 37 47 59 72 86 101
2 4 6 8 12 15 20 25 31 37

950 10 15 22 29 38 49 61 74 88 104
2 4 6 12 16 20 26 32 38

1000 10 15 22 30 40 50 62 76 91 107
2 4 6 9 12 16 21 26 32 39
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TABLE 21 EFFECTIVE VELOCITY PRESSURES FOR
SUBURBAN EXPOSURE AND 1% DAMPING
Basic Wind Velocity (mph)
Height

(ft) 50 60 70 80 90 100 110 120 130 140
50 5 8 12 17 23 29 37 46 56 66
2 4 6 9 12 17 22 27 34 41
100 7 11 16 22 29 37 47 58 70 84
3 5 8 12 16 21 28 35 43 52
150 g 12 18 25 33 43 54 67 81 97
3 6 9 13 18 25 32 40 49 60
200 9 14 20 28 37 48 60 74 89 107
4 7 10 15 20 27 35 44 54 66
250 9 15 22 30 40 51 65 80 9 115
4 7 11 16 22 29 38 47 58 71
300 10 16 23 32 43 55 69 85 103 122
4 8 12 17 23 31 40 50 62 75
350 1 17 24 34 45 58 73 89 108 129
5 g 12 18 25 32 42 53 65 78
400 11 18 26 35 47 61 76 94 113 135
5 8 13 19 26 34 44 55 67 82
450 12 18 27 37 49 63 79 97 118 141
5 9 13 19 27 35 45 57 70 85
500 12 19 28 38 5] 65 82 101 122 146
5 9 14 20 27 36 47 59 72 87
550 12 20 29 40 53 68 85 104 126 150
6 9 14 2] 28 37 48 60 74 90
600 13 20 30 41 54 70 88 108 130 155
6 10 15 21 29 38 49 62 76 92
650 13 21 30 42 56 72 90 111 134 159
6 10 15 22 30 39 51 64 78 95
700 14 21 31 43 57 74 92 113 137 163
6 10 16 22 31 40 52 65 80 97
750 14 22 32 44 59 75 95 116 140 167
6 10 16 23 31 41 53 66 82 39
800 14 22 33 45 60 77 97 119 144 17
6 11 16 23 32 42 54 68 83 101
850 15 23 33 46 61 79 99 121 147 175
6 11 16 24 32 43 55 69 85 102
900 15 23 34 47 62 80 101 124 149 178
7 11 17 24 33 44 56 70 86 104
950 15 24 35 48 64 82 103 126 152 181
7 11 17 24 33 44 57 71 87 106
1000 15 24 35 49 65 83 104 128 155 184
7 1 17 25 34 45 58 72 89 107



TABLE 22 EFFECTIVE VELOCITY PRESSURES FOR
SUBURBAN EXPOSURE AND 2% DAMPING

Basic Wind Velocity (mph)
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Height

(ft) 50 60 70 80 90 100 110 120 130 140
50 5 8 11 15 20 26 33 40 48 58
1 3 4 6 9 12 16 20 25 31

