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ABSTRACT 

Earthquakes and wind loadings constitute dynamic effects that often 

must be considered in the design of buildings and structures. The pri­

mary purpose of this research study was to investigate the common 

features of general dynamic analysis procedures employed for evaluating 

the effects of wind and earthquake excitation. 

Another major goal was to investigate and develop a basis for generating 

response spectra for wind loading, which in turn would permit the use of 

modal analysis techniques for wind analysis in a manner similar to that 

employed for earthquake engineering. Random vibration techniques were 

applied for developing response spectra for wind loading. In order to 

generate wind response spectra, the wind loading is divided into two parts, 

a mean load that is treated as a static component and a fluctuating load 

that is treated as a dynamic component. The spectral representation of 

the wind loading constitutes a simple procedure for estimating the forces 

associated with the dynamic component of the gusting wind. 

Several illustrative examples are presented to demonstrate the common 

application of modal analysis and response spectrum techniques for evaluating 

the effects of wind and earthquake excitation. 
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CHAPTER 1 

INTRODUCTION 

1-1 Objectives of the Investigation. 

Practically all buildings and structures are subjected to forces 

arising from natural hazards. Among those, earthquake and wind forces 

are of primary concern to the designer of building structures. As a re­

sult of their random properties earthquake and wind forces are difficult 

to predict and must be estimated on the basis of judgement, experience and 

statistical analyses. 

In the design of buildings and structures, the geographic location 

plays an important role in the determination of the earthquake-wind hazard. 

There are zones known to be especially earthquake prone; there are locations 

where high winds may be the dominant parameter; there is also a third 

category where both the seismic and the wind hazard may be nearly equally 

important. The type of structure also plays a role in arriving to the design 

criteria. As a rule, structures with high natural periods of vibration are 

especially sensitive on an overall basis to wind loading; structures with 

intermediate to low periods of vibration are likely to experience strong 

lateral forces during an earthquake. 

In dynamic problems there are two general types of analysis procedures; 

one is carried out in the time domain and the other is carried out in the 

frequency domain. Time domain analysis is preferred for highly transient 

short duration loadings, while frequency domain analysis is better suited 

for long duration and/or more steady state type loadings. In addition, 

loadings commonly are estimated through either deterministic or probabilistic 

procedures. 
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In the past, earthquake resi~tant design has been treated generally as 

a deterministic procedure wherein the forcing load is usually approximated 

by an equivalent static loading coefficient. More recently the loading co­

efficients have been determined on the basis of statistical analysis of a 

selected sample of acceleration time histories. Present code recommendations 

based on deterministic time domain analysis of earthquake base excitation 

permit three general procedures for evaluating the dynamic forces on 

structures. These procedures are: (1) equivalent lateral load procedure 

involving specification of a base shear coefficient, (2) modal analysis 

and response spectrum techniques, and (3) step by step integration of the 

time history. 

Wind forces, on the other hand, constitute a more steady long duration 

loading, where frequency domain techniques are a more suitable procedure 

of analysis. In addition, specific problems of wind loading such as corre­

lation of pressures, which are better treated by statistical means, and 

the stationary properties of the wind flow make random vibration theory 

the most appropriate procedure for evaluating the response of structures 

subjected to strong winds. Present code specifications for wind loading 

are derived partially through the use of standard random vibration theory. 

The principal objectives of this research study were to investigate 

the relationship between dynamic analyses for earthquake and wind loading, 

to demonstrate the commonality between the analysis techniques and to 

develop response spectra for wind loading which could be employed with modal 

analysis techniques to compute the response of structures subjected to strong 

winds. In order to achieve clarity it is noted that wind response spectrum 

is presented as a plot of effective pressures and it is divided into two 

parts a mean pressure and a fluctuating effective pressure. 



3 

In addition, and in order to compare the effects of earthquake and 

wind loading, the base shear was used as a reference frame for determining 

which of the dynamic loadings, namely earthquake or wind, was the governing 

factor in design. Consequently, another goal of this investigation was to 

develop a simple procedure to evaluate the base shear associated with the 

wind loading. 

The foregoing should not be construed as suggesting that the design 

criteria for earthquake and wind hazards are the same. Indeed quite 

different criteria commonly are involved. For example in the case of 

earthquake resistant design the approach may be one of accepting the possi­

bility of some limited damage yet desiring to prevent serious damage or 

collapse. In the case of wind damage design the approach may- be one of 

desiring to preclude undesirable building motion in strong gusting wind and 

to preclude localized building damage. The goal is to provide a structure 

which remains serviceable under all design wind loading, including lower 

level wind loadings that may occur often and routinely. In spite of these 

differences there are features common to the analysis of the building 

structure as a whole for both wind and earthquake excitation, and it is 

these approaches, centering around modal analysis and response spectrum 

techniques, which are the subject of this research investigation. Although 

it is believed the features (principles and techniques) of the commonality 

of approaches are clearly delineated herein, it is appreciated that design 

application may follow only after further study and after additional load­

ing data for wind becomes available. 
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1-2 Background. 

In the past few decades, with the worldwide population increase and 

concentration into metropolitan areas and the proliferation of man-made 

structures the consequences of natural disasters have become increasingly 

important. Natural hazards such as strong earthquakes and high winds have 

brought attention to dynamic loadings which in turn have led engineers to 

search for improved approaches for analysis and design. 

Earthquake -- Although it is recognized that earthquakes are a random 

process which can best be evaluated through the use of statistical techniques, 

the deterministic analysis based on modal decomposition and response spectrum 

techniques is commonly used in earthquake resistant design. Modal analysis 

procedures, which are extensively discussed in the literature, can be found 

in such standard references as Newmark and Rosenblueth (1971), Clough and 

Penzien (1975), and Blume, Newmark and Corning (1961). Statistical analysis 

of acceleration records summarized as guide lines for the estimation of the 

response spectrum as a function of frequency and damping have been presented 

by Newmark and Hall (1969, 1973 and 1978), Hall, Mohraz and Newmark (1976), 

and Newmark, Blume and Kapur (1973). 

Present approaches for earthquake resistant design can be divided into 

three areas. The first and most general procedure, step by step integration 

of the equations of motion, requires a formidable computational effort and 

is used only for complex problems. The second procedure consists of modal 

analysis and response spectrum techniques. This approach also requires a 

considerable amount of computation for evaluating the mode shapes of the 

structure and to combine the various modal contributions. The third approach 

is the base shear coefficient or equivalent lateral load procedure. In this 
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case a base shear coefficient is specified as a percent of the total weight 

of the structure. Once the base shear is evaluated it is distributed to 

the various nodal points of the structure. All three procedures may in­

clude consideration of inelastic properties and soil structure interaction 

effects. 

In the United States base shear coefficients procedures are specified 

by various code authorities including, for example, the Uniform Building 

Code (U.B.C.), the National Building Code (N.B.C.) and the American 

National Standards Institute (A.N.S.I.). These procedures, in some cases, 

present great variations from one code to another and between editions of 

the code. 

More recently the Applied Technology Council (A.T.C. (1973)) has pre­

sented a comprehensive tentative specification for earthquake design of 

buildings. An attempt has been made to explicitly evaluate in a rational 

manner the various parameters that enter into the analytical procedure. 

Procedures presented in A.T.C. (1973) include consideration of response 

spectra for different types of structures and soil conditions, and the 

analytical techniques for computing earthquake response including in­

elastic properties of the structures, and soil-structure interaction 

effects. It seems fairly certain that the modern principles delineated 

in A.T.C. (1973) will find their way into building codes in the years ahead. 

Wind Historically, concepts of isotropic turbulence have been used 

for studying wind forces, and wind loading has been customarily described 

utilizing statistical formulations. One of the techniques frequently used 

is to divide the turbulent wind flow in two parts. The first is a mean 

flow and the second a fluctuating flow. Therefore, the wind velocity is 

divided into a mean velocity which has a constant time history which is 



6 

customarily treated as a static loading, and a fluctuating velocity which 

varies with time and which is treated as a dynamic loading. 

Since the beginning of the century considerable effort has been de-

voted to the study of the velocity pressure ations and the evaluation of 

drag coefficients. Drag coefficients for wind flow obtained from experi­

mental studies are reported throughout the literature. 

In more recent time, the response of structures to the dynamic com­

ponent of the wind loading usually has been treated as a stochastic pro­

cess, with random vibration techniques being used to predict the behavior of 

structures under wind excitation. Different spectral representations for 

the dynamic component of the wind velocity have been developed by Davenport 

(1961), Simiu (1973), and Kaimal etc al.(1972). As a result of the appli­

cation of such spectral representations and random vibration analysis, a 

gust response factor has been proposed by various investigators, including 

principally, Davenport (1967), Vellozi (1968), Vickery (1971), 

and Simiu and Lozier (1975). 

Earthquake and wind -- Extensive research has been undertaken in both 

earthquake and wind analysis as separate subjects. However, little re­

search has been conducted in the area of similari es between the behavior 

of structures under both earthquake and wind excitations. Newmark (1966) 

proposed that since the equations of motion are practically the same for 

earthquake and wind vibrations, the procedure of analysis should be similar 

in both cases. Newmark points out that some of the experience and knowledge 

available in earthquake engineering co d be advantageously used in the de-

sign of structures subjected to strong nds. Newmark and Hall (1968) suggested 

that it is possible to draw a diagram similar to the earthquake response 
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spectrum for loading such as wind making use of the relationship between 

the response of dynamic systems to motion or to external loading and 

inertial loadings. More recently, Novack (1974) suggested that such con­

cepts as soil structure interaction, developed for earthquake engineering, 

could be included in wind resistant design. These studies have suggested, 

for some time, the possibility that there are common analysis procedures 

that need to be explored in detail. 

1-3 Scope of the Investigation. 

In this dissertation the commonality of analysis techniques for earth­

quake and wind loading was investigated. Also techniques for developing 

of response spectra for the dynamic component of the gusting wind were 

studied intensely. 

In chapter two a brief overview of structural dynamic methods for 

deterministic and stochastic analyses is presented. Special attention is 

devoted to the derivation and interpretation of the participation factors 

fundamental to a complete understanding of the modal analysis technique. 

Continuous and discrete systems are discussed, and rules for the computa­

tion of participation factors for the case of wind loadings (distributed 

loads acting on discrete systems) also are given. Power spectral density 

functions and input-output relations as well as mean square response and 

peak factors are described briefly for random vibration analysis. In every 

case an attempt is made to explain the physical meaning of the expressions 

and an attempt has been made to keep the mathematical complexity of the 

random vibration theory to a minimum. In addition, the commonality of the 

solution procedures for the equation of motion for earthquake excitation 
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and a general dynamic loading is discussed. Moreover a solution technique 

for a general dynamic loading is presented as a function of the well known 

modal procedure employed for earthquake analysis. nally, the similarity 

of deterministic and random vibration analysis is presented. 

In chapter three, the most important physical properties of wind 

velocity, pressure, and velocity-pressure relationships are outlined. 

Special consideration is given to the wind-structure interaction properties 

such as drag coefficients and correlation of pressures. Also, the geo­

metrical distribution of wind pressures on the various faces of the structure 

is discussed. 

In chapter four, various procedures for the computation of response 

spectra for the dynamic component of the wind loadi are presented. The 

result is a spectrum of effective pressures for the uctuating component 

of the wind loading. The response spectra are calculated using the power 

spectral density functions proposed by Davenport (1961) and Simiu (1973). 

A simplified procedure is presented for arriving at the response spectrum 

for wind. This procedure includes specific recommendations for computing 

the spectral base~ines (unamplified lines) and the i cation factors. 

In chapter five, a deterministic procedure for analysis of wind 

loadings is presented and demonstrated. Such procedure includes the compu-

tation of the participation factors and the use of 

derived in chapter four. In this chapter the foll 

analysis receive special attention: 

response spectrum 

ng topics for wind 

Development of a simplified procedure to compute the lateral 

forces using the concept of the distribution of base shear. 
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A simplification of the deterministic procedure, using a 

first mode approximation, to obtain a gust response factor. 

A comparison of the gust response factors computed using the 

response spectrum procedure with the gust response factors 

specified by various code authorities such as A.N.S.I. and the 

National Building Code of Canada (N.B.C.C.) and some independent 

authors such as Vickery (1971) and Simiu and Lozier (1975). 

Finally, to demonstrate the applications of the response spectrum 

approach for wind loading and its commonality with earthquake analysis 

one simple building is analyzed for earthquake and wind excitations, and 

three for wind alone. Particular attention is given to the computation of 

base shear and the distribution of lateral forces in the structures for 

both earthquake and wind loading. 
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CHAPTER 2 

OVERVIEW OF STRUCTURAL DYNAMICS 

Only a brief description of the principles of structural dynamics 

employed in this investigation are presented in this chapter. For 

additional information on the subject, readers are referred to such standard 

sources as Newmark and Rosenblueth (1971), Clough and Penzien (1975), 

and Hurty and Rubinstein (1964). 

2-1 DefJ_~~i~~ of the Equation of Motion. 

The movement of a linear system with N degrees of freedom, as shown 

in Fig. 1, can be written in a general way as a set of coupled differential 

equations which include parameters such as time or frequency, geometry, 

mass, stiffness, and damping. The equation of motion for a lumped mass 

system is usually derived by using either the dlAlembert principle or 

equilibrium relations and has the following form: 

[m] {xl + [c] {~J + [k] {x} = F (z,t) 

where 

r ... ., is .~I,.,.~ mass ..... , ..... ....... ~.:,~ 
llllJ 1.,1 It: 1110 I., J I J\, 

[c] is the damping matrix, 

[k] is the stiffness matrix, 

{x} is the displacement vector, 

{x} is the velocity vector, 

{x} is the acceleration vector, 

(2-1 ) 

F(z,t) is the forcing function which is dependent on the time history 

or frequency content of the record and the geometric distribution of the 

forc i ng load. 
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2-2 Solution of the Equation of Motion. 

In the solution of the equation of motion the forcing load F(z,t) is 

usually separated into two independent functions. As a result, the forcing 

function F(z,t) is separated into the product of two components. The 

first is a geometry dependent part, p(z), which is a function of the 

spatial distribution of the forcing load. The second, f(t), represents 

the variation of the load as a function of time or frequency. As a result 

of the separation of variables hypothesis, the forcing function may be 

expressed as follows: 

F(z,t) = Po p(z) f(t) (2-2) 

where 

P is a constant, or reference value, usually taken as the maximum value 
o 

of the forcing load, 

p(z) is the geometric distribution of the forcing load, 

f(t) is the time history of the forcing load. 

The response function, X(z,t) is separated into a set of geometric functions, 

Gi(z), and a set of time history distributions Ti(t). The response, then, 

is written as follows: 

where 

x is a constant, or a reference value of the response, 
o 

Gi(z) is the geometric distribution of the response, 

Ti(z) is the time history of the response. 

(2-3) 
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The solution procedure consists of finding a relationship between 

p(z) the input, and Gi(z) the output geometric functions, and f(t) the 

input time history and Ti(t) the output response function. In obtaining 

the response it is obvious that the input forcing load is modified by the 

resisting system with its inherent mass, stiffness and damping properties. 

The parameters p(z) and f(t) as well as the geometry and properties of 

the resisting system can be considered to be given quantities. On the other 

hand, the response obviously is a function of the resistance, or in one 

sense the resisting system can be thought of as a transfer function in re­

lating loading and response. The response is of particular theoretical 

and practical interest, and in the following section attention will be 

focused especially on two aspects of the total response function, namely 

the participation factor one part of the response that accounts for the 

space distribution of the forcing load and the time dependent part of the 

response. The time dependent part is conveniently expressed for practical 

interpretation in the frequency domain. 

Generalized coordinates -- In the solution of the equations of motion 

a series of operations is required. One of the techniques frequently used 

is the transformation of the equations of motion, written in Cartesian co­

ordinates, into a new set of real variables known as generalized coordinates 

that will uncouple the system of equations. Langhaar (1962) gives the 

following definition for generalized coordinates: "If a mechanical system 

consists of a finite number of material points, its configuration can be 

specified by a finite number of real variables called generalized coordinates". 

To transform the equation of motion into the generalized coordinates the 

displacements are defined as a function of a set of vectors {¢i}' which 

are known as IImode shapes" and are dependent only on the geometrical 
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configuration and structural parameters; and a new set of generalized time 

dependent coordinates q .. This transformation is written as follows: 
1 

N 
L 

i = 1 
{el)·} q. 

1 1 

Upon transformation to the new set of generalized coordinates the 

equation of motion will yield an eigenvalue problem of the form: 

<p '.' + A<p. 
1 1 

o 

Or expressed in a more convenient way: 

where 

(2-4) 

(2-5) 

(2-6) 

w. is the ith circular frequency of vibration, and {¢.} is the ith normal 
1 1 

mode of vibration. 