100 6 10 14 20 26 33 42 51 62 73
2 4 6 9 12 16 21 27 33 40

150 7 11 16 23 30 138 48 59 71 84
3 5 7 10 14 19 25 31 38 46

200 8 13 18 25 33 43 53 65 79 93
3 5 8 12 16 21 27 34 42 51

250 9 14 20 27 36 46 58 71 85 101
3 6 9 13 17 23 30 37 46 55

300 9 15 21 29 38 49 61 75 91 108
4 6 9 14 19 25 32 40 49 59

350 10 15 22 31 40 52 65 79 96 113
4 6 10 14 20 26 33 42 51 62

400 10 16 23 32 42 54 68 83 100 119
4 7 10 15 21 27 35 43 53 64

450 11T 17 24 34 44 57 71 87 104 124
4 7 11 16 21 28 36 45 55 67

500 11 18 25 35 46 59 73 90 108 129
4 7 11 16 22 29 37 47 57 69

550 12 18 26 36 48 61 76 93 112 133
5 8 12 17 23 130 38 48 59 71

600 12 19 27 37 49 63 78 9% 115 137
5 8 12 17 23 31 40 49 61 73

650 12 19 28 38 50 65 81 99 119 141
5 8 12 18 24 32 41 51 62 75

700 13 20 29 39 52 66 83 101 122 145
5 8 13 18 25 32 42 52 64 77

750 13 20 29 40 53 68 85 104 125 148
5 9 13 19 25 33 42 53 65 78

800 13 21 30 41 54 70 87 106 128 151
5 9 13 19 26 34 43 54 66 80

- 850 14 21 31 42 56 71 89 108 130 155
5 9 14 19 26 35 44 55 68 81
900 14 22 31 43 57 72 9 111 133 158"
5 9 14 20 27 35 45 56 69 83

950 14 22 32 44 58 74 92 113 136 161
6 9 14 20 27 36 46 57 70 84

1000 14 23 33 45 59 75 94 115 138 164
6 9 14 20 28 36 46 58 71 86
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TABLE 23 EFFECTIVE VELOCITY PRESSURES FOR
SUBURBAN EXPOSURE AND 5% DAMPING

Basic Wind Velocity (mph)

Height
(ft) 50 60 70 80 90 100 110 120 130 140
50 4 6 9 13 17 22 27 34 40 48
0 0 1 3 4 6 9 11 14 18
100 5 9 12 17 22 28 35 43 52 61
1 2 3 5 7 10 13 17 21 26
150 6 10 14 20 26 33 41 50 60 71
1 3 4 7 9 12 16 20 25 31
200 7 1 16 22 29 37 46 56 67 79
2 3 5 8 11 14 18 23 28 34
250 8 12 17 24 31 40 49 60 72 86
2 4 6 8 12 16 20 25 31 38
300 8§ 13 19 25 33 43 53 64 77 91
2 4 6 9 13 17 22 27 33 40
350 9 14 20 27 35 45 56 68 82 97
3 4 7 10 13 18 23 29 35 43
400 9 14 21 28 37 47 59 72 86 101
3 5 7 10 14 19 24 30 37 45
450 10 15 22 30 39 49 61 75 89 106
: 3 5 8 11 15 20 25 31 39 47
500 10 16 23 31 40 51 64 78 93 110
3 5 8 11 15 20 26 33 40 48
550 10 16 23 32 42 53 66 80 % 114
3 5 8 12 16 21 27 34 41 50
600 11 17 24 33 43 55 68 83 99 117
3 6 8 12 17 22 28 35 43 51
650 117 17 25 34 44 56 70 85 102 121
3 6 9 13 17 22 29 36 44 53
700 11 18 25 35 46 58 72 88 105 124
; 4 6 9 13 18 23 29 37 45 54
750 12 18 26 36 47 59 74 90 108 127
4 6 9 13 18 24 30 38 46 55
800 12 19 27 37 48 61 76 92 110 130
4 6 9 14 18 24 31 39 47 57
850 12 19 27 37 49 62 77 94 113 133
4 6 10 14 19 25 32 39 48 58
900 13 20 28 38 50 64 79 9% 115 136
4 7 10 14 19 25 32 40 49 59
950 13 20 29 39 51 65 80 98 117 138
4 7 10 14 20 26 33 41 50 60
1000 13 20 29 40 52 66 82 100 119 141
4 7 10 15 20 26 33 41 51 61
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TABLE 24 EFFECTIVE VELOCITY PRESSURES FOR OPEN
COUNTRY EXPOSURE AND 1% DAMPING

Basic Wind Velocity (mph)

Height
(ft) 50 60 70 80 90 100 110 120 130 140
50 8 13 19 27 36 46 58 71 86 103
3 5 9 13 18 24 31 39 49 60