With the help of the orthogonality properties of {¢i}' the equations 

of motion can be written in their uncoupled form in terms of the generalized 

parameters as follows: 

.. 
[M] {q} + [C] {q} + [K] {q} = {Q} (2-7) 

where by definition 

[M] is the generalized mass matrix, = (I)T [m] q) 

[ c] is the generalized damping matrix, = <pT [c] (t) 

[I<] is the generalized stiffness matrix, = 1>T [ kJ <P 

{Q} is -4-L...~ generalized load, = 1){P} 1.1Ie 

(1.> is the matrix of the vectors {(I) .} • 
1 
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It is important to note that the forcing load F(z,t) is transformed 

into a set of generalized loads, Qi. The meaning of the generalized loads 

Qi can be derived conceptually from the work done by the forcing load when 

the structure is vibrating in its ith natural mode. For lumped mass systems, 

the generalized load associated with the ith mode of vibration may be 

written as: 

N 
Q. = P I <p •• P. f(t) 

1 0 j=l lJ J 
(2-8) 

where 

j is the jth point of location, or nodal point. 

As a result of the assumption that the time and the geometry can be 

separated into two independent functions, it is easy to see that the 

generalized load has a part, defined as fi' which accounts for the geometric 

variations of the forcing function and a time dependent function f(t). The 

quantity fi may be thought of as a measure of the extent to which the ith 

normal mode participates in synthesizing the total load of the structure. 

For discrete systems, fi is written as follows: 

N 
f. = P I <p •• P. 

1 0 j=l lJ J 
(2-9) 

for continuous systems, the summation is replaced by an integral and fi 

becomes: 

L 
f. = P III J <Pi (z) p(z) dz 

1 0 0 
(2 ... 10) 
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The factor l/L is introduced in order to make Eq. (2-10) dimensionally con­

sistent with Eq. (2-9). Therefore, the generalized force can be written 

in a general forlll as: 

Q. 
1 

I'i f(t) (2-11) 

There are also cases where a distributed load is applied on a lumped mass 

system. For those cases, the load should be concentrated at the discrete 

points of the structure. Guidelines for crnnputing the equivalent concentrated 

loads are presented by Newmark and Rosenblueth (1971), and summarized as 

follows for the case of uniforlJlly spaced discrete points: 

are: 

Let h denote the distance between uniformly spaced points a, 

b, c, etc. (see Fig. 2), and lJ a ' Pb' Pc the value of the dis­

tributed load at points a, b, and c. Define Pa- b as the 

equivalent concentrated load at point a of span a-b, and Pb- a 

as the equivalent concentrated load at point b of span a-b. 

For a polygonal approximation, the equivalent concentrated loads 

P a-b 

P b-a 

h --- (2 P + p ) 
6 a b 

~- (2 P + P ) 
6 b a 

(2-l2a) 

(2-l2b) 

The treatment of more complex cases as higher order approximations and 

nonequally spaced discrete points is found in Newmark (1943), Newmark and 

Rosenblueth (1971), and Salvadori and Baron (1952). 



16 

2-3 Deterministic analysis. 

The deterministic analysis, based on modal decomposition and the re­

sponse spectrum technique is widely used for engineering applications. 

The following derivations are based on the assumption that the equations 

of motion can be uncoupled and solved as a system of "equivalentll single 

degree of freedom systems that later are combined to obtain the complete 

response of the structure. 

For convenience, the damping term is excluded from the equation of 

motion and is included in the response spectrum. This procedure is usually 

preferred because of the difficulties involved in the evaluation of the 

damping matrix. In addition the solution procedure is simplified because 

the system is now treated as a combination of undamped single degree of 

freedom systems. The equation of motion for the ith generalized coordinate 

is then simplified to: 

.• 2 
q. + W. q. = Q./M. 

1 1 1 1 1 
(2-13) 

The decoupled ith equation of motion can be solved using the Laplace 

transformation technique or any other suitable procedure. The solution 

yields the well known expression in terms of the participation factors Ci , 

which are a function of fi' and the response function 8i . The solution 

of the ith generalized coordinate then may be written as follows: 

q. = C. 8. 
1 1 1 

(2-14) 

For linear systems, 8i is obtained from the evaluation of the Duhamel 

integral. Therefore 8i is defined as follows: 
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8. = ---
, W D' m. 1 , 

t 
J 
o 

e- s w,' (t-T) sl"n (t) f( ) d Wo i -T T T (2-15 ) 

where 

Woi is the damped frequency of vibration = Wi'" 

In general, for transient excitation it is difficult to find a closed 

form solution for the response integral. Therefore numerical procedures 

such as Newmark-Beta-Method (Newmark, 1963) are commonly used. 

Participation factors -- The participation factor Ci requires additional 

attention. Ci is the ratio of fi' the geometric component of the ith 

genera 1 i zed load (Eq. (2-9) and Eq. (2-10)) and Mi the general i zed mass 

corresponding to the ith mode of vibration. Therefore Ci is written as 

fo 11 ows : 

C. = f./M. 
1 1 1 

(2-16) 

The quantity fi can be derived from the work done by the forcing load 

when the structure is vibrating in its ith natural mode of vibration. Since 

fi is dependent on the structure mode shapes and the geometric configuration 

of the forcing load, a different value of f; must be expected for different 

types of structures and geometrical configurations of the forcing load. 

The generalized mass Mi is independent of the forcing load, and therefore 

it is a constant regardless of the type of excitation applied to the structure. 

Newmark (1966) has proposed that the numerator of the participation 

factor, fi' can be written in the following general form: 
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(2-17) 

where 

{p} is a vector which depends on the geometry of the applied load and the 

mass distribution of the structure. 

The vector {p} can be easily calculated by Eq. (2-9) and Eq. 

(2-17) as follows: 

N 
r

l
, = P I ¢' ,P. = Po {¢,.}T {P} = {¢,.}T em] {p} 

o j=l lJ J 

and after some manipulation the following expression is obtained: 

where 

[m] -l is the inverse the mass matrix, 

(2-18) 

{P} is the geometrical distribution of the forcing load applied at dis-

c re t e poi n t s 1, 2 D 3 \l •• , j ~ . . N 

For earthquake excitation the discrete forcing loads are dependent 

only on the mass of the structure and the ground acceleration. In this case 

the vector {p} is reduced to a unit vector. It should be pointed out that 

since{p} is independent of the mode shape {¢i} it must be calculated only 

once during the solution procedure of any given vibration problem. 

In the solution of a vibration problem the participation factor does not have 

a unique value. The numerical value of the coefficient Ci depends on the 

normalization procedure used for the computation of the ith mode of vibration. 

The variation in the numerical value of the participation factor is not sur­

prising, because the participation factor has the mode of vibration in the 
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numerator and the square of the mode of vibration in the denominator, 

therefore the normalization constant for C. does not cancel out. Fortunately, 
1 

this apparent inconsistency does not affect the solution of the problem be-

cause the quantity that must remain constant is the product {<Pi} x Cig and 

it can be seen that the mode normalization constant, for this product is 

thus cancelled out. There are various ways of normalizing the modes of 

vibration. Some engineers normalize the modes of vibration in such a way 

that the resulting participation factors have a numerical value equal to 

one, whereas other analysts will prefer a set of modes of vibration that 

yield a unit generalized mass. The two approaches have different compu-

tational advantages and simplify the calculation of the response. 

In general, sumnarizing the concepts presented in this section, the 

participation factor for earthquake base excitation is written as: 

and the participation factor for a general loading as: 

C. 
1 

T {cP i} [m] {p} 

{<Pi}T [m] {CPi} 

(2-l9a) 

(2-19b) 

Combination of modes -- In the previous Section the solution of only 

one of the generalized coordinates was presented. To obtain a complete 

solution of the equation of motion it is necessary to combine and transform 

the generalized coordinates into the original set of Cartesian or material 



20 

coordinates. In order to attain this transformation Eq. (2-15) is substituted 

into Eq. (2-4) and the final form of the displacements written as a linear 

combination of the generalized coordinates, is given by the expression: 

N 
I cp •. C. 8; 

i=l lJ 1 
(2-20) 

In earthquake engineering it is customary to define the maximum ab-

solute value of 8i as the amplification factor Di . The value of D. is 
1 

usually given by the response spectrum which is a function of the natural 

frequency of vibration and the amount of damping present in the system. In 

general, the same response spectrum technique can be used for other types 

of forcing loads such as wind and blasting, as noted by Newmark (1966) and 

Newmark and Hall (1968). The displacements can now be rewritten as a 

function of the response spectrum as follows: 

N 
= I 

i=l 
cp •• c. 
lJ 1 

(2-21) 

Since Di is the maximum absolute value of the response of an equivalent 

single degree of freedom system, Eq. (2-21) represents an upper bound of 

the response given as the sum of the maximum absolute values of each modal 

contribution. This upper bound is conservative because it is .highly 

probable that all the maximum responses would occur at the same time. Con­

sequently, other techniques for the combination of modal contributions 

normally are used. 

It is shown by Goodman, Rosenblueth and Newmark (1955) and Rosenblueth 

(1956), that for structures exhibiting linear behavior with uncorrelated or 



21 

statistically independent modes of vibration the expected numerical value 

of the response is the square root of the sum of the squared contributions 

associated with the various modes of vibration. Therefore the most probable 

value of the response can be written as follows: 

= [ I X(j)prObable i=l 
2]1/2 (C. (p .. D.) 

1 1 J 1 
(2-22) 

Rosenblueth (1956) has noted that the same technique could be used to calcu-

late quantities other than displacements if the response of the desired 

quantity is equal to the sum of the responses of the natural modes, where 

each modal contribution is regarded as an independent, linearly damped, 

single degree of freedom system. If the particular desired quantity (for 

example base shear, story shear, overturning moment, stress, etc.) is 

designated as Y and the particular response of the nth mode of vibration 

as Yn the maximum value of Yn is given by: 

N 
Y = max L 

n=l 
(2-23) 

and the most probable va 1 ue of Y as: 

Yprobable [ 
N 'J 1/2 

= L (C Y On) 2 
. 1 n n 1= 

(2-24) 

Moreover, Rosenb1ueth (1956) observed that the condition of statistical in-

dependence of the normal modes is satisfied even for relatively close natural 
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periods and that Eq. (2-24) may be expected to hold with sufficient accuracy 

in practically all cases of interest in design. However, in cases where the 

frequencies are very close, the use of Eqs. (2-22) or (2-24) may result in a 

large underestimation of the response. It is an accepted practice to include 

the cross-products of the responses associated with each pair of natural 

modes, in the computation of the total response, when the difference be­

tween the natural frequencies ;s l~ss than ten percent. The ten percent 

limit is defined as follows: 

w. - w· 
J 1 

w. 
1 

< 0.10 (2-25) 

where 

1 < i ~ j ~ N, and 

N ;s the number of modes used in the computation of the response. 

If all the cross-terms are included, the equation for combining the 

modal contribution of the response is written as: 

N N N 
1/2 

Y ::::: L (C. Y. O. )2 + L L Y. Y. C. C. o. o. w· . 
i =1 1 1 1 i =1 j=l 1 J 1 J 1 J lJ 

(2-26) 

i :; j 

where 

w .. is a weighting factor which varies between 0 and 1 according to the im­
lJ 

portance of the contribution of the cross-product. 

In the cases where the cross-terms are included in the computation of the 

response, the resulting value will be somewhere between the values predicted 
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by Eqs. (2-23) and (2-24). If the numerical value of the weighting factors, 

w .. , are equal to one Eq. (2-25) will yield Eq. (2-23), whereas if all w .. 
lJ lJ 

are equal to zero Eq. (2-25) would simplify into Eq. (2-24). 

Procedures used to evaluate the importance of the cross-term1s con-

tributions vary from (1) considering w .. equal to one if the difference 
lJ 

between the frequencies w· and w· is less than ten percent and zero in 
1 J 

any other case (ten percent procedure) to (2) evaluation of the weighting 

factor for each cross-term contribution. 

Sometimes, for special structures, modes associated with high frequencies 

may be present in the computation of the response. In those cases the com-

bination of the contributions of such higher modes requires special attention. 

If those high modes correspond to the unamplified high frequency region of 

the response spectrum (unamplified acceleration in earthquake analysis) that 

portion of the loading will behave just like a static load. Therefore, those 

modes should be combined in an algebraic manner and independent of the 

modes associated with the amplified region of the response spectrum. 

In earthquake engineering only massive structures, as for example 

nuclear power plants, have significant contributions at such high fre­

quencies (over 33 hertz). However in wind problems, most of the energy 

is associated with the low frequency range and the response spectrum 

(which will be developed in Chapter 4) converges to the unamplified high 

frequency line at frequencies as low as 2 to 5 hertz. 

Buildings subjected to wind forces have modes with significant con­

tributions even in the rigid region of the spectrum. In this case the modal 

contributions are divided into two groups. The first includes the modes 

with frequencies associated with the amplified region of the spectrum. The 
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second group consists of the modes with frequencies corresponding to the 

rigid region of the spectrum. The first group of modal contributions is 

combined in a square root of the sum of the squares fashion. The second 

group represents a set of essentially static loads and its modal contribution 

should be added in an algebraic manner. The high frequency static con-

tributions can be condensed into a single residual term. A procedure for 

carrying out this computation has been presented by Biswas and Duff (1979). 

Those high mode contributions become more critical for effects associated 

with the lower levels of the structure. 

Forces and Base Shear -- Once the modal displacements, either absolute 

or relative, have been computed the lateral forces induced on the structure 

by these displacements can be easily calculated. The operations are per­

formed for each mode of vibration and the forces are combined using any of 

the rules previously discussed. 

In the beginning of this section it is established that the displace­

ments associated with the nth mode of vibration are given by the following 

expressions: 

for the absolute displacements: 

x = {¢ } C D n n n n (2-27a) 

for the relative displacements: 

(2-27b) 

Since the displacements are known, their associated modal lateral forces 

can be calculated using the following statical relationship~ 
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for the absolute displacements: 

{f} = [k] {X} (2-28a) 

for the relative displacements: 

{f} = [k] {U} (2-28b) 

As has been previously shown in Eq. (2-6), the mass and the stiffness 

matrixes are related by the characteristic equation: 

(2-29) 

The forces associated with the nth mode of vibration are calculated sub-

stituting Eqs. (2-27) and (2-29) into Eq. (2-28). Therefore the resulting 

forces vector is written as follows: 

(2-30) 

where 

{fn}is the vector of the lateral forces associated with the nth mode of 

vibration. 

The modal base shear von is the sum of the components of the modal 

forces vector {fn} If matrix notation is used, the sum is obtained by pre­

multiplying Eq. (2-30) by a unitary row vector. Thus the base shear associated 

with the nth mode of vibration is written as: 

v 
on (2-31) 
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2-4 Forces and Base Shear for a General Loading as a Function of the Earth­
quake Participation Factor. 

Historically, for civil engineering structures, modal analysis pro-

cedures have been used to study the response of structures subjected to 

earthquake base excitation. Therefore it is convenient to express the 

solution of the equation of motion, for the case of a general load, in 

terms of the earthquake participation factors modified by a constant, Yi' 

to account for the geometric differences of the forcing load. 

For each mode of vibration the constant Yi can be calculated by equating 

Eq. (2-19b), the participation factor for a general load, with Eq. (2-19a), 

the participation factor for earthquake base excitation, modified by the con~ 

stant Yi' This relation is written as follows: 

Since the result of all four matrix triple products are scalars, it is 

possible to solve for Yi' and the following expression is obtained: 

{<Pi}T [m] {pI 

Yj ={~i}T [m] {1} 
(2-32) 

For earthquake base excitation Yi has a numerical value equal to one. 

The participation factor for a general load can now be rewritten as a . 

function of the earthquake participation factor as follows: 

c. = y. CEo 
1 1 1 

(2-33) 
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where 

CEo is the participation factor for earthquake base excitation associated 
1 

with the ith mode of vibration. 

Therefore the expanded form of the participation factor for a general 

type of loading is: 

C. 
1 

(2-34) 

Once the participation factor has been calculated the lateral forces 

and modal base shear can be found using the same procedures discussed in 

Section 2-3. It will be apparent later that the constant Yi will appear 

in the expressions for lateral forces and modal base shear, but it will not 

be present in the equation for the distribution of the base shear. 

The modal lateral forces are obtained replacing Eq. (2-34) into Eq. 

(2-30). Therefore the lateral forces are: 

{f. } 
1 

2 D. Ill. 
1 1 

(2-35) 

In a similar way the modal base shear is calculated by substituting Eq. 

(2-34) into Eq. (2-31). Then the modal base shear is expressed as: 

(2-36) 
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Eq. (2-36) can be rewritten in a form similar to that proposed by A.T.C. 

(1973), Eq. (5-2), as follows: 

(2-37) 

where 

Yi accounts for the variation of the participation factor for a general 

load as a function of the earthquake participation factor. 

W is given by A.T.C. (1973) Eq. (5~3). W is defined as a measure of the 

force synthesized by the ith mode of vibration and is given by the following 

expression: 

N 2 ( I w. cp •. ) ({<Pi}T [W] {1})2 
j=l J 1J 

W. = = 1 N 
2 {<Pi}T [W] {<Pi} I w. (<p • • ) 

j=l J 1J 

(2-38) 

where 

W'" is the wei ght of the structure at 1 eve 1 j, 
J 

[W] is the matrix of the weights of the structure 

Coi is the amplification factor which is dependent on the frequency content 

and time history of the forcing loading. For earthquakes A.T.C. (1973) has 

defined the amplification factor as follows: 

2 O. W. 
1 1 C. = ..-.;....--

01 g 

9 is the acceleration of gravity. 

(2-39) 

Once the base shear is calculated, the factor Yi is absorbed into the 

base shear coefficient and the equation for the distribution of forces 
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becomes independent of the forcing load. Hence, the lateral forces are 

rewritten as a function of the modal base shear as follows: 

{f. } 
1 

Em] {cp.} 
1 (2-40) 

For the case of a diagonal mass matrix, Eq. (2-40) is similar to A.T.C. 

(1973) Eqs. (5-4) and (5-4a). In A.T.C. (1973) Eq. (5-4) the force at 

level x associated with the mth mode of vibration, F ,is given by: xm 

where Cvxm accounts for the force distribution at different levels of 

the structure and is given by A.T.C. (1973) Eq. (5-4a) 

Wx CPxm 
C = --::-:------

vxm N 
I w. cpo m 

. 1 1 1 1= 

(2-41) 

(2-42) 

Therefore, it becomes apparent (regardless of the type of forcing load 

that is applied to the structure) that once the modal base shear is computed, 

the force distribution obeys the same relation for any type of forcing load 

applied to the structure. Moreover, if a linear mode shape is assumed, Eqs. 

(2-41) and (2-42) can be simplified to the following expression used in 

earthquake engineering for the distribution of base shear: 

(2-43) 

where 



F is the lateral force at level x, x 

Wx is the weight at level x, 
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h is the height of the level above the base, x 
I Wx hx is the sum of all weights W multiplied by their respective 

heights h above the base and 

Vo is the base shear force. 

2-5 Random Vibration Analysis. 

For completeness in this study and because wind loading is normally 

handled by random vibration procedures, it was felt desirable to present 

a brief description of these techniques and to demonstrate their commonality 

with deterministic analysis. One objective of this study was to demonstrate 

the practical applications of random vibration procedures and also to show 

that these techniques can be conveniently employed for generating response 

spectrae As will be presented in this section once the response spectrum 

has been evaluated the same modal analysis techniques usually employed in 

deterministic analysis may be used for random vibration analysis. 

Before discussing the response of dynamic systems to random excitation 

it is convenient to review briefly the deterministic solution of a single 

degree of freedom system using the frequency response method. It should be 

noted that random vibration techniques and frequency response analysis are 

relatively unfamiliar to most structural engineers. The solution of vibra­

tion problems in the frequency domain requires the use of mathematical tools 

such as the Laplace transform and concepts of Fourier analysis. Normally 

Fourier analysis techniques are used to represent the forcing function in 
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the frequency domain. If the forcing function is periodic such representa-

tion is attained by employing a Fourier series expansion, whereas if the 

forcing function is nonperiodic, as is generally the case in vibration 

problems, the frequency representation of the forcing load is obtained 

through the use of the Fourier integral. 

,Solution of a S.D.O.F. system in the frequency domain -- Only a summary 

of the most important points of the frequency response method is presented 

here. A complete and rigorous treatment of the method can be found in 

Hurty and Rubinstein (1964). 

The equation of motion of a single degree of freedom oscillating system 

is written as: 

.. .. 
mx + cx + kx = f (t) 

Eq. (2-44) has a time domain solution of the form 

where 

t 
X(t) = J h (t - T) f (T) dT 

o 

h(t - T) = 
-Sw (t-T) e 

(2-44) 

(2-45) 

This representation of the time domain response (as presented in Section 

2-3) is commonly referred as the Duhamel integral. 

To solve the equation of motion using the frequency response method, 

the first step is to represent the loading in the frequency domain by 

evaluating the Fourier transform of the forcing function f(t). This 



32 

frequency representation of f(t) is defined as F(w). Therefore F(w) is 

expressed as follows: 

00 

F(w) = J f(t) e- iwt dt (2-46) 
- 00 

In the frequency response method the output function or response X(w) 

is also given as a function of frequency. Furthermore the relationship 

between the forcing function and the response is written as follows: 

X(w) 

where 

= H(w) F(w) x __ 1 __ 
-2 mw 

H(w) is known as the frequency transfer function and defined as: 

H(w) = 1 
2 w 

1- w + i 2 f3 :: ~ w 
w 

w is the natural frequency of the S.D.O.F. system 

f3 is the damping as percent of the critical. 

(2-47a) 

It can be shown, see Hurty and Rubinstein (1964), that h(t-T) and H(w) 

are a Fourier transform pair. 

The relationship between the input force and the output force can be 

written as follows: 

...... 

F(w) = IH(w) I F(w) (2-47b) 

A summary of the solutions for time and frequency domain are presented 

and compared in Table 1. 
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Random Vibration Techniques -- In the random vibrations techniques 

presented in this section, the level of statistics has been reduced to 

a minimum. Explanations are made in terms of familiar statistical con-

cepts such as mean, variance and standard deviation. It is assumed that 

the random process can be characterized by two statistical descriptors 

which are its mean value and its variance or its standard deviation. 

Furthermore, any random process can be divided into two independent 

random processes, one is a mean process with zero variance, and the other 

is a zero mean process representing the variance of the original process. 

Moreover, the variance of a zero mean process equals its mean square value. 

Therefore the original random process is split into a mean process and a 

mean square process. It should be pointed out that the mean of the forcing 

function will yield a mean response and the mean square of the forcing 

function will yield a mean square response. 

Solution of a S.D.O.F. Subjected to Random Input Now consider the 

same single degree of freedom system described by Eq. (2-44). In this case 

the forcing function is a random function defined as Fr(t), then Eq. (2-44) 

is written as: 

" mx + cx + kx = F (t) r 
(2-48) 

Using the principle of superposition Fr(t) can be divided into two 

parts. One Fr is the mean value of the forcing function and the other Fro (t) 

is the variation of Fr(t) from the mean value Fro The forcing function is 

then written as: 

F (t) = F + F O (t) r r r (2-49) 
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The solution of Eq. (2-48) is now split into the solution of two equations, 

the mean response which is treated as a quasi-static problem and is given 

by the solution of: 

.. .. 
mx + cx + kx = r r 

which can be solved as 

kx = f r 

and the mean square response can be obtained from the solution of the 

expression: 

.. 
mx + cx + kx = Fa (t) r 

Computation of the mean square response ~- The quantity F~ (t) is 

(2-50a) 

(2-50b) 

(2-51) 

a random function having a zero mean. Hence, it represents the variance 

(as a function of time) of the random function Fr(t). Consequently, the 

solution of Eq. (2-51) will consist in finding the mean square response 

as a function of the mean square forcing function. In order to obtain a 

solution it is necessary to represent the mean square of the forcing load 

in the frequency domain. 

The frequency representation of the mean square can be derived from 

the Parseval theorem of Fourier analysis. Parseval's theorem can be 

written as follows (Spiegel 1972): 

00 00 

J xl(t) x2(t) dt = 2~ J Xl (w) X2 (w) dw 
_00 -00 

(2-52) 

where 
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xl(t) and Xl(oo) are a Fourier transform pair, and x2(t) and X2(w) are 

another Fourier transform pair. In this case for the computation of the 

mean square 

Xl (t) x2(t) = x(t) and 

Xl (ell) X2(oo) = X(oo) 

Therefore Eq. (2-52) can be written as: 

00 ex. 

J x2 
(t) dt - 21i J X(w) X (00) doo = -

7T 
- ex· _ ex. 

ex-

J 2 I X (w) I dUl 

o 

Changing the limits of integration and dividing by 2T one obtains: 

1 im 
T -+ 00 2T 

T 
J X2 (t) dt 
-T 

1 im 
T -~ (X) 21r 

T 
J 
o 

2 I X (00) I 
T dUl 

(2-53) 

(2-54) 

The left hand side of Eq. (2-54) is precisely the definition of mean square. 

The expression IX(oo)1 2/T is defined normally as the power spectral 

density function of x(t). This relation is written as follows: 

Therefore the mean square is equal to the integral along the frequency line 

of the power spectral density function divided by 21r~ A graphical repre­

sentation of this relation is shown in Fig. 3. It should be noted that the 

power spectral density function can be computed from statistical procedures, 

if one has sufficient data, by employing the autocorrelation function. Con-

struction techniques for the power spectral density function employing the 
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autocorrelation function are presented by Crandall and Mark (1963), Robson 

( 1 964), etc. 

Computation of the response of a single degree of freedom system--

The solution of Eq. (2-51)= 

.. 
mx + cx + kx = F' (t) 

r 

can be written using the frequency response procedure as follows: 

x (w) = H (w) F~ (w) 

If each side of Eq. (2-56) is multiplied by its complex conjugate the 

following expression is obtained: 

x (w) X (w) = H (w) F~ (w) H (w) F~ (w) 

which can be rewritten as 

If now we divide by T, the following expression is obtained: 

(2-56) 

( 2-57) 

From Eq. (2-55) it can be seen that 
2 

11=1 fw'l 
Ix (w)1 2 
. T - is the power spectral density 

function of x(t), and 
I' r \ I • T 1S the power spectral density function 

of F~ (t). Therefore the power spectral density function of the response 

is the power spectral density function of the forcing function multiplied 

by the square of the frequency transfer function IH (w)1 2. 

Therefore the mean square response can be written (using Eq. (2-55) and 



37 

and Eq. (2-57)) as follows: 

x2 (t) = 1 im 1 
T -+ 00 2T 

T 00 

J x 
2 

(t) d t = 2; J 1 H (w) 12 Fir (w) dw 
- T 0 

(2758) 

where 

IH (w)1 2 is the square.of the frequency transfer function and commonly 

known as the mechanical admittance function. 

F~(w) is the power spectral density function of F~ (t). 

Root mean sguare response for multi degree of freedom systems. 

In Section 2-3 it has been shown that the ith decoupled equation of motion 

has the form: 

.. 2 
q. + 28· w. q. + w· q," = C,. f(t) 

1 ", , 

The decoupled equation of motion can be solved in the frequency domain 

as an equivalent single degree of freedom system. The steady state 

solution of the ith generalized coordinate is: 

where 

C. 
qi(t) = -;-

wi 

w is frequency, 

1 - (w/w.)2 + i 28 w/w. , , 

w. is the ith natural frequency of the system, 
1 

(2-59) 

(2-60a) 

If the definition of mechanical admittance, Eq. (2-48) is now recalled, 

Eq. (2-60a) can be written in a more compact form as follows: 

(2-60b) 
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The response X(z,t) of a point z on the system at time t can be expressed 

in terms of the normal modes {<Pi} and the generalized coordinates qi(t), 

as previously defined in Eq. (2-4) as: 

x . (t) 
J 

N 
}: 

i = 1 
<p •• q. (t) 
'J 1 

(2-61) 

Moreover, the mean square value of a zero mean response can be written as: 

)(2 (z,t) lim 1 
T ->- (XI 2T 

T 
J X2 (z,t) dt 
-T 

To obtain an expression for the mean square response Eq. (2-60~ is 

substituted into Eq. (2-61) and then into Eq. (2-62) and the following 

result is obtained: 

1 im 1 
T -+ (Xl 2T 

T N 
J I 
- T i =1 

N 
I 

j=l 

The response can be simplified interchanging the order of integration 

and summation as follows: 

(2- 62) 

(2-63) 

N N 1 im 1 T H.(w) H.(w) 
(t))2dt X2(z,t) = I I q) . q) . C. C. 2T J 

_, __ ---.J ___ 
(F 1 

1 J 1 J T -~ on 2 2 r i =1 j=l -T (lli w· 
J 

(2-64) 

The integral in the last expression requires further consideration. The 

following approximation may be used to get a more treatable solution. 
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00 00 

£ 00 Hi (w) Hj (w) (F~ (t))2 dt ~ £~, 1Hi (w) I IHj (w) I (F~ (t))2 dt 

(2- 65) 

Thomson and Barton (1957) have shown that this approximation disregards 

phase relations, which will tend to result in a lower mean square value. 

Therefore, this is a conservative approximation. 

With the help of Eq. (2-54) the forcing function F~(t) is transformed 

into the frequency domain and the mean square response is written as: 

x2 (z,t) 
N N 
I I 

i=l j=l 
¢. <p. 

1 J 

c. C. 
1 J 5 ( ) 
2 2, ., Cu., cu. 

cu. cu. 1J 1 J 
1 J 

(2 - 66 ) 

where 

5 .. (cu., w.) is the response funct lon defi ned as: 
1 J 1 J 

5.. (w., cu.) = -2 fOOo I H l' (cu) I I H
J
. (w) I Fr' (w) dw 

1J 1 J :rr 
(2- 67) 

A general forcing load may also have spatial correlations as is the 

case of wind loads which have correlation functions which vary with the 

frequency and the size of the structure. To account for this variation 

of the forcing load, a correlation function IJ (w) I, is included in the 

forcing load. Now, the mean square value of the response function for a 

general type of forcing load may be written as: 

Ol: 

5 .. (lJJ., w.) 
lJ 1 J = f 

o 

(2- 68) 

where 
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IJ(w)1 is the correlation function which accounts for the spatial variation 

of the forcing load (IJ(w) I is discussed in Chapter 3). If now in Eq. 

(2-66) the similar terms and cross-terms are separated the mean square 

response can be written as: 

x2 N 2 2 S .. (w. ) N N S .. (w., (D.) 

(z,t) I q) • C. 11 1 + I I cp. cp.C.C. lJ 1 J = 4 i=l 1 1 i =1 j=l 1 J 1 J w.2 2 W. (D. 
1 1 J 

i 1 j (2-69) 

It is important to note the similarity between Eq. (2-69) and Eq. 

(2-26) (the combination of modes for deterministic analysis). The same 

observations made in Section 2-3 for evaluating and ignoring the conjri­

bution of the cross-terms may apply here. In addition, it is noted that 

the products IH.(w)1 IH.(w)1 for i ~ j are relatively small when compared 
1 J 

with the same products for i=j. Moreover, terms with i ~ j may be nega-

tive as well as positive depending on the product ~iCPj CiCj , while terms 

with i=j are always positive. The contribution of the cross product terms 

to the mean square response will therefore be small. Based on these ob-

servations, it can be concluded that the cross-terms of the response could 

be neglected. This approximation has been extensively used in random 

vibration analysis. The simplified (approximate) form of the mean square 

. response of the displacements may be expressed as: 

x2 (z,t) = 
N 
I cp.2 c. 2 

i=l 1 1 

s .. (w.) 
11 1 

4 
(~)i 

(2-70) 
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2-6 Peak Factors 

In engineering problems the maxima or peak values of the response 

are usually required. The techniques presented in Section 2-5 yield a 

mean square value of the response, but they do not allow a consideration 

of the maximum values. 

The peak factor, defined as the ratio of the maximum value of the 

response to the root mean square value, provides a tool for assessing 

the maximum values of the response. Davenport (1961), using a statistical 

approach, has presented a derivation of the peak factor as a function of 

the equivalent frequency of vibration and the time interval over which the 

record has been averaged, as noted below. 

The mean value of the peak factor, g, and its standard deviation, 

0g can be computed employing the first crossing probability. For a narrow 

band process, Davenport has proposed the following expressions: 

/2 ,Q,n v T + 0.577 g = 
/ 2 ,Q,n v T 

/6 
° g /2 ,Q,n v T 

where 

v is the equivalent or apparent frequency 

2 v 

(X) 

J S ((0) w2 dw 
o 

J 00 S (w) dw 
o 

T is the time interval over which the record has been averaged. 

(2-71) 

(2- 72) 

(2-73) 
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The range of values of 9 is generally between 2.5 to 4.5. In lieu 

of computing the first crossing probability, Vickery (1971) has suggested 

that 9 could be taken as 3.5 for most of the cases in design. 

2-7 The Random Vibration Techniques Applied to the Response Spectra. 

The same techniques used for deterministic analysis can be used for 

random vibration analysis if a suitable definition of a response spectrum 

function is attained. It will be shown that a response spectrum computed 

from random vibration techniques is very useful for practical applications. 

There are some loadings in engineering, such as wind, that can be best 

described by statistical means. However the random vibration theory re­

quires a great deal of computation and a rigorous mathematical treatment 

which makes random vibration techniques applicable only to a few highly 

idealized problems. The development of a response spectrum from random 

vibration will permit the treatment of more realistic problems including 

for example differences in the mass and stiffness distribution on the 

structure. 

In order to remain consistent with the deterministic philosophy of 

analysis, the response spectrum should be calculated for an equivalent 

single degree of freedom system with various natural frequencies of vibra­

tion and amounts of damping. For random vibration analysis two types of 

response spectra can be calculated: a root mean square response spectrum 

and a peak or maximum response spectrum. 