100 10 16 23 32 43 55 69 85 103 123
4 7 11 16 22 30 39 49 60 73

150 11 18 26 36 48 61 77 95 115 137
5 8 13 18 25 34 44 55 68 82

200 12 19 28 39 5] 66 83 102 124 147
5 9 14 20 28 37 47 60 74 89

250 13 20 29 41 54 70 88 108 131 156
6 10 15 22 30 39 51 63 78 95

300 13 21 31 43 57 /3 92 113 137 163
10 16 23 31 41 53 67 82 99

350 14 22 32 44 59 76 9 118 142 170
6 11 16 24 33 43 55 69 86 104

400 14 23 33 46 6l 79 99 122 147 176
: 7 11 17 25 34 45 57 72 89 107

450 15 23 34 47 63 81 102 125 152 18]
12 18 25 35 46 59 74 91 110

500 15 24 35 49 65 83 105 129 156 186
7 12 18 26 36 47 61 76 94 113

550 16 25 36 50 66 85 107 132 159 190
12 19 27 37 49 62 78 9% 116

600 16 25 37 51 68 87 110 135 163 194
7 13 19 27 38 50 64 80 98 119

650 16 26 38 52 69 89 112 137 166 198
8 13 20 28 38 51 65 81 100 121

700 17 26 38 53 70 91 114 140 169 202
13 20 29 39 52 66 83 102 123

750 17 27 39 54 72 92 116 142 172 205
8 13 20 29 40 53 67 84 104 126

800 17 27 40 55 73 9 118 145 175 209
14 21 30 40 53 68 86 105 128

850 18 28 40 56 74 95 119 147 178 212
8 14 21 30 41 54 /0 87 107 129

900 18 28 41 56 75 97 121 149 180 215
8 14 21 30 42 55 71 88 100 131

950 18 28 41 57 76 98 123 151 183 218
8 14 22 31 42 56 71 % 110 133

1000 18 29 42 58 77 99 124 153 185 220
9 14 22 31 43 56 72 91 111 135
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TABLE 25 EFFECTIVE VELOCITY PRESSURES FOR OPEN
COUNTRY EXPOSURE AND 2% DAMPING

Basic Wind Velocity (mph)

Height
(ft) 50 60 70 80 90 100 110 120 130 140
50 8 12 18 24 32 42 52 64 77 91
2 4 6 10 13 18 24 30 37 46
100 9 15 21 29 39 50 62 76 92 109

3 6 9 13 18 24 31 39 48 58

150 10 16 24 33 43 55 69 85 102 121
4 7 10 15 20 27 35 44 54 65

200 11 18 26 35 47 60 75 91 110 131
4 711 16 23 30 38 48 59 71

250 12 19 27 37 49 63 79 97 117 138
8 12 18 24 32 41 51 63 76

300 13 20 28 39 52 66 83 101 122 145
5 8 13 19 26 34 43 54 66 80

350 13 20 30 41 54 69 8 105 127 151
9 14 20 27 35 45 56 69 83

400 14 21 31 42 56 71 89 109 131 156
6 9 14 20 28 37 47 58 72 86

450 14 22 32 43 57 73 92 112 135 161
6 10 15 21 29 38 48 60 74 89

500 14 22 32 45 59 75 9 115 139 165
6 10 15 22 30 39 50 62 76 92

550 15 23 33 46 60 77 97 118 142 169
6 10 16 22 30 40 51 64 78 94

600 15 23 34 47 62 79 99 121 146 173
11 16 23 3l 41 52 65 80 96

650 15 24 35 48 63 81 101 123 149 176
7 11 16 23 32 42 53 67 82 98

700 16 24 35 49 64 82 103 126 151 180
7 11 17 24 32 43 54 68 83 100

750 16 25 36 49 65 84 104 128 154 183
7 11 17 24 33 43 55 69 85 102

800 16 25 37 50 66 8 106 130 157 186
7 11 17 25 34 44 56 70 86 104

850 16 26 37 51 67 86 108 132 159 189
7 12 18 25 34 45 57 71 87 105

900 17 26 38 52 68 88 109 134 161 191
12 18 26 35 46 58 72 89 107

950 17 26 38 53 69 89 111 136 163 194
12 18 26 35 46 59 73 90 108

1000 17 27 39 53 70 90 112 137 165 196
7 12 18 26 36 47 60 74 91 110
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TABLE 26 EFFECTIVE VELOCITY PRESSURES FOR OPEN
COUNTRY EXPOSURE AND 5% DAMPING

Basic Wind Velocity (mph)

Height
(ft) 50 60 70 80 90 100 110 120 130 140
50 6 11 16 21 28 36 45 55 66 78
0 1 3 5 7 10 14 18 23 28
100 8 13 19 26 34 43 54 66 79 94
2 3 5 8 11 15 20 26 32 39
150 9 15 21 29 38 48 60 73 88 104
2 4 7 10 14 19 24 30 37 45
200 10 16 23 31 41 52 65 79 9% 112
3 5 8 11 16 21 27 34 41 50
250 11 17 24 33 43 55 69 84 101 119
3 6 9 12 17 23 29 36 45 54
300 11 18 25 35 46 58 72 88 105 125
4 6 9 13 18 24 31 39 47 57
350 12 18 26 36 47 60 75 92 110 130
4 6 10 14 19 25 33 41 50 60
400 12 19 27 37 49 63 78 95 114 134
4 7 10 15 20 27 34 42 52 63
450 13 20 28 39 5] 64 80 98 117 138
4 7 11 15 2] 28 35 44 54 65
500 13 20 29 40 52 66 82 100 120 142
4 7 11 16 22 29 36 45 56 67
550 13 21 30 41 53 68 84 103 123 146
5 8 12 17 22 29 38 47 57 69
600 14 21 30 42 55 69 86 105 126 149
5 8 12 17 23 30 39 48 59 70
650 14 22 31 42 56 71 88 107 129 152
5 8 12 17 24 31 39 49 60 - 72
700 14 22 32 43 57 72 90 109 131 155
5 8 13 18 24 32 40 50 61 74
750 15 22 32 44 58 74 91 1M 133 158
5 8 13 18 25 32 41 51 62 75
800 15 23 33 45 59 75 93 113 136 160
5 9 13 19 25 33 42 52 64 76
850 15 23 33 45 60 76 94 115 138 163
5 9 13 19 26 33 43 53 65 78
900 15 24 34 46 61 77 9% 117 140 165
5 9 14 19 26 34 43 54 66 79
950 15 24 34 47 61 78 97 118 142 168
6 9 14 20 26 35 44 55 67 80
1000 16 24 35 47 62 79 98 120 144 170
6 9 14 20 27 35 45 55 68 81
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TABLE 27 MASS AND STIFFNESS FOR 25 STORY BUILDING(*)

MASS STIFFNESS
Kps 103 Kps/in.
25 492 0.3
24 3082 4.4
23 4175 5.3
22 2973 7.2
21 2957 7.3
20 2474 8.7
19 3170 10.1
18 3170 10.1
17 3215 13.3
16 3250 14.1
15 3259 14.1
14 3299 16.3
13 3436 19.5
12 3436 19.5
11 3465 21.0
10 3693 21.0
9 3443 21.0
8 3555 23.2
7 3820 31.8
6 3820 31.9
5 3848 33.4
4 4097 39.8
3 4097 39.5
2 4368 42.4
1 4635 28.1

* After Blume, Newmark and Corning (1961)

TABLE 28 MASS AND STIFFNESS FOR 8 STORY BUILDING(*)

STIFFNESS MASS
Kps/in. Kps sec /in.

1 4005 2.38
2 3483 2.38
3 3606 2.38
4 3493 2.38
5 3914 2.38
6 3373 2.38
7 3045 2.38
8 2409 4,24

* After Nielsen (1968)
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TABLE 29 PRINCIPAL PROPERTIES OF
JOHN HANCOCK CENTER
Height
Cross Section:
Base 165 x 265 ft.
Top 100 x 160 ft.
Frequency E-W (Observed) 0.21 hertz
Damping E-W (Observed) 0.4%

TABLE 30 MEAN PRESSURES AND DISPLACEMENTS
FOR JOHN HANCOCK CENTER

July 25 July 27

Velocity at top 59 ft/sec 42 ft/sec
P0 4.14 psi  2.16 psi
Mean Linear mode 0.51 inch 0.26 inch

Deflection Cantilever mode 0.49 inch 0.25 inch
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TABLE 31 RESONANT RESPONSE AT TOP OF
THE JOHN HANCOCK CENTER

Velocity ‘Deflection at top of Structure (inches)
ft/sec Linear Cantilever Measured
Mode Mode

42 0.031 0.030 0.017
59 0.079 0.076 0.042
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APPENDIX A EVALUATION OF RESPONSE SPECTRA

A-1 Introduction.

For evaluating the parameters associated with wind response spectra,
namely equivalent pressure coefficients, amplification factors and correction
functions, numerical integration techniques were employed.