Root mean square response spectrum -- The root mean square response 

spectrum is given by the square root of the function Sii (w i )/wi
4, which 

represents the mean square value of the response. Such a function may be 

evaluated for various natural frequencies of vibration and amounts of 
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damping. The root mean response spectrum for a given value of frequency 

and damping is defined as: 

where 

w. , is the natural 

S .. (w, w,., B) 

" 

or resonant frequency of vibration 

(2- 74) 

S· , is the damping expressed as percent of critical S .. 
" 

(wi' w, S) is the 

power spectral density function of the response as defined in Eq. (2-68). 

Peak response spectrum -- The peak response spectrum can be calcu-

lated by multiplying the root mean square spectrum, times the peak factor 

9 given by Eq. (2-71). 

D. (w., B) x g 
1 , (2- 75) 

This definition of a maximum value for an equivalent single-degree-

of-freedom system is consistent with the philosophy of the response 

spectrum technique. 

With this convenient definition of response spectra the modal forces 

and base shears can be computed by employing the same equations derived 

in Sections 2-3 and 2-4 for deterministic analysis. 

The two spectra described in this section are calculated for wind 

loading in Chapter 4, using the power spectral density function of the 

wind velocity as input. 
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CHAPTER 3 

PHYSICAL PROPERTIES OF THE WIND 

3-1 Introduction 

In order to study the behavior of structures subjected to strong wind 

loading it is necessary to review the principal physical properties of 

winds. Strong winds constitute a turbulent phenomenon with statistical 

descriptors being used to study and quantify the wind flow. 

From an engineering point of view the most important properties of 

the wind are its velocity and intensity of turbulence, the velocity pressure 

relations and the distribution of pressures (associated with the wind) on 

the various faces of the structure. In addition, the aerodynamic properties 

of the structure also play an important role in the computation of the 

wind forces. Statistical formulations are used commonly for describing the 

fluctuation and intensity of the wind velocity, and some of the aerodynamic 

properties such as the correlation of pressures. 

3-2 Wind Velocity. 

The wind velocity is the most accepted parameter employed for classifying 

the various types of winds. Since the beginning of the century the measure-

ment of the wind velocity has been a topic of study and concern among 

practicing engineers. With the invention of modern anemometers many wind 

records have been taken at different geographic locations, terrain roughness 

conditions and varying altitudes. Unfortunately those records have been 

averaged over different intervals of time; and various types of anemometers, 

having different response properties, have been employed. 
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The difference in the time interval for averaging the wind velocity 

presents serious problems. The numerical value of the average wind velocity 

has large variations depending on the chosen interval used for averaging 

the wi nd ve 1 oc i ty . Drus t (1 960), and Deacon (1965), have presented pro­

cedures to normalize the wind velocity averaged over different time in-

t e r va 1 s to a un i form pe r i od 0 f 0 n e h 0 u r . I nth iss t u d y, as g e n era 11 y i s 

the case in wind engineering, the velocities are averaged over an interval 

of one hour. In other words and in order to be consistent with previous 

research all the computations are carried out in terms of hourly mean 

velocities. 

3-3 J~e Wi~~oundary Laye~. 

Moving along the surface of land or water wind develops a boundary 

layer in a manner similar to the boundary layer developed when a fluid 

flows over a rough plate. However, the thickness of the earth boundary 

layer is larger than those found in man-made aerodynamic bodies. In 

steady winds the thickness has been stated to be higher than 1000 ft. 

Statistical observations measured by Goddard (1935) and reported by 

Hoerner (1965) indicate that the boundary layer thickness (measured in 

feet) is on the order of 30 to 50 times the speed V (in ft/sec) above the 

layer. A.N.S.I. reconm~nds the use of 900 to 1500 ft depending on whether 

or not the wind is blowing in open country or in the center of a large city. 

Vertical Distribution of the Wind~~ociJy -- Inside the earth 

boundary layer the wind velocity is not constant. The wind velocity 

suffers some retardation near the ground because the terrain produces a 

friction drag which steadily decreases the wind velocity. 
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The effects of the friction drag decrease rapidly with the altitude 

through the thickness of the layer and become negligible outside of the 

bounda ry 1 ayer. 

The altitude where the wind velocity is independent of the terrain 

friction drag is called the geostrophic altitude. The thickness of the 

boundary layer, or geostrophic altitude, is a function of the friction 

drag and consequently a function of the terrain roughness. Values of the 

boundary layer thickness for various exposure conditions are presented 

in Table 2. Therefore the wind velocity is largely dependent on the con-

ditions of the terrain over which the wind flows. 

Two models are generally employed for describing the vertical dis-

tribution of the wind velocity, namely the power law and the logarithmic 

law distributions. 

The power law -- The power law is the model used in the majority of 

the present building codes such as A.N.S.I. and N.B.C.C. Early studies 

reported by Hoerner (1965) suggested that the wind velocity is proportional 

to the nth root of the altitude, n being somewhere between 2 to 7. This 

relationship may be stated generally as follows: 

where 

n 
V(z) 0: IZ 

z is the altitude. 

(3-1 ) 

Recently Davenport has concluded that, for engineering applications, 

the mean wind velocity is well represented by the following power law: 

V(z) (3-2) 
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where 

z is the altitude, 

zr is a reference altitude taken as 33 ft (10 m), 

Vr is the velocity at the reference altitude zr' 

a is a constant which depends on the conditions of the terrain. 

The conditions of the terrain (exposure of the structure) are usually 

divided into three broad categories, i.e., A.N.S.I. gives the following 

classification: 

Exposure A: Center of large cities and rough hilly terrain. 

Exposure B: Rough wooded country, towns and city outskirts. 

Exposure C: Flat open country, open flat coastal areas and 

grass land. 

The values of the constant a for exposures A, B, and C are given in 

Table 2. Also, in Fig. 4 a plot of Eq. (3-2) for various values of a and 

their corresponding geostrophic altitude is presented. 

Logarithmic law -- More recently, Simiu and Lozier (1975) on the 

basis of theoretical derivations and experimental measurements, have 

recommended the use of a logarithmic relationship for describing the 

vertical distribution of the wind velocity. The logarithmic distribution 

has the following form: 

V(z) 

where 

z-z 
= 2.5 V* Q,n ( __ d) 

z 
r 

V(z) is the mean wind velocity at height z, 

(3-3) 

zd is the zero plane displacement that should be taken as zero except for 

city centers where the smaller of 60 ft (20 m) or 0.75 h (where h is the 

average height of the surrounding area) must be taken. 
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Zo is the roughness length given in Table 3 for various terrain conditions. 

V* is the friction velocity defined as follows: 

V* = 

Z r is a reference a 1 ti tude usua 11y taken as 33 ft (10m), 

V(zr) is the wind velocity at the reference altitude. 

3-4 Velocity Pressure Relations. 

In engineering problems the momentum model is generally accepted as 

a good representation of the velocity pressure relation. The momentum 

model assumes that the pressure is proportional to the square of the 

velocity plus an added mass term. The pressure P(z) at a point p of 

elevation Z on the surface of a building immersed in an unsteady flow 

can be expressed as: 

P(Z) = P(z) + pi (z) 

P(Z) = 1/2 p Co CV(z) + VI (z))2 + Cm b(z) V (z,t) 

where 

p(z) is the mean pressure, 

PI(z) is the fluctuating pressure, 

V(z) is the mean velocity, 

VI (z) is the fluctuating velocity 

V(z,t) is the first time derivative of the velocity, 

Co is the drag coefficient, 

(3-4) 

(3-5) 
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p is the air density (0.00252 if the velocity is in ft/sec, or 0.00512 

if the velocity is in mph), 

Cm is the added mass coefficient, 

b(z) is the width of the structure. 

This expression of the momentum model for the velocity pressure re-

lationship is accurate under the assumption that the transverse building 

dimension is small compared to the scale of the energy containing the 

eddies of turbulence (Simiu and Lozier, 1975). In addition, the assumption 

that the pressure is proportional to the square of the velocity is reasonable 

for the range of velocities usually found in ordinary wind flow. The im-

portance of the added mass term has been analyzed by Vickery and Kao 

(1972), Kao (1971), Bearman (1972), and Petty (1972). All these authors, 

using wind tunnel tests, have concluded that for bluff bodies immersed in 

turbulent flow the added mass term is negligible. The velocity pressure 

relationship is therefore simpli ed to: 

P(z) = 1 /2 p C V2 ( z ) (1 + 2 V I (z) + (V I (z) 
2

) ) 
D V (z) V (z) 2 

(3-6) 

Further information from wind tunnel tests by Vickery and Kao (1972) 

has shown that the contribution of the quadratic ratio term (~1)2 is in 
V 

the order of 3 to 5 percent. A more recent study by Soize (1978) indicates 

that this term may account for as much as 10 to 25 percent of the total 

pressure for structures smaller than 150 ft tall (50 m) located in city 

exposure. However, the influence of the quadratic ratio term decreases as 

the terrain friction decreases and the height of the structure increases. 

In this study the influence of the quadratic term in the velocity pressure 

relationship will be neglected. 
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3-5 Distribution of Wind Pressure, Drag Coefficients. 

The drag coefficients and pressure distributions are quantities 

that must be determined experimentally. Drag coefficients are largely 

dependent on the shape and aerodynamic properties of the structure. 

There are two types of drag coefficients: (1) the over-all drag 

coefficient which affects the whole structure, and (2) the local drag 

coefficients which are related to specific parts or portions of the 

structure. 

A summary of drag coefficients for various types of structures are 

presented by Hoerner (1965), A.S.C.E. Wind Committee Report (1961) and 

Sachs (1972). Coefficients for the distribution of local pressures on 

roofs and walls can be found in A.N.S.I. and the A.S.C.E. Wind Committee 

Report (1961). 

Horizontal distribution of the wind pressure -- For rectangular 

structures N.B.C.C. and A.N.S.I. have recommended the use of a drag 

coefficient of 0.80 and a lift coefficient of 0.50. In addition, A.N.S.I. 

recommends a lift coefficient of 0.60 for narrow structures in which the 

ratio height-width (h/b) or height-length (hId) is larger than 2.5. For 

straight wind normal to the face of the structure a typical horizontal 

distribution of the wind velocity is presented in Fig. 5. It can be seen 

that at the windward face the pressures are larger in the center of the 

structure than in the corners of the building. At the leeward face, the 

pressures (actually suction or negative pressure) are more uniform and 

of smaller magnitude than those occurring in the windward face. At the 

lateral sides of the structure high pressures occur close to the windward 

edge, decreasing steadily to a minimum close to the leeward face of the 

structure. 
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Generally, in the computation of the along wind response of a structure, 

the variations of the horizontal distribution of wind pressures may be 

ignored and an equivalent uniform design value can be used. However, special 

attention should be given to the design of windows and cladding, principally 

close to the center and corners of the structure. Drag coefficients for 

the design of parts or portions of a building are given by A.N.S.I. and 

N.B.C.C. 

Vertical distribution of pressure -- The vertical distribution of 

wind pressure on the windward face of the structure is proportional to 

the distribution of wind velocity which has been defined by Eq. (3-2). 

The mean wind pressure can be assumed proportional to the square of the wind 

velocity for the range of velocities considered in this study. Therefore 

the vertical distribution of mean wind pressure in the windward face of 

the structure is given by the following expression: 

p(z) = (~) 
z 

r 

20. 

The vertical distribution of the fluctuating pressure is: 

pi (z) 

In the leeward fac~·of the structure suction rather than pressure 

(3-7a) 

(3-7b) 

occurs. The distribution of wind suction is somewhat more uniform than 

the distribution of wind pressure. It is recommended by N.B.C.C. and 

A.N.S.I. that a uniform distribution can be used. This distribution has 

a value equal to the pressure computed at the mid height of the structure 

employing the exponential law described by Eqs. (3-7a) and (3-7b). 
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A summary of the pressure and suction coefficients discussed in the 

preceding paragraphs is presented in Table 4 and illustrated in Fig. 6. 

These distributions of pressures will be used in Chapter 5 to compute the 

participation factors associated with wind loading. 

3-6 Statistical Description of the Wind Turbulence. 

Concepts of isotropic turbulence have been used to study and quantify 

wind forces. Therefore winds have been customarily described using 

statistical formulations. 

The wind velocity is generally divided into a mean component and a 

fluctuating component having a zero mean. Thus, the wind velocity will 

produce two separate effects, one is a static effect associated with the 

mean component, and the other is a dynamic effect associated with the 

fluctuating component. Since the fluctuating effect has a zero mean, it 

is characterized by the second statistical descriptor, namely, the variance. 

The variance for a zero mean process is equal to the mean square value, 

i.e. the statistical treatment of the fluctuating component will yield the 

standard deviation of the process. 

The fluctuating component of the wind is generally analyzed by employ­

ing random vibration techniques. Therefore statistical functions that 

characterize the fluctuating wind velocity must be developed. As has been 

discussed in Chapter 2, Section 2-5, those are the power spectral and the 

correlation functions. 

Wind Power Spectral Density Function -- The power spectral density 

function is generally employed for representing the energy content of the 
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wind fluctuation associated with a specific frequency. One of the first 

efforts to quantify the fluctuating component of the wind velocity was 

reported by Van der Hoven (1957), as cited by Davenport (1961). With 

the data obtained at Brookhaven, N.Y., over a large number of years, 

Van der Hoven was able to present the energy content of the wind turbu-

lence over a wide range of frequencies. This spectrum is presented in 

Fig. 7. 

For strong winds such as those associated with a wind storm, the wind 

velocity should be averaged over a shorter period of time. For those cases 

Davenport (1961) has proposed an energy spectrum in which the mean square 

values of the energy of the wind are given as a function of the wave length. 

Davenport's spectrum is defined as follows: 

f S (f) 
v 

--'--:=--- = 

C -V2 (z) 
t 

4X 

where 

f is the frequency in hertz, 

Sv (f) is the spectral energy at frequency f in ft/sec Hz, 

x = 4000 f 

-V (z) 

is the dimensionless terrain frictional drag coefficient. 

(3-8) 

Ct has a range of values between 0.0005 for wind flow on sea surface 

to 0.050 for flow over an urban area. Values of the coefficient Ct , for 

various terrain conditions, are listed in Table 4. 

Davenport's spectrum covers a range of wave lengths from 50 to 5000 

ft, but can be extrapolated with some reliability for shorter wave lengths 
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(Sachs, 1972). A plot of Davenport's spectrum is shown in Fig. 8, it can 

be seen that the spectrum has a peak at a wave length of 2000 ft., showing 

that there is a high energy concentration in the low frequency range. 

For a mean wind speed of 100 ft/sec (68 mph or 33 m/sec) the spectrum 

covers a frequency band between 0.02 and 2 hertz which includes the funda-

mental frequency of most structures. For this specific velocity, the 

spectrum has a peak at a frequency of 0.05 hertz. 

Although the wind flow is mainly horizontal near the ground, in the 

upper regions the boundary layer may have vertical components of considerable 

value. A spectrum of vertical gustiness, which is strongly dependent on 

the height above the ground, has been proposed by Panofsky and McCorning 

(1960). The spectrum is defined as follows: 

where 

f Svv (f) 

C \[2 (z) 
t 

= 

..... 

6 F 

..... 

F is the reduced frequency f x zIV(z) , 

Svv is the vertical spectral energy at frequency f. 

(3-9) 

The vertical spectrum is important only for structures having a vertical 

degree of freedom such as suspension bridges and suspended cables. 

More recently~ Simiu (1973) has proposed a spectrum which accounts 

both the horizontal and the vertical uctuations of the wind velocity. 

Simiu's spectrum is expressed as follows: 

f ~v (f) 

C
t 

\[2 (z) 
= 

...., 

200 f (3-10) 
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where 

f 

The various representations of the wind power spectral density function 

discussed in this section are employed in Chapter 4 for computing the dynamic 

response associated with the fluctuating component of the wind flow. 

Correlation of Wind Pressure. -- A wind gust should be at least as 

large as the structure for full effectiveness. The turbulent flow contains 

gusts of various sizes, many of these smaller in size than the structure, 

and therefore not completely effective over the whole area. 

To compute the overall response of a structure a value of the equivalent 

pressure acting over the complete area should be estimated. Obviously, to 

assume that the equivalent pressure is equal to the largest peak pressure is 

a safe assumption, however it may yield results that are unrealistically 

high. Correlation functions are needed for the computation of the effective 

pressure coefficients described in Section 4-3 and Appendix A. 

One of the principal parameters used to quantify the effective pressure 

is the size of the structure. Early work in aeronautical engineering suggested 

that the effective pressure decreases with an increase in the size of the 

structure. Another way to quantify the relative intensity of the pressure 

peaks is to measure the separation that exists between peaks of high in­

tensity. 

For some time, in aeronautical and wind engineering, the correlation 

of pressures has been used to describe the average or equivalent effect 

of the various pressure gusts acting on a structure. Generally, the 
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correlation of pressures has been expressed in terms of the coherence 

functions (defined as the square root of the absolute value of the corre-

lation). Various authors in aeronautical engineering and, more recently, 

Davenport in wind engineering have suggested that the coherence function 

for wind pressure is an exponential function which decreases with the fre-

quency and separation of the wind flow and the size of the structure. Usually 

it is assumed that the coherence can be represented as an exponential function 
ft\ 
V 

of the reduced frequency quantity, 

where 

f is the frequency, 

~ is the separation, 

V is the mean wind velocity. 

Therefore the coherence function in the vertical direction can be 

written as follows: 

Vertical Coherence = exp {- C z 
( ft\) } 

V 

The quantity Cz is a constant that has to be determined experimentally. 

A plot of the vertical coherence function is presented in Fig. 9. 

Similarly the coherence function in the horizontal direction is written 

as follows: 

6 
Horizontal Coherence = exp {-Cy (~)} 

V 
(3-12) 

Davenport has suggested that the horizontal and vertical correlations of 

wind pressure could be written as the square of the coherence functions as 

follows: 



Vertical Correlation 

Horizontal Correlation 

exp { 
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-2 C z } (3-l3a) 

(3-l3b) 
V 

After extensive wind tunnel testing, Davenport has recon@ended the 

use of the values Cz = 10 and Cy = 16. 

In order to obtain the overall effect of the wind pressure it is 

necessary to combine the vertical and horizontal correlation functions. 

Davenport has proposed that such combination can be attained as follows: 

R 
u 

-2 f [C 2 I Z - Z I 2 + C2 I y _ y I Jl / 2 

{ z 1 2 Y 1 2 } exp _. ------ (3-14) 

Equation (3-14) with values of Cz = 10 and Cy = 16 will be used in 

Chapter 4 for computing the effective pressures acting on a structure. 

Cross-correlation of Pressures -- In order to provide a complete picture 

of present knowledge in wind engineering, the cross correlation of pressures 

between the windward and leeward faces of the structure is presented. How-

ever this function will not be used in the present study for the computation 

of wind response spectrum. For deep structures, the distance between the 

windward and the leeward faces could be large. In those cases) the windward 

pressure and the leeward suction are not in phase. Therefore a reduction in 

the dynamic response of the structure can be expected. 

It is easy to see that as the size of the structure increases (especially 

the distance between the windward and leeward faces) the cross-correlation of 

pressures acting on the opposite faces of the structure should decrease. 
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This effect will introduce a reduction in the overall response of the 

structure. Simiu and Lozier (1975) have suggested that, for regular 

rectangular structures, this reduction due the cross-correlation can be 

written as follows: 

and ~ is defined as 

~ = 3.85 f b< 

V 

(3-15) 

(3-16) 

and ~ is the smallest of 4h, 4b, or 4d (being h, band d the dimensions 

of the building). 

In addition, for computing the mean square response Simiu and Lozier 

(1975) have recommended the use of this reduction function only in the 

high frequency range, and to take Nu = 1 for frequencies smaller than - 0.9 

of the natural frequency of vibration. 

A simpler procedure to account for the cross-correlation of pressures, 

and also proposed by Simiu and Lozier (1975), is to reduce the equivalent 

pressure by the following factor: 

(C2 2N C C + C2
L

)1/2 D + u D l 
(3-17) 

This reduction coefficient (RN) can have values as low as 0.71 when 

Co = CL and Nu = 0, or be equal to one if Nu = 1. In most cases the co­

efficientRN will decrease the dynamic pressure of the structure by as much 

as 10 to 20 percent. The cross correlation of pressures, Eq. (3-15) can 
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be included in the computation of the response. However if the simplified 

form, Eq. (3-17) is employed, it could be applied directly in the computation 

of the participation factors. 

3-7 Response Spectrum Formulation for Wind Loading. 

In order to obtain the representation of the wind dynamic problems as 

a combination of single degree of freedom systems, the response spectrum 

procedure could be employed. This deterministic representation may be 

achieved in the following way: 

The pressure as defined in Eq. (3-6) is written as follows: 

p ( z ) 1 /2 p CD \[2 ( z) + p Co V (z) V I (y, z, t ) (3-18) 

It can be seen that the first term is a static force, and the second repre­

sents u dynamic force. Therefore the governing equation of motion (Eq. (2..;:J)) 

can be written as follows: 

[m] {x} + [c] {~} + [k] {x} = f + Fa (3-19) 

where 

b 
C V2 F= J 1/2 p (z) dy 

0 
D 

b 
Fi = J p CD V (z) VI (y, z, t) dy 

0 

Moreover if the horizontal distribution of the wind pressure is assumed to 

be uniform the forces can be written as follows: 
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F ::: 1 /2 p b CD \/-2 (z) (3-20a) 

F I = p b CD v (z) V I (y, z, t) (3-20b) 

Now the distributed forces can be discretized at the nodal points 

of the structure. In this way we obtain the following force vectors: 

F: {F} (3-2la) 

F I - P V 0 {F I } f (y, z, t) 

where 

V is a reference value of velocity, o 

f(y, z, t) is a function of the correlation of wind pressure. 

Therefore Eq. (3-19) can be divided into two equations 

[k] {x} = (f} 

[m] {~} + [c] {x} + [k] {x} p Vo {F'} f(y, z, t) 

(3-2lb) 

(3-22a) 

(3-22b) 

The solution of Eq. (3-22a) is obtained from statics. However, the 

solution of Eq. (3-22b) may be solved in terms of the generalized coordinates 

(as discussed in Chapter 2) as follows: 

.0 .. 2 
qi + 2CDS q + W q = Ci P V 0 f (y, Z, t) (3-23) 

where 

{¢;}T {F'} 
C. = ---;;;T,.....------

1 {¢i} [m] {¢i} 
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Finally the solution of the fluctuating component of the wind loading can 

be written as a combination of the modal contributions as follows: 

N 
{x} = L 

i=l 

Pi eff 
2 

w· 
1 

The quantity Peff will be computed in the following chapter as a response 

spectrum of effective pressures. 
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CHAPTER 4 

WIND RESPONSE SPECTRA 

4-1 Introduction. 

In the last fifteen years there has been an increasing interest in 

the study of the commonality of earthquake and wind analysis procedures. 

One of the principal points addressed by various investigators has been 

the need to develop response spectra for wind loading. The ability to 

develop response spectra for wind excitation is attractive from two stand­

points. First, it would provide a convenient basis for comparing, measuring, 

and expressing the wind loading. Second, it would enable one to interpret 

and understand the behavior of structures subjected to wind loading by 

using, in part, the experience and knowledge accumulated through more than 

30 years of research in earthquake and wind engineering. In addition, a 

design response spectrum for wind loading makes it possible to develop a 

common analysis procedure for earthquake and wind loadings. Such a pro­

cedure may in certain situations, considerably simplify the analysis and de­

sign of structures especially those built in areas where both natural 

hazards (earthquake and strong wind) are likely to occur and are of signifi­

cance. 

In this chapter, during the development of wind response spectra, the 

physical meaning of the quantities involved is explained and the relationships 

to their common parameters occurring in earthquake engineering are presented. 

It is noted that wind response spectrum is divided into two parts, a mean 

component and a fluctuating component. The fluctuating component of wind 

response spectra is computed using random vibration techniques. Therefore 
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these calculations are carried out in the frequency domain as discussed in 

Chapter 2. 

4-2 Basis for Wind Response Spectra. 

For the computation of wind response spectra, the pressures are 

divided into two components. One is a mean component which is associated 

with the mean wind velocity. The other is a fluctuating component which 

accounts for the gusting variations of the wind velocity over the mean 

value. Normally the mean component is applied statically to the structure, 

and the fluctuating component is treated as a dynamic load. The total 

solution is given by the superposition of both the mean and the fluctuating 

components. 

The purpose of wind spectra is to represent the effects of wind 

fluctuating loading in a clear and practical manner common in philosophy, 

but not parallel numerically, to that used for earthquake base excitation. 

In the most direct sense wind response spectra can be employed to present 

the effects of wind loading as effective or amplified pressures. 

To obtain a spectral representation of the wind loading a procedure 

common in concept to the earthquake response spectra is developed in this 

section. Such a procedure should satisfy the following conditions: 

1) The procedure should be accurate over a large range of fre­

quencies and relatively high values of damping (2 to 10 percent 

of critical). 

2) The procedure should be clearly stated and practical. Con­

sequently, it should be developed through the use of a few principal 

parameters that in turn can be presented in graphical, tabular or 

analytical form. 
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3) The physical meaning of the quantities involved should be re-

tained during the mathematical treatment of the problem. 

4) The resulting spectra should be presented, or have the potential 

of representation, in a form similar to the tripartite logarithmic 

plot employed for the graphical description of deterministic 

problems. 

Historical background -- In one of the earliest papers addressed to 

wind spectral representation Newmark (1966) suggested that the response of 

structures subjected to wind excitation could be treated in a manner similar 

to earthquake analysis if the corresponding participation factors and re­

sponse spectra could be specified. Newmark recommended that the partici-

pation factors for general loading could be calculated employing the follow­

ing expression (previously discussed in Chapter 2 Eq. (2-19a)): 

(4-1 ) 

For approximating the mean component of the response spectrum, Newmark 

recommended the use of a long sinusoidal pulse with a period of 30 seconds 

to 1 Ininute. To account for the fluctuating component of the wind velocity 

he suggested the use of a smoothed response spectrum of a typical wide-

band earthquake having the following peak ground motion values 19, 48 in/sec 

and 36 in, shifted down in the frequency scale by a factor of about 10 to 

15 in order to account for the fact that the large energy contribution of 

the wind fluctuation is in the low frequency range. The response spectrum -

as proposed by Newmark is shown in Fig. 10. In this example a mean pressure 
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df 10 psf is presented as Pl and an unamplified fluctuating pressure of 15 

psf as P2" The amplification factors are typical values for a two percent 

of damping earthquake response spectrum. As will be apparent later in this 

chapter, the general shape of the spectrum is quite accurate. However, 

no specific directions for the computation of the response spectrum are 

presented. 

As illustrated in Fig. 10, the quantities employed for drawing the 

response spectrum are pressure and pseudo impulse, which are acceleration 

and velocity multiplied by the mass and divided by a unit of area. 

More recently, based on the study of pressure time data and experience 

Newmark and Hall (1968) presented another sketch of a possible response 

spectrum for wind pressures. It is pointed out that the construction of 

a response spectrum is made possible by employing the relations that exist 

between the forcing loading and the intertia force (mass times acceleration). 

This spectrum is shown in Fig. 11; again the shape of the spectrum is 

correct but no rules for the computation of such spectrum are presented. 

Basis for the computation of response spectra -- The response spectrum 

has known behavior at the very high and very low frequencies. For earthquake 

base excitation, the amplified ordinates of the spectrum should converge 

to the maximum ground acceleration for high frequencies and to maximum 

ground displacement in the low frequency range. In general, in the high 

frequency range the system behaves as a rigid body and the force (mass 

times acceleration) becomes a static force. In the low frequency range 

(when the frequency goes to zero) the system presents a rigid body motion 

degree of freedom. This relationship is illustrated in Fig. 12. 
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Force response spectra as can be expected for wind loading would con­

verge to the unamplified force or pressure in the high frequency range. 

However, in the low frequency range as a result of the law of conservation 

of lIIomentum the aillplified line of the spectrulII should converge to the un­

amplified illlpulse at zero frequency. 

COlllputation of response spectra can be sUHlIlIarized as (1) evaluation of 

the spectral base lines, (2) computation of a set of amplification factors 

for the various regions of the spectra, and (3) plotting the response 

spectra. For wind loading, these steps are discussed in the following para­

graphs. 

Ev~Juat10n of the base line -- A base line of unamplified pressures 

can be computed as the static response of a rigid system. Hence by 

evaluating the response of a system having a large freqency the value of 

the base line in the high frequency range can be obtained. This terminal, 

or base line pressure, is the line pressure 1/2 pV 2 multiplied by an 

effective pressure coefficient (based on geometry and exposure generally) 

which accounts for the reduction in wind force associated with the differ­

ences in correlation of the fluctuating wind flow. 

Computation of the amplification factors -- A set of amplification 

factors can be computed for the various regions of the spectra. For wind 

loading the amplification factors are computed in the acceleration control 

region (pressure), and in the velocity control region. In order to maintain 

the meaning of the amplification factor as a function of frequency and 

damping, and independent of the geometry, the corre'lation of pressures is 

not included in the computation of the amplification factors. In other words 

the amplification factors are computed for a perfectly correlated wind flow. 
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Plotting wind response ~~ct~~ -- To draw wind response spectra, New­

mark (1966) and Newmark and Hall (1968) have recommended the use of the 

quantities pressure and pseudo impulse. Such parameters are related to 

the generally used acceleration and velocity by multiplying the latter by 

a unit mass and dividing by a unit of area. Thus the quantities plotted 

are pressure in psf and pseudo impulse per unit of area psf x sec. Note 

then pseudo impulse per unit area has the units of pressure divided by 

frequency. Moreover if the spectrum is plotted for a unit mass then the 

quantities pressure and pseudo velocity can be used. 

The familiar tripartite logarithmic paper can be employed to plot 

wind response spectra. However, the tripartite paper prepared for the 

representation of earthquake response spectra must have the scales modified. 

In order to be consistent with the scales usually found in tripartite paper 

for seismic effects, one must plot either pressure divided by the accelera­

tion of gravity (g) and pseudo impulse, or pressure and pseudo impulse 

multiplied by the acceleration of gravity (g). In both cases special care 

should be taken with the units and the frequency scale should be adjusted 

accordingly. 

It also is possible to develop a new tripartite paper tailored to 

satisfy wind response relationships. These scales will represent the 

relations P = wYand also P = 1/2 p y2. The examples presented in 

Section 4-5 are plotted in this lipressure-velocity-frequency" scale. 

4-3 Evaluation of Wind Response Spectra. 

Although the idea of wind response spectra is similar to that used in 

earthquake engineering, wind loading presents two additional problems. 
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First, the loading is divided into a mean and a fluctuating component; 

and second, the computations associated with the fluctuating component 

should include the correlation functions presented in Chapter 3. The 

numerical procedures employed for the evaluation of the various parameters 

occurring in wind response spectra are discussed in Appendix A. 

Mean response spectra -- The mean response spectra is associated with 

the mean wind velocity. Moreover, since the time history of the mean wind 

velocity has been defined to yield an almost static behavior, the mean com­

ponent of the response spectra can be assumed to be a static force. Hence, 

it has an amplification factor equal to one. In addition, the mean wind 

flow is assumed to be perfectly correlated. Thus, no reduction in the mean 

force associated with the correlation functions should be expected. 

Fluctuating wind spectra -- As has been described in Chapter 3, pressures 

associated with gusts which are large enough to envelop the complete structure 

will produce significant dynamic effects in the structure. On the other 

hand, short gusts can produce high localized pressures which are not as 

important in the overall behavior of the structure as they are for the de­

sign of parts or portions of the buildings. To account for the size of the 

gusts and their relative importance in the overall dynamic response, a 

correlation function for wind pressure, as defined in Chapter 3, is 

necessary_ 

Commonly, the response spectrum is defined as the response of a single 

degree of freedom damped system. The computation is carried out for 

oscillators having various values of natural frequency of vibration and 

percent of critical damping. 
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Since the fluctuating component of the wind force has been described 

by employing a statistical formulation, its response spectrum should be 

computed using the random vibration techniques presented in Chapter 2. 

Therefore, the mean square value of the response spectrum as defined by 

Eq. (2-68) is expressed as follows: 

where 

_ 1 
S(w) - 2TI 

00 

f 
o 

IJ (w)1 2 is the correlation function for wind pressures, 

IH (w)1 2 is the frequency transfer function, 

Sv (w) is the input power spectral function for wind. 

IH (w)1 2 has been derived in Chapter 2, and /J (w)12 and Sy (w) 

are discussed in Chapter 3. 

(4-2) 

As discussed in the previous section, three steps are required for 

evaluating wind response spectra. These steps are (1) estimation of the 

base line, (2) evaluation of the amplification factors and (3) plotting of 

the response spectra. The first two points are addressed in this section, 

however the last will be discussed in Section 4-5. The theory behind the 

evaluation procedure and the numerical techniques required are discussed 

in Appendix A. 

Estimation of the base line -- For wind loading a general procedure 

for evaluating the force or acceleration base line is based on the computation 

of the response of the forcing load on a rigid system (zero period). For 

such systems the amplification associated with the dynamic properties of 

the system is equal to one. For a random vibration problem, which is computed 
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in the frequency domain, the base line could be estimated by setting the 

function /H (w)/2 in Eq. (4-2) equal to one (this means a rigid system). 

In this case, Eq. (4-2) is simplified into the following expression: 

where 

1 S =­r 2n 

00 

J 
o 

/J 2 (w) / Sv (w) dw (4-3) 

Sr is the mean square pressure response (pressure that leads to a given 

response) of a rigid system. 