The response integral for the mean square response as defined by Eq.

(2-68) has the following form:

s(w) = 1/2r [ 3w)]? H(w)|? S () du (A-1)
0

where

S(w) is the mean square response as a function of frequency,

Si(w) is the power spectral density function of the input function,
[J(w)|2 represents the correlation of the input loading. For a perfectly
correlated load [J(w)|2 =1,

|H(w)|2 is the frequency transfer function Eq. (2-48).

In random vibration a narrow band approximation has beeﬁ used generally
for obtaining results of practical application. However, the narrow band
approximation does not give good results when the natural frequency of
vibration and the damping are relatively high. The narrow band approximation
is extensively discussed in the literature (see, for example, Newmark and

Rosenblueth (1975)).

A-2 General Procedure for Computing Response Spectra Employing Random

Vibration Techniques.

In this study a new procedure for the evaluation of the response integral

Eq. (A-1) was developed. This procedure is based on the premise that some
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bounds of the response integral have an actual physical meaning which can .
be related to the spectral base lines and amplification factors employed
in the deterministic analysis of dynamic loading.
The eva1uat1on technique developed in this study ﬁan be summarized
as follows:
1) A Tower bound of the response can be computed as the static
response of a rigid building. For a rigid building having an in-
finite frequency of vibration the function [H(w)[2 Eq. (2-48) is
equal to one. Therefore the Tower bound of the response is given

by the expression:

A= o O[ 9@ [? 55 (w) dw (A-2)

2) An upper bound of the dynamic response can be computed by assuming
that the pressures (forces) are perfectly correlated. A perfectly

correlated pressure implies that the function lJ(w)]2 is equal to one.

Therefore an upper bound of the response is given by:

B = [ IH@) 2 s5(0) d (A-3)

1
ZTro

Moreover a dynamic amplification factor can be obtained by dividing

Eq. (A-3) by its terminal value as follows:

B

1/2m f“) Si(w) dw ~ (A-4)
0 ;
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The denominator of Eq. (A-4) is just the terminal value of Eq.
(A-3), or in other words, the value of Eq. (A-3) when the
natural frequency of the system approaches infinity.

3) A correction function can be evaluated to interpolate

between A and B as follows:

(A-5)

The products A x B x D or A x C x D, depending on the definition of D, give
the exact value of the response integral Eq. (A-1).

It can be seen that any two of the quantities A, B or D can be
arbitrarily defined, but the third parameter is enforced by the evaluation
of the response integral Eq. (A-1).

For dynamic problems it is convenient to arbitrarily define the
quantities A and C because it is possible to find physical meaning for
both quantities. Indeed, A is the equivalent base line or terminal line
of the response spectrum. On the other hand, C has a meanihg similar in
concept to the amplification factors of deterministic analysis.

It is convenient to define A and C in a manner such that at a very
high frequency (over 100 hertz) the effects of the correction function

are negligible and the following reiation is satisfied:
S{w) =AxC

Moreover since for a high frequency system the amplification function,

C, approaches one the response is further simplified as follows:
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S(w) = A
W >
Therefore, the value of A can be taken as the base 1ine of the responsé
spectrum. On the basis of the above definition of A and C, D must con-
verge to 1 at the high frequency, but does not converge to 1 in the low
frequency range. The advantage of this normalization is that the ampli-
fied bounds of the response spectra will converge to the base line A in
the high frequency range. |
The advantages‘of employing this evaluation procedure for the computa-
tion of the spectra are the following: |
‘1) Represents the exact response.
2) A physical meaning can be associated with some of the parameter.
3) Permits a gfaphica] representation and a simple computation

similar to the familiar earthquake responsebspectra.

A-3 Evaluation of Effective Pressure Response Spectra for Wind Loading.
The procedure described in the previous Section will be employed now
to evaluate the response spectra for wind loading.

Equivalent pressure coefficients -- In order to compute the equivalent

frequency coefficients, Pr,as the root mean square of a rigid system the
frequency transfer function has by definition a numerical value equal to

one. In this case, the mean square response, Eq. (A-1), is reduced to the

A=S_ =1/t foo 13(w)|? 5, (w) d (A-6)

where
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SV is the power spectral density function of the wind velocity, IJ(w)[2
is the aerodynamic transfer function that will be evaluated herein.