The value of the base line is then obtained by computing the square 

root of Eq. (4-3) as follows: 

(4-4) 

Numerical integration techniques are required for the evaluation of 

Eq. (4-4). For the case of wind loading the spectral base line is a 

function of the shape of the structure and the correlation of wind pressures. 

The results of the numerical evaluation of Eq. (4-4), employing the expression 

for the correlation of pressures discussed in Chapter 3, Eq. (3-14)9 are 

presented in Figs. 13 and 14 and Appendix A. The coefficients presented in 

these Figures should be interpreted as the fraction of the line pressure 

1/2 p V2 associated with the fluctuating component of the wind velocity 

that will be felt by a rigid body system. In other words, the product of 

the line pressure times the effective pressure coefficients will give an 

estimate of the effective unamplified pressure. This concept is similar 

to the idea of effective values employed in computing the base lines for 

earthquake response spectra. 
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Amplification factors -- Generally for vibration problems, the ampli­

fication factors are defined as the ratio of the maximum response to the 

spectral base line. 

In deterministic analysis the amplification factors for a representative 

sample of records are computed. Then, employing statistical techniques, a 

mean value and a standard deviation of the amplification factors are usually 

specified. In the case of random vibration analysis, the power spectral 

density function is usually employed to reflect the "average value ll (in 

the mean square sense) of a sample of records. Therefore the resulting 

values of the amplification factors have already been averaged and no 

further statistical treatment is required. The amplification factors 

associated with the wind gust fluctuations can be evaluated for a perfectly 

correlated system. A perfectly correlated system is chosen in order to 

maintain the definition of amplification factor as a quantity independent 

of the geometrical configuration of the loading. Otherwise it will be im­

possible to compute an amplification factor applicable to all types of 

structures, regardless of their geometrical and material properties. In 

other words, the amplification factor is kept only as a function of the 

dynamic properties of the structure. This definition of amplification 

factor is consistent with that currently employed in earthquake engineering. 

In order to obtain an expression for the amplification factors the 

correlation function IJ (w)1 2 in Eq. (4-2) is set equal to one (this means 

a perfectly correlated system). Therefore the mean square response of a 

perfectly correlated zero mean random procedure can be evaluated from the 

following expression: 



where 

( 
_ 1 

Spc w) - 21T f 
o 
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00 

IH (w)1 2 Sv (w) dw (4-5) 

Spc (w) is the mean square response for a perfectly correlated system. 

For computing the amplification factors, Eq. (4-5) is divided by 

its terminal value. The terminal value is the value of Eq. (4-5) when 

the frequency approaches infinity. In computing the terminal value of 

Eq. (4-5) note that the frequency transfer function IH (w)1 2 (see Chapter 2) 

is equal to 1.0 for wequal to infinity. Thus the amplification factor can 

be computed from the following expression: 

Amp (w) = 

f Sv (w) dw 
o 

1/2 

(4-6) 

Amplification factors for Davenport's power spectral representation of 

the wind fluctuation, Eq. (3-8), with a wind velocity of 100 ft /sec, 

and various values of damping are presented in Fig. 15. It can be seen that 

a peak occurs at a frequency of 0.04 hertz (T = 25 sec). At very low 

values of frequency (smaller than 0.04 hertz) the amplification factor 

decays to values smaller than one. In the range of frequencies between 

0.04 hertz to 8 hertz the amplification factor decays to roughly one third 

of the maximum value. For frequencies greater than 8 hertz, the amplifica­

tion factor decays slowly, approaching one at a very high value of frequency. 

The spectrum for wind loading is a function of the wind velocity, fre-

quency and length of gusts. For this reason it is possible to represent 

the amplification factors for any value of wind velocity as a function of 
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the wave length (Vel/f in ft). In this form a single curve for each value 

of damping will cover the complete range of wind velocities. This spectrum 

of amplification factors, covering a large range of wind velocities is 

presented in Fig. 16. The spectrum reaches a maximum amplification at a 

wave length of 1500 to 2000 ft. For wave lengths smaller than 1500 ft 

the amplification decays in an almost linear manner (in a log-log plot) 

suggesting that the amplification can be expressed as an equation of the 

form: 

where 

-0 
Amplification = A (V~l) 

A and 0 are constants to be evaluated. 

(4-7) 

This exponential representation of the amplification is evaluated in 

section 4-6. 

At the very low range of wave lengths the amplification converges to 

a value of one, independent of the amount of damping present in the system. 

These low values of the wave length represent either a low wind velocity 

or a high frequency rigid system. 

It is important to note that the maximum value of the amplification 

factors for wind fluctuation, as presented in Table 5, are numerically 

similar to those proposed by Newmark and Hall (1978) for horizontal ground 

motion earthquake response spectrum. Those values are listed in Table 6. 

In Fig. 17 earthquake and wind maximum amplification factors are presented 

as a function of damping. For the purpose of comparison four curves are 

presented in Fig. 17. These are the mean and the mean plus one standard 
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deviation acceleration amplification factors for earthquakes, and the wind 

pressure amplification factors computed employing the representations for 

the fluctuating wind velocity proposed by Davenport (1963) and Simiu (1970). 

It can be seen in Fig. 17 that the amplification factors obtained 

from Davenport's representation of the wind fluctuation are similar to the 

mean plus one standard deviation acceleration amplification factors for 

earthquake response spectra. The amplification factors obtained from Simiu's 

representation of the wind fluctuation have numerical values that are 

smaller than those predicted by Davenport's spectrum and are somehwere be­

tween the mean and the mean plus one standard deviation earthquake accelera­

tion amplification factors. 

In Fig. 18 it is shown that the wind pressure maximum amplification 

factors can be represented with an equation of the form: 

Amp1ificationmax 

where 

S is the percent of critical damping, 

A = 0.25 for Davenport1s representation, 

A = 0.17 for Simiu's representation. 

(4-8) 

This representation of the maximum amplification follows the form of 

the narrow band approximation employed by various investigators in wind 

engineering for computing gust factors. 

Similarly, for earthquake engineering, empirical equations for the 

amplification factors have been developed as a function of critical damping. 

A set of equations proposed by Newmark and Hall (1978) are presented in 

Table 7" 
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4-4 Special Considerations for Wind Response Spectra. 

Influence of the correlation functions -- The product of the amplifi-

cation factor times the effective pressure base line is in most cases an 

upper bound approximation of the response, but it may become extremely 

high especially for low damped systems. In such cases a correction factor 

is necessary (See Appendix A where the steps for the evaluation of the re­

sponse spectra are described). For high frequency systems, the amplification 

converges to one and the behavior of the structure is essentially static. In 

this range of high frequencies the product of the amplification times the 

effective pressure, as discussed in Appendix A, is a good representation 

of the response. However, for the low and middle range of frequencies this 

product could be unreasonably high and a correction factor should be applied. 

The correction is necessary because the spectrum as given by Eq. (4-2) is a 

coupled function of frequency and geometry. Therefore the uncoupled solution 

(base line times amplification) is accurate only in the high frequency range. 

The mean square of the correction factor can be evaluated by dividing the 

response integral Eq. (4-2) by the amplification factor Eq. (4-6) and the 

effective pressure coefficient Eq. (4-4). The correction factor is then 

expressed as follows: 

00 

S ( w ) J S v ( w ) dw 

S c (w) = ---::",s--,:~:-----(,.......-,:-)---­
r pc ,w 

(4-9a) 

The correction function can be evaluated by taking the square root of 

Eq. (4-9a). 

Correction = I S 
c 

(w) (4-9b) 
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The numerical evaluation of Eq. (4-9b) is presented in Fig. 19 for 

1, 2 and 5 percent of critical damping. The correction factor is plotted 

as a function of the reduced frequency fh/V. It can be seen that this 

factor is a coupled function of the dynamic and the geometric parameters 

of the structure. There are two additional points related to the 

correction function that should be discussed: 

(1) The spectrum was normalized in such a way that the product 

of base line times amplification factor is accurate only in the 

high frequency range. Therefore the correction function should 

approach one for a large value of fh/V, but does not have to 

converge to one in the low range of fh/V. 

(2) The function has two inflection points that could be used 

as control points for the construction of the pressure line of the 

spectrum. Equations for computing those points are presented 

in Table 11. The procedure described in this chapter for the 

computation of wind response spectrum is presented graphically 

in Fig. 20 and in the form of a flow chart in Fig. 21. 

The percentile level ~- In dynamic problems such as earthquake and 

wind the loading is specified by statistical means. Therefore tools 

such as the interval of confidence (percentile) are necessary to define 

the range of validity over which the values are applicable. 

The percentile levels are g~nerally defined by the number of standard 

deviations required to attain the desired probability level. For a normal 

process the mean represents a value which is larger than 50 percent and 

smaller than 50 percent of the sampled population. On the other hand the 

mean plus one standard deviation will guarantee that 81.4 percent of the 

samples will be smaller than the mean plus 0 value. 
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The computation and the meaning of the standard deviation varies for 

deterministic and probabilistic problems. There is a difference between 

the probability level in deterministic analysis and the number of standard 

deviations required in a random vibration problem. In a zero mean random 

process only the value of the standard deviation, namely the root mean 

square, can be assessed. However the response spectrum technique usually 

requires a maximum value of the response which should be calculated by 

employing additional statistical procedures. 

For earthquake response spectra the percentile level is employed to 

select the interval of confidence of the amplification factors. Also, () 

levels commonly are used to assess the values of the base lines when records 

are not available. 

In wind response spectra, the (} level is required for the computation 

of the fluctuating component. Since wind is treated as a zero mean random 

process only an average value (in the mean square sense) can be computed. 

This average, for the fluctuating response, covers both the base lines and 

the amplification factors. 

For random vibration problems the maximum should be assessed from the 

root mean square value. The evaluation of the maximum value of the response 

for a random vibration problem was first treated by Rice (1945) in electrical 

engineering. In order to evaluate the maximum value of a random vibration 

response, Rice developed the concept of crossing a certain level line with 

a positive slope. More details about this procedure can be found in Rice 

(1945), Clough and Penzien (1975), and Crandall and Mark (1963). More 

recently, Davenport (1961) applied the concept to wind engineering and 

derived an expression for the so called peak factors which have been dis­

cussed in Section 2-6. 
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For wind, the equation of the peak factors, Eq. (2-71) yields values 

which in most cases are between 3 to 4. Vickery (1971) has proposed the 

use of a universal peak factor equal to 3.5. The use of a single value for 

the peak factor simplifies the computation of the response spectra. In 

this study a peak factor equal to 3.5 is used in the complete range of 

frequencies. 

Moreover, since the peak factors apply to the computation of the com­

plete fluctuating response the 3.5 coefficient can be included either in the 

amplification factors or in the effective pressure coefficients. In this 

study it was found convenient to include the peak factor in the computation 

of the effective pressure coefficients. 

Comparison of procedures employed for computing earthquake and wind 

response spectrum -- A comparison of the procedure generally employed for 

computing earthquake response spectrum and the procedure proposed in this 

study for evaluating wind response spectrum is illustrated in g. 22. 

this flow chart for the two loadings we start with a selected sample of 

time histories. The left branch which represents the earthquake design 

response spectrum computation starts with a single degree of freedom 

oscillator where the response values for a large number of frequencies 

are computed. This operation also transforms the response to the fre-

quency domain. The next step is to compute the maximum value for each 

frequency, in this manner a set of maximum response functions corresponding 

to the input time histories is obtained. The following step involves the 

smoothing of each of the response functions for the various amplification 

regions. Finally the smoothed response functions are normalized with their 

respective base lines to obtain amplification factors which are then statisti~ 

cally treated to obtain design amplification factors. 
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For wind, the input time histories are first transformed to the fre­

quency domain through the use of the Fourier transform. This process in­

volves integration and the result is a smooth power spectral density function. 

A set of power spectral density functions computed for each time history is 

averaged and a single power spectral density function is employed for com­

puting the response. The average power spectral density function together 

with the wind correlation functions are employed to compute the response 

of a linear oscillator. Now the maximum values for each frequency can be 

computed employing the first crossing probability to obtain an expected 

maximum value of the response. From this last step the base lines, 

amplification factors and regions of amplification can be inferred. 

4-5 Plotting Wind Response Spectra. 

Wind response spectra can be plotted in the same standard tripartite 

paper employed for the graphical representation of dynamic systems sub­

jected to base excitation. In earthquake engineering, besides frequency 

or period, the response spectrum has three ordinates which represent 

acceleration (A), pseudo velocity (V) and displacement (0). In addition, 

there are certain relations between the quantities represented in the re­

sponse spectrum defined as follows: 

V = Ow 

A = Vw = Dw2 

where w is the natural circular frequency of vibration 2nf. 

For wind, as discussed in Section 4-2, only two of the ordinates, besides 

frequency, have physical meaning. The velocity ordinate now represents impulse 

(mass times velocity), whereas the ordinate of acceleration in the earthquake 
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response spectrum is replaced by a measure of the effective pressure associated 

with a certain wind velocity and a specific frequency of the structure. The 

earthquake displacement ordinate does not have an equivalent in the wind 

response spectrum. 

The spectrum of effective wind pressures can be computed at any height 

of the structure (because the wind velocity varies with height) but it is 

advantageous to draw the response spectrum for the wind velocity at the 

reference altitude (33 ft or 10 m). The vertical variation of the wind 

velocity is included in the computation of the participation factors. 

Drag coefficients are taken as one for the computation of the response 

spectrum. The drag coefficients together with the vertical distribution of 

the wind velocity and wind pressure are included in the computation of the 

participation factors. 

Steps to draw wind response spectra -- The steps necessary for drawing 

wind response spectra can be summarized as follows: 

1) Draw the mean wind velocity and wind pressure 1/2 p V2. 

These lines represent the unamplified response of a single degree 

of freedom system subjected to a perfectly correlated mean wind 

flow. 

2) Obtain the base lines for the fluctuating component by 

multiplying the mean wind pressure times the effective pressure 

coefficient presented in Figs. 13 and 14. In order to maintain 

the relation P = 1/2 p V2, the velocity base line is modified 

by multiplying the mean wind velocity times the square root of the 

effective pressure coefficient. These reduced base lines represent 

the wind pressure and the effective wind velocity that will be felt 



81 

by a rigid body associated with the fluctuating component of the 

turbulent wind flow. 

3) Amplify the fluctuating base line to account for the dynamic 

effects of the wind. In the velocity region of the spectrum a 

single amplification factor is used, whereas in the pressure 

region more than one control point should be employed to obtain 

an accurate representation of the dynamic pressures. From the study 

of Figs. 16 and 19 it can be concluded that the following values of 

frequency can be used as control points for the pressure region: 

V/1500, where velocity is in ft/sec computed employing the refer­

ence velocity at 33 ft, and the two inflection points of the 

correction function, points A and B. Equations to compute the con­

trol frequencies A and B are presented in Table 11. The first 

point, V/1500 is the wave length where the amplification function 

has a maximum value (see Fig. 16). The control point A is the 

frequency where the correction function has a value equal to one, 

and the control point B is the frequency where the correction 

function has a minimum value. The latter two points are taken 

from study of Fig. 19 and parametric analyses. 

4) Combination of the mean and the fluctuating components of 

the spectrum. 

Together with the recommended control points, the following guide lines 

can be used for drawing the pressure line of the fluctuating response 

spectrum: 
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1) Use the maximum pressure amplification (given in Table 5) 

up to a frequency equal to V/1500. 

2) There is a smooth decay in amplification from the frequency 

V/1500 to the control frequency A. 

3) In the range of frequencies between control points A and B 

the amplification decays sharply approaching 1 at control point B. 

Values for the pressure amplification factors for control 

frequency V/1500, A and B are given in Table 8. A schematic 

representation of the procedure is presented in Fig. 23. 

Examples -- Two examples are given to illustrate the procedure recommended 

for the construction of wind response spectra. 

Example 1. Draw the wind response spectrum for a 1200 ft x 200 ft 

x 200 ft building. The velocity at the top is 148 'ft /sec, the reference 

velocity at 33 ft is 42 ft /sec, the structure is located in the center 

of a city and the damping is two percent of critical. 

Step 1. Mean base line. 

Mean pressure = 1/2 p V2 = 1/2 (.0024) (148)2 = 27 psf. 

Mean velocity = 148 ft /sec. 

Step 2. Fluctuating base line. 

From Fig. 14, the effective pressure coefficient is 0.33. 

Fluctuating pressure = 0.33 x 27 = 9 psf. 

Fluctuating velocity = I 0.33 x 148 = 85 ft /sec. 

Amplification 

The control points for the pressure region are: 

V/1500 = 42/1500 = 0.028 hertz. 

From Table 11: 

A = 0.020 (148) (1200)-0.67 = 0.026 hertz 
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Ignore the first point 0.028 hertz 

B = 0.75 (148) (1200)-0.67 = 0.96 hertz. 

The values of the amplification factors for these control frequencies are 

presented in Table 9. The velocity amplification factor is (from Table 5) 

2.74. The plot of the fIlean and fluctuating spectrulIl is presented in 

Fig. 24. 

£~~!i!QJ~?_. A second examp 1 e is presented in Fi g. 25. Here the 

response spectrum is presented for a 150 ft x 150 ft x 150 ft building. 

The velocity at the top is 65 ft /sec, the reference velocity at 33 ft is 

38 ft /sec, the structure is located in the center of a city and the damp-

ing is one percent of critical. 

5J_ep __ l· 

Mean pressure 1/2 (.0024) (65)2 5 psf. 

Mean velocity 65 ft /sec. 

5_tell __ L_ . 

Fluctuilting pressure 0.98 x 5 = 4.90 psf. 

Fluctuating velocity ;-0-:98 x 65 = 64.5 ft /sec. 

St~_~. 

V/1500 38/1500 = 0.026 hertz. 

A 0.027 (65) (150)-0.71 = 0.050 hertz. 

B = 1.31 (65) (150)-0.71 = 2.428 hertz. 

The values for the amplification factors for one percent of damping at the 

control points are shown in Table 10. The amplification factor for the 

velocity control region as presented in Table 5 is 3.53. 

Since the knee of the 

spectrum (velocity pressure lines intersection) occurs at a very low 
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frequency which is not likely to exist in most of the common civil engineer­

ing structures, only the pressure line of the spectrum needs to be con­

structed. It can be plotted on any kind of paper, but a five cycles semi­

logarithmic or a 3 x 5 logarithmic paper will cover a large range of fre­

quencies. The procedure now is similar to before, the only difference is 

that only the pressure line has to be constructed. The same examples dis­

cussed for the tripartite plot will be. now presented in a 3 x 5 log-log 

paper. Example 1 is illustrated in Fig. 26 and example 2 in Fig. 27. 

4-6 Empirical Representation of Wind Response Spectra. 

In most cases wind response spectra can be represented by the use of 

an empirical equation of the following general form: 

Response Pressure = A (fh/V)-8 hA (4-10) 

where 

A is a constant which depends on the damping ratio and the wind exposure 

of the structure, 

8 is a constant which depends on the damping, 

A is a constant which depends on wind exposure, 

h is the height of the building in feet, 

f is the frequency of vibration, 

V is the velocity at the top of the structure. 

In order to evaluate this empirical representation of the wind response 

spectra two functions are developed. One includes the amplification and the 

correction functions and the other the effective pressure coefficients. 

The amplification times the correction function is expressed as follows: 
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Amplification = A (fh/V)-~ hA 

Sinlilarly the effective pressure coefficients can be written as 

fo 11 ows : 

where 

E and p are constants which depend on the wind exposure. 

(4-11 ) 

(4-12) 

It is difficult to find an analytical expression that will cover the 

whole range of frequencies. However, it is possible to develop a set 

of empirical equations for the range where the fundamental frequency of 

vibration of most structures is likely to occur. 

The approximation that was developed in this study covers the range of 

values of frequency between 0.1 to 3 hertz, and is intended for structures 

50 to 500 ft tall. 

To compute the effective pressure coefficients, the aspect ratio was 

taken as 1 for a 50 ft building and as 5 for a 500 ft structure. The 

values in between are interpolated between the noted values as illustrated 

in Fig. 28. It is believed that this formula constitutes a reasonable approxi-

mati on. 

Moreover, the approximation is good for values of f < 4 V/h. This 

range of fh/V < 4 covers the values where the fundamental frequency of most 

structures are likely to occur. In order to demonstrate the validity of 

the last statement, the fundamental natural frequency can be approximated 

by the following expression: 
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f = lOIn 

where 

n is the number of stories. 

In addition, if an average value of 12 feet per story is taken, 

Eq. (4-13) can now be rewritten as follows: 

f = 120/h 

where 

h is the height of the building in feet. 

Therefore the ratio fh/V, for the velocity in ft/sec, can be 

written as 120/V. The latter result shows that for a design wind 

(4-13) 

(4-14) 

velocity of 30 ft/sec, which is very low, the ratio fh/V is equal to 4. 

Therefore the approximation can be used for most of the common engineering 

problems. 

Expressions for the effective pressure coefficients are shown in 

Table 12. These are presented for three of the most common wind exposures 

(as defined in Chapter 3) and for two levels of 0. 

The amplification factors for the range of frequencies f < 4 V/h 

or f < 3 hertz are presented in Table 13 for values of damping of 1,2,5, 

and 10 percent of the critical. Estimated values of the coefficients A 

and 0 as a function of the critical damping are presented in Figs. 28 and 

29. 

These approximations are employed in Chapter 5 for deriving simple 

expressions for gust factors and base shear coefficients. 
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CHAPTER 5 

COMPUTATION OF FORCES AND DISPLACEMENTS 

5-1 Introduction. 

In the previous chapters the necessary concepts for performing dynamic 

analyses of structures subjected to strong winds have been presented. Modal 

analysis procedures as applicable to wind and earthquake engineering are 

discussed in Chapter 2. In Chapter 3 the physical properties of turbulent 

wind are presented, and in Chapter 4 the basis for computing response 

spectra for wind loading are developed. Finally, the remaining step 

necessary for the evaluation of forces and displacements associated with 

strong winds is to combine the modal analysis procedures and the response 

spectra. 

In order to achieve these goals, the following topics are presented 

herein: 

1) Application of modal analysis procedures to evaluate wind 

forces and displacements in structures. Special consideration 

is given to the computation of participation factors. 

2) Development of simple procedures for the computation of 

wind forces. 

3) Comparison of results obtained using the procedures presented 

in this study with full-scale measurements. 

5-2 Modal Analysis Procedures. 

As a result of the separation of variables hypothesis the dynamic 

forcing function has been separated into a geometric and a time or 

frequency dependent function. The former is associated with the computation 
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of the participation factors. The latter, however, is known to be associated 

with the amplification factors and the response spectra which have been pre­

sented in Chapter 4. 

Once the response spectrum has been obtained, the next step in the 

evaluation of forces and displacements is to calculate the participation 

factors. The participation factors for wind loading, are dependent on the 

geometry of the structure, the drag coefficients, the mode shapes and the 

distribution of wind pressure on the various faces of the structure. The 

distribution of pressures for the mean and the fluctuating components of 

the wind velocity have been discussed in Section 3-5. The drag coefficients 

recommended for the design of buildings are listed in Table 4. 

It should be noted that the correlation functions have been included 

in the computation of the response spectra. Therefore, they do not require 

further consideration for the evaluation of the participation factors. 

However, the reduction associated with the cross-correlation of pressures 

in the windward and the leeward faces of the structure, Eq. (3-17), could 

be included in the computation of the participation factors if so desired. 

Modal analysis procedures will yield results that are only as accurate 

as the assumptions made for the modelling (idealization) of the forcing 

load and the structural properties. The modelling of the geometrical 

component of the forcing load (wind pressure distributions) has been pre­

sented in Chapter 3. 

Participation factors -- Once the geometrical configuration of the 

forcing loading has been obtained, the participation factors can be 

evaluated by employing the modal analysis equations presented in Chapter 2. 

The participation factor for a distributed load has been defined as follows: 



c. = l/L 
1 
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L 

J ¢i (X) Po p(X) dx 
o 

M. 
1 

(5-1) 

In the most common case the wind loading is specified as a distributed 

force. On the other hand, the mode shapes are generally evaluated for a 

lumped model and only the values of the mode shapes on the nodal points of 

the structure are usually available. Therefore the computation of the 

participation factors for wind loading is, in most cases, a mixed problem 

of a distributed force acting on a discrete structure. 

There are two possible approaches for the evaluation of the participa­

tion factors. The first is to compute an algebraic representation or a 

numerical interpolation of the mode shapes, and then to perform the integration 

of a quantity consisting of the mode shape times the force distribution. 

This operation can be accomplished employing any interpolation procedure 

to obtain a representation of the mode shape function. The second pro­

cedure consists of evaluating an equivalent concentrated force at each 

nodal point of the structure. This operation can be achieved by using 

integration procedures for the forcing load as described in Section 2-2, 

Eqs. (2-12a) and (2-l2b). In this case the participation factors can be 

evaluated using the equation for discrete force systems Eq. (2-l9b). 

{¢i}T Em] {p} 
c. = ---=------

1 {¢i}T Em] {¢i} 
(5-2) 
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A summary of the computation procedure for wind loading as well as 

a comparison with earthquake modal analysis is presented in the following 

page: 

Problem 
Identification 

Mean Force 

Dynami c Force 

Dynamic Response 

n-."' ..... ..;'"""..;Tr"\~ ..... ..;.n."" rc;u 1,1\..q.JUl.lUIl 

Factor 

Amplification 
Factor 

Modal Forces 

Modal Base 
Shear 

Distribution of 
Base Shear 

Combination 
Mean + Dynami c 
Components 

Earthquake 

Ground motion 
parameters 

N. A. 

.. 
{F} : [m] {XG} 

{u} : \' C. ¢. D. 
L 1 1 1 

Obtain from response 
spectrum, A, V, and 0 

v . : 
01 

{f} : --",::T=---­

{cp}1 [m] {l} 

N. A. 

Wind 

Wind velocity (V), mean 
pressure (Po)' structure 
exposure. 

F : P X b (~)2a 
o h 

Discretize F at notes {F} 
F' : P P b (~)a o r h 

Peff i 
{X} : L Ci ¢i 2 

r • .,T r .... '~ 
C. : l..pl tt-") 

1 {¢}T [m] {¢} 

w. 
1 

Obtain from response 
spectrum Peff 

{fl}: {cp}T [m] C. Peff. 
1 1 

v . : 
01 

{fl} : 

{l}T {cp}T em] C.Peff. 
1 1 

Vo; [m] {cp} 
T 

{cp} I [m] {cp} 

{ F} : (F} + {f a } 

Example -- A three story, three degree of freedom building presented 

by Blume, Newmark and Corning (1961) was studied as an example to compare 

earthquake and wind modal analysis procedures. The geometry of the building 

together with the mass and stiffness properties are illustrated in Fig. 37. 



91 

The building was assumed to be at the center of a city and the damping was 

taken as 2 percent of critical. The wind is assumed to flow normal to 

the 60 ft x 42 ft face. The response spectrum for a 60 ft/sec wind 

velocity at the top of the building and two percent of damping is shown 

in Fig. 38. For earthquake E1 Centro N-S component is employed. The 

steps employed in this computation have been summarized in the previous 

table. 

Mass Matrix 

1860 

[m]= 1860 1 bs. 

3720 

Stiffness Matrix 

568 

[k]= 1704 K/i nch. 

2272 

2 152.688 + fl = 1 .97 hertz wl = 

2 = 610.753 + f2 = 3.93 hertz w2 
2 1832.258 + f3 = 6.81 hertz w3 = 

{<P1} = {~ } 
{<P 2} = {l } 
{<P 3} = f/3} -5{3 
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Earthguake Wind 

Mean Mean 

N.A. 

Po = 1/2 p Co V2 = 1/2 (0.0025161) (60)2 

N.A. 
Po = 4.53 psf 

(F) = {
1834} 
3001 

1879 

1 bs. 

Fluctuating Fluctuating 

1 

N.A. 



Earthquake 

Participation Factors 

{cp.t
T Em] {1} 

{cp}T [m] {q>} 

C1 = 8/22 =0.36 

C2 = 2/4 = 0.50 

C3 =0.67/4.90 =0.14 

Nodal Forces 

C [m] e/) * A n n 

{f } = 
1 

.36 x 1860 { i }* 
{f } -2 - .5 x 1860 {-1 }* 
{f3} = .14 x 1860 1"33 ) -1

2
67 

{ 2705.00} 
{f .. } = 1352.00 * Al I 1352.00 

{-930 .00 ~ {f } = 930 .00 A2 2 1860.00 

f 84.35.00~ 
{f } = -422.61 .00 A3 3 506.12.00 

Al 

A2 

* A 3 
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Wind 

Participation Factors 

{q)} T{F'} 

{ep} T [m] {cp} 

C1 = 4005.77/22 = 182.02 

C2 = 972.51/4 = 243.13 

C3 = -559.86/4.90 = - 114.26 

Nodal Forces 

Cn [m] cp * Peff n 

{f1}= 182.02 x ~~~~ {i} * 
{fl }= 1860 {i} * 2 243.13 x 1860 

1860 f'331 {f I }- -114.26 x T860 -1. 67 3 -

{f I }= - 1 364.13 
J 728 .26} 
t 364. 13 

* Peff l 

{-243 0 02} {f I }= 243.02 * Peff2 2 486.04 

f38.17? {f I }= 190.93 * Peff3 3 -229.03 

Peff1 

Peff2 

* Peff3 



From Response Spectrum 

Al = 0.60 g. 

A2 = 0.70 go 

A3 = 0.55 g. 

{1623.00~ {f 1}= . 811. 50 
811 .50 

{-651.00~ {f2}= . 651.00 
1302.00 

{f
3
}= -232.44 t 46039} 

278.37 

94 

From Response Spectrum 

peffl ~ 9.53 psf 

Peff2 = 8.38 psf 

Peff3 = 8.31 psf 

{fl }= 
1 

{f '}= 
3 

{6938~ 3469 
3469 

{

2038}· 
2038 
4076 

{
1902} 158.5 

- 317 

5-3 Simple Procedures to Estimate Wind Reponse. 

For cases of preliminary analysis, at least two simplified procedures 

can be developed. These procedures include a new version of the gust 

response factor, and a procedure based on the computation and distribution 

of the base shear; both topics are presented and discussed in this Section. 

The empirical representation of the wind response spectra developed in 

Secti on 4-6 is emp 1 oyed for the deri vati on ·of both simp 1 i fi ed procedures. 

The gust factor -- For some time the results of studies of the response 

of structures to wind loading have been presented in the form of gust 

factors in contrast to the use of response spectra as discussed earlier 

herein. The gust factor is defined as the ratio of the total displace-

ment of the structure to the mean displacement of the structure, usually 

evaluated at the highest level of the building. The gust.factor can be 

considered to be an overload coefficient which multiplies the mean pressure 

to obtain the design forces for the structure. The mean force times the 



gust foctor is intended to account for hoth the lIIean and fluctuatin~J COIII-

1J0nen ts 0 f the wi nd 1 oad hl~J • V il ri ou s ilU thors such as Dil venport (1967), 

Vellozi ilnd Cohen (196B), Vickery (1970) dnd Sillliu and Lozier (1975) have 

IJresented different versions of this approach. In some cases, these pro-

cedures can differ by as much ilS 100 percent. 

The gust factor usually represents a load which is the lIIean force 

plus 3 to 4 tillles the contribution of the fluctuating cOlllponent of the 

wind; this combination yields values of total load that are generally be-

tween 1.B to 2.S times the llIean value. However for the cases of structures 

subjected to high wind turbulence; such as small structures in the center 

of a large city, the gust factor lIIay lead to total loading values on the 

order of 3 to 3.5 tillles the mean force. 

made: 

For the computation of qust factors the followinq assumptions are 

1 ) The response of the s tructur~~ in the fundarnenta 1 mode is 

domi nant for both mean and fl uctuatin~J responses. 

2) The masses and the stiffness of the structure are uniformly 

distributed. 

3) The response can be calculated using a linear n~de shape. 

4) The peak factor can be taken as 3.5 times the fluctuating 

load (an average between 3 and 4). 

TtH~ mean displacelllent associated with the first mode of vibration is 

gi ven by: 

Mean dis p 1 acelllent = 2--+-2t~- ¢ (x) 
p 
o ---z 

Mill 

Similarly the fluctuating displacement is given by: 

(5-3) 
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Fluctuating displacement = 2 + a (5-4) 

As has been discussed before, the gust factor is the ratio of the total 

displacement to the mean displacement multiplied times the peak factor. 

Thus the gust factor can be written as follows: 

Gust Factor = 1 + 3.5 f~ : ~)) (5-5) 

The gust factor has been customarily computed in the past by employing 

a narrow band approximation, in such case it is usually represented by an 

equation of the following form: 

G = 1 + 9 I B + R (5-6) 

where 

B is the background component which represents static behavior (as for a 

rigid building), 

R is the resonant component associated with the vibration, 

9 is the peak factor (taken as 3.5 in this study). 

In the proposed equation for the gust factor, Eq. (5-5) the background 

component, B, is represented by the quantity (P r )2, and the resonant com­

ponent, R, is given by (Amp2 - 1) x (p4()2, such that the relation Pr x 

Amp = I B + R is satisfied. The gust factor can be expressed in a simpler 

form as follows: 

Gust factor = 1 + F (5-7) 

The factor F (the latter part of Eq. (5-7)) is presented in Table 14 for 

three wind exposures and values of damping equal to 1, 2, and 5 percent 
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of critical, as a function of the wind velocity at the top of the structure, 

the height and the fundamental frequency of vibration. 

~!il.!!!I?l~ -- As an examp 1 e the ~Jus t factor is computed for a 325 ft x 

100 ft x 100 ft building. The structure is in the center of a city and 

the velocity at the top of the building is 85 ft /sec. The damping is 

assumed to be 2 percent of critical and the fundamental frequency of 

vibration is taken as 0.5 hertz. 