The effective pressure coefficients as defined in Section 4-3 are
given by the square root of Eq. (A-6).

To obtain the numerical value of Eq. (A-6), the aerodynamic transfer
function |J(m)|2 has to be evaluated. The function [J(w)l2 represents an
average value of the intensity of the fluctuating pressure over the complete

face of the structure. Therefore the square of the equivalent pressure co-

efficients can be written as follows:
-1 w0 h h b b . . _
S, = 5 Of S (w) SO I T S0 R, dydy' dz dz' dw (A7)

The functions R, and Sv(m) have been defined in Chapter 3. Comparison of
Eq. (A-6) and Eq. (A-7) shows that the quantity ]J(w)[2 is defined as

follows:
2 h ¢h b (b .
[d(w)]” = Of Of Of of R, dy dy' dz dz

Simiu and Lozier (1975) have presented a procedure based on Montecario
integration techniques to carry out the four fold integration. Once the
four fold geohetrica] integral has been evaluated, the integration along
the frequency line can be accomplished by employing Simpson's rule or any
other one dimensional integration technique.

In this study the procedure proposed by Simiu and Lozier was employed
for computing the geometrical integral (four fold integral in y,y' z and z')
and then Simpson's rule was used for the integration on the frequency line.

The operation was repeated for a large number of cases for various values of
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altitude, aspect ratio and types of exposure conditions, namely center of
cities and open country. The effective pressure coefficients can be com-
puted by taking the square root of Eq. (A-7). These results have been
presented in Figs. 13 and 14,

Amplification factor -- The numerical evaluation of the amplification

factors is simpler than that required for the equivalent pressure co-
efficients because the correlation function is defined to be equal to one
and the four fold integration is e]iminated.

The amplification factors have been defined in Section 4-3 as the

square root of Eq. (A-4). For wind, Eq. (A-4) is written as follows:

o 2
H S d
¢ (A (o) )2 i of [H(w) | V(w) w (hes)

OwaV (w) dw

The numerator of Eq. (A-8) represents the response of a perfectly correlated
single degree of freedom. The denominator of Eq. (A-8) is the terminal
value of the numerator. In this manner the amplification factors will

be always equal to or larger than one, converging to one in the high
frequency range. The denominator‘has to be evaluated only once during the
computation of the amplification factors. On the other hand the numerator
should be calculated for a large sample of oscillators with various fre-
quencies of vibration and excited by different levels of wind velocities.

The numerical techniques required for the evaluation of the amplification
factors are reduced to only one dimensional numerical integration along the
frequency line which was carried out by employing the Simpson's rule procedure.
Results of the evaluation of the square root of Eq. (A-8) have been presented in

Fig. 16.
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Correction function -- The evaluation of the correction function in-

volves a combination of both the effective pressure coefficients and the
amplification factors. The correction function as defined by Eq. (A-5)

has the following form for wind input:

[o.¢] 0

[ 12 s W) [Hw)]°do [ S (w) do

5. (w) = —2 - =D (A-9)
(w) dw f Sv(w)IH(w)Izdw
o

where

Ofw|d(w)|2 Sv(w)[H(w)]2 dw is the total response given by Eq. (A-3),

fq; Sv(w) dw is the denominator of the amplification factor Eq. (A-8),
O

f“) |H(w)|2 Sv(w) dw is the numerator of the amplification factor Eq. (A-8),
(6]

f“’ |J(w)|2 Sv(w) dw is the effective pressure coefficient Eq. (A-7).
0}

It is easy to see that the effects of the exposure are canceled out
and the correction function is expected to be a function only of the fre-
quency, velocity, damping and geometric properties of the structure. During
the computation of the correction function it was found that it has a strong
dependency with the damping and the ratio f x h/V. However, the aspect
ratio has a small effect in the correction function and this dependency
was ignored. The results of the evaluation of the square root of Eq. (A-9)

have been presented in Fig. 19.
wiet? nelolsllve Lt
Civil Enginesring lloparrmont
B106 C. K. Building
Univereity of Illinois
Ters s 31innis A1R01