From Eq. (5-7) and Table 14, the gust factor is: 

( -0 36 ( )-0 28 Gust factor = 1 + 7.42 325 x 0.5/85)· 325 . 2.16 

The gust factor also can be computed employing Eq. (5-5) as follows: 

From Table 12 

Pr = 2.05 x (325)-0.40 = 0.20 

From Table 13 

Amp = 0.90 x (0.5 x 325/85)-0.36 x (325)0.12 1.43 

For city exposure, Ct = 0.35 

(2 + 2 X (:/.) / (2 + ct) = 1. 15 

Gust factor = 1 + 3.5 x 1.15 x 1.43 x 0.20 = 2.15 

The gust factor for the sallie example computed using the procedure recommended 

by the National Building Code of Canada is 2.35. 

A comparison of the results obtained with the simple gust factor 

equation proposed in this study and those reported in the literature by 

various authors (as computed by the writer from the equations and charts 

presented in the references cited in Table l5)is illustrated in Table 15, 

where three buildings, located in city and open country exposures, are 
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presented. The gust factors are given for 1 and 2 percent of critical 

damping. The dimensions and properties of the buildings studied in these 

examples are given in Table 16. 

It can be seen in Table 15 that the gust factors computed using the 

simple equations developed in this study are in good agreement with the 

values predicted by various procedures reported in the literature. 

Distribution of base shear -- The second simple procedure is based 

on the distribution of base shear. First, the base shear is computed and 

distributed using a linear fundamental mode shape. Secondly, a correction 

function, that accounts for the contribution of the higher modes, is 

applied. 

The two mode procedure -- The two modes approach is based on the fact 

that the combination of the unamplified modal contributions should satisfy 

the static relation: 

n 
[mJ {l} = I Ci [mJ {~i} 

i=l 
(5-8) 

which for a diagonal mass matrix can be written in a simpler way as follows: 

n 
{l} = I 

i =1 
C. {~.} 

1 1 
(5-9) 

A practical and useful procedure can be developed assuming that the 

computation can be carried out employing only two modes, namely the funda­

mental mode of vibration and a second mode which represents the contribution 

of the higher modes. For two modes, Eq. (5-9) can be written as: 

(5-10) 
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In addition if the participation factor of the second mode is conveniently 

defined to have a value of one the second mode can be written as: 

(5-11) 

It will be shown in the examples presented in this Chapter that the 

two modes procedure yiel~s results that are in close agreement with those 

obtained by modal analysis techniques. 

Distribution of base shear ~- The procedure recommended for computing 

the forces associated with wind loading, using the two mode approach, 

is divided into four steps: 

1) Computation of the forces associated with the mean 

component of the response. 

2) Computation of the forces associated with the background 

part of the fluctuating component. 

3) Distribution of the forces associated with the resonant part 

of the fluctuating component using a linear mode shape rule. 

4) Correction to include the resonant response of the higher modes. 

These steps are discussed in detail in the following paragraphs. 

Step one -- The vertical distribution of the average pressure is 

given by the Eq. (3-7a) as follows: 

P(x) = Po (-fi-)2a (5-12) 

where 

Po is the average pressure at the top of the building (1/2 p Co V2). The 

mean forces at the various levels of the structure can be computed using 

the integration formulas given by Eqs. (2-12a) and (2-12b). 
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Step two -- The background pressure is given by the following expression: 

where 

Pr is the effective pressure coefficient given in Table 12. 

Step three -- The resonant base shear for a linear mode shape can 

be computed as follows: 

where 

v£ ;s 

mx is 

hx is 

b is 

h ;s 

v£ = rw CE (Amp£ - 1) 

b h2 p p o r r = ~::-----
W 2 + a 

the base shear associated with a linear mode 

the mass at level x, 

the height of level x over the base of the building, 

the width of the structure, 

the height of the structure, 

(5-13) 

Amp£ is the amplification factor associated to the linear mode shape which 

can be computed by employing the equations presented ;n Table 13. For this 

computation the fundamental frequency of vibration can be approximated as 

f = l20/h (as discussed in Section 4-6). 

Once the resonant base force has been computed, it can be distributed 

using the familiar expression, Eq. (2-43): 
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The equation for the distribution of forces can be written in a simpler way 

as follows: 

where 

f w(Amp,Q, -1) 

I m h 2 x x 

(5-14a) 

(5-14b) 

Step four -- The forces associated with the higher modes can be computed 

as fo 11 ows : 

where 

Vc (1 - CE hx) mx 

I mx - CE I hx mx 

Vc is the resonant base force associated with the higher modes and is 

given by the equation: 

bh P Pr 
Vc = ( 1 ~ a -f CE) (Amp - 1) w c 

Ampc is the amplification factor for the higher modes, which can be computed 

employing a frequency that is three times the frequency associated with 

the linear mode. 
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The forces associated with the higher modes can be written in a simpler 

way as follows: 

F = C (1 - CE hx) mx cx c (5-15a) 

where 

V 
Cc = c 

I mx - CE I hx mx 
(5-15b) 

Example -- As an example, a ten story, eight degree of freedom bui1d­

ing,is analyzed employing the distribution of base shear technique. The 

dimensions of the structure are presented in Fig. 34. The masses and 

stiffness of the columns are presented in Tabie 28. The building is assumed 

to be in the center of a city and has a damping equal to one percent of 

critical. The drag coefficient is taken as 1.3. Computations are presented 

for a wind velocity of 85 ft /sec at the top of the building in the E-W 

direction. 

Step one. 

Po: 1/2 x 1.3 x .0024 x (85)2 = 11.84 psf. 

The forces associated with the mean pressure are listed in the third 

column of Table 17. 

Step two. 

From Table 12 

P = 7.17 (114)-0.40 = 1.078 
r 

Ps = 1.078 x 11.84 = 12.76 psf. 

The forces associated with the background component are presented in the 

fourth column of Table 17. 
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Step three. 

r = 40 x (114)2 x 12.76/2.35 = 2822620 
w 

\' m h = 1417 . 
L x X 

\' m h 2 = 120274 
·L x x 

C
E 

= 1417/120274 = 0.012 

From Table 12 and taking f = 120/114 the amplification factor is: 

AmPi = 1.12 (1.05 x 114/85)-0.42 (114)°·12 = 1.75 

Ci = 2822620 (1.75-1)/120274 = 17.55 

The forces associated with the fluctuating component of the linear mode are 
listed in the fifth column of Table 17. 

Step four. 

11.-__ _ 'I 'r) I')", r\[::: .. "IIIQ~,-0.42 11111,0.12_ 
I-\JIIjJ c ;;;; I. I Co. \.:; l\ I • v;,; J\ B B"'? I U..J J \1 I'" J - 1 .10 

Vc = (114 x 40 x 12.76/1.35 - 0.012 x 2822620) x (1.10-1) = 923 

C = 923/(20.91 - 0.012 x 1417) = 237 c 

The forces associated with the higher modes (the second term representation) 

are presented in Table 17. To complete the solution the four contributions 

are added. The total forces are presented in the last column of Table 17. 

The total forces are illustrated in Fig. 36, where the solution obtained by 

normal modal analysis procedures is also shown. It can be seen that the 

two solutions are in good agreement. 

For the purpose of further simplifying the calculations Tables 18 to 

26 have been prepared to present the effective wind pressures. These 

tables are similar to those presented in A.N.S.I. (Tables 5A, 58 and 

5C) for computation of the basic wind pressures, and represent the wind 

pressure as a function of height and wind velocity with a drag coefficient 

equa 1 to one. 
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The tables are computed for the three wind exposures described in 

Chapter 3, namely center of cities, suburban areas and open country. For 

each exposure three tables are presented for 1, 2 and 5 percent of critical 

damping. The wind velocities presented in the top row of the tables are 

those that will be read from the recurrence maps presented in A.N.S.I .. 

For each combination of height and velocity two entries are given. The 

upper figure, which is also the larger, is the total pressure (mean plus 

fluctuating), and the lower value is the fluctuating pressure. The 

tables reflect a drag coefficient equal to one. In other words the basic' 

wind pressures should be multiplied by the drag coefficient. 

5-4 Examples. 

In order to demonstrate the application of modal analysis and the 

simplified approaches developed in Section 5-3 three examples are presented. 

The examples are three typical buildings which have been designed and con­

structued. These are a 25 story concrete building, a 10 story steel frame 

building and a 3 story building. 

25 story building -- An effort was made to study a typical structure 

that should have most of the characteristics found in the practice and not 

covered by the assumptions made for the simplified procedures. Those 

characteristics are: 

1) Different values of masses and stiffness at the various 

levels of the structure. 

2) Presence of taller columns in the first floor. 

3) Heavy service floors at the higher levels of the structure. 
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Those conditions were found in a reinforced concrete building presented 

by Blume, Newmark and Corning (1961). The structure is a 325 ft x 100 ft 

x 175 ft rectangular building whose plan and elevations are shown in 

Fig. 31. The masses and the stiffness of the columns are listed in Table 

27. The wind forces were calculated assuming that the structure is con­

structed in the center of a city with a wind velocity of 85 ft /sec at 

the top of the building and a damping of two percent of critical. The 

wind is assumed to act normal to the 325 ft x 100 ft face. In addition, 

to simplify the computations, the drag coefficient was taken as 1.3 and 

the lift coefficient as zero. The response spectrum for this structure, for a 

wind velocity of 85 ft /sec and 2 percent of critical damping is presented 

in Fig. 32. The story forces computed using the three procedures described 

in this section are presented in Fig. 33. 

10 story building -- A ten story, 8 degree of freedom building, as 

studied and reported by Nielsen (1968), was also analyzed. The geometry 

of the building is shown in Fig. 34. The building was assumed to be in 

the center of a city and the damping was taken as one percent of critical. 

The response spectrum for a 85 ft/sec wind velocity at the top of the 

building is shown in Fig. 35. The wind is assumed to flow in the E-W 

direction. The stiffness and mass values, as reported by Nielsen are 

listed in Table 28. The story forces computed employing nodal analysis 

and the two simplified procedures are shown in Fig. 36. 

3 story building -- A three story, three degree of freedom building 

presented by Blume, Newmark and Corning (1961) was studied as a last 

example. The geometry of the building together with the mass and stiffness 

properties are illustrated in Fig. 37. The building was assumed to be at the 
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center of a city and the damping was taken as two percent of critical. The 

wind is assumed to flow normal to the 60 ft x 42 ft face. The response 

spectrum for a 60 ft/sec wind velocity at the top of the building and 

two percent of damping is shown in Fig. 38. The forces computed for this 

structure are shown in Fig. 39. The three examples presented in this 

Section have been computed by employing modal analysis techniques as 

described in Chapter 2 and the response spectrum developed in Chapter 4. 

These techniques are similar to the modal analysis procedures employed in 

earthquake engineering. Computations of the earthquake forces employing -

modal analysis procedures for the 25 and 3 story buildings can be found in 

Blume, Newmark and Corning (1961). 

5-5 Comparison with Full-Scale Measurements. 

In an effort to present the accuracy of the various procedures developed 

in this study the results are compared with the few full-scale measurements 

reported in the literature. 

Davenport, Hogan and Vickery (1970) have reported measurements of 

the resonant displacement at the top of the John Hancock Center in Chicago, 

I1. Observations were made under two wind conditions: July 15, 1970 and 

July 17, 1970. The mean velocities at the top of the structure were 59 ft /sec 

and 42 ft /sec respectively. The measured damping for the first mode of 

vibration is reported as 0.4 percent of critical and the fundamental natural 

frequency of vibration as 0.21 hertz. The principal dimensions of the 

building are presented in Table 29. 

For the computation of displacements, a linear mode shape (x/h), can be 

assumed. For this mode the resonant displacement at the top of the building 

can be computed as follows: 
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The resonant displacement is given by the equation: 

Displacement = 

for a mode (x/h) 

L a 
l/L J (~) (~) dx h 

C. a = 
1 L 2 

l/L J (~) m dx 
0 

and the following value is obtained for the participation factor: 

C. __ l o_3 
1 -

m 

The following values for the average density and average width of the 

building are reported: 

y = 10.2 1bs /ft. 3 

be = 196 ft. 

Therefore the mass per linear ft can be written as: 

m = (10.2 x 196)/32.2 = 62.09 1bs sec/ft. 

Finally, for a frequency of 0.21 hertz and multiplying by 12 to obtain 

the result in inches, the displacement at top of the building is written 

as follows: 

Displacement at top = 0.14 Po I~ 

where 

Po is the mean wind pressure 1/2 p Co V2, 

R is the resonant contribution of the response. 

It is interesting to note that the values of the displacements at the 

top of the building are insensitive to the form of the assumed mode shape. 
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For example, the deflected shape of a cantilever beam subjected to uniform 

loading also could be used as an approximation of the fundamental mode 

shape. In this case the displacement at the top of the building can be 

computed by employing a procedure similar to that employed before. The 

mode shape has the following form: 

the participation factor is given by the evaluation of the integral: 

o c. = ---.,..------------

1 of m [1/3 (x4 - 4x + 3)]2 dx 

For the cantilever mode shape the following expression for the displacement 

at the top of the building is obtained: 

Displacement at top = 0.135 Po lflR 

The values of Po for wind velocities of 42 and 59 ft/sec are presented 

in Table 30. 

It should be pointed out that the assumed form of the pressure distri-

bution may have a large influence in the numerical value of the participa-

tion factor and thereby, in the response. For this example the same results 

have been analyzed in the literature by employing a linear distribution for 

the pressure. This distribution leads to a participation factor equal to 

one (which gives a displacement that is 30% lower than that calculated em­

ploying a pressure distribution of the form (x/h)O.35). On the other hand, 

the same studies in the literature have used a distribution of pressures 
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(x/h)0.35 for the computation of resonant 

points:out the important fact one must 

results presented which in some cases may 

inconsistent assumptions. 

The resonant contribution can be computed 

integration or the simple equations developed in 

fication factors computed by numerical i 

hertz and 0.4 percent of cri damping were 

velocity of 42 ft /sec and 1.70 for a vel 

resonant contributions computed by employing 

presented in Table 31. 

The amplification factor also can 

the coefficients given in Figs. 25 26. 

R. Therefore, this 

1 in interpreting 

by emp 1 oyi ng 

numerical 

ampli-

a of 0.21 

be 1.37 for a 

/sec. The 

cal integration are 

emp 1 . ( 4- 11) wi th 

percent of damping and 

city exposure the amplification can be written as lows: 

Amp = 1.5 (fh/Vel) .50 . 12 

The amplification factors computed us; the last on are 1.48 for 

a velocity of 42 ft /sec, and 1.75 for a wind vel ty of 59 ft/sec, which 

are close to the above values computed by numerical integration. 

The resonant response computed using numerical integration is presented 

in Table 30 for the two fundamental modes of on discussed in this 

section. In addition, in g. 40 the results obtai from cal 

integration for both the linear and the cantilever mode are compared with 

the experimental measurements. It can be seen that the computed values are 

in reasonable agreement wi observations 
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As a second example, the experimental measurements of the gust factor 

for a building located at Delft, Holland, reported by van Koten (1967) 

were studied. The building has a height of 150 ft, a length of 240 ft, 

and a width of 36 ft. The structure consists of a steel frame with pre­

fabricated concrete slabs. The mean velocity at the top of the building 

was 45 ft /sec during the experimental period. The fundamental frequency 

is reported to be 0.7 hertz, but no values of damping are presented. 

The gust factor computed by employing the results reported by van Koten, 

has a value of 2.63 for a peak factor of 3.5. Since measurements of damp-

ing are not available gust factor was computed 1 and 2 percent of 

critical. The values computed employing Eq. (5-7) were 2.59 for one percent, 

and 2.34 for 2 percent of damping. It can be seen that the gust factors 

predicted by Eq. (5-7) are in good agreement with the experimental results 

presented by van Koten. 

5-6 Comparison of Earthguake and Wind Hazard. 

Earthquake and wind hazard are dependent on the geographic location 

and the properties of the building. One possible procedure for the com­

parison of the earthquake and wind hazard is the evaluation of the base 

shear forces. Many parameters such as size, frequency and exposure are 

present on the computation of the base shear. 

A distinction should be made between Code requirements and the actual 

behavior of the structure. Both earthquake and wind Code specifications 

are based on simplified approximations. Usually earthquake requirements 

are presented in the form of base shear coefficients. On the other hand, 

wind loading is generally specified as a distributed pressure varying with 

the altitude of the building. 
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Comparison of the effects of earthquake and wind loading on structures 

should be divided into two categories: the first involving Code require-

ments, the second concerning the behavior of the structure. 

The procedures to compare Code requirements (useful for determining 

design loads) are relatively simple and will be discussed here briefly. 

On the other hand, the comparison of the behavior of structures under both 

types of loadings requires a detailed study and was not covered in this 

investigation. 

For prel iminary analysis, the base shear can be computed by employing 

the Code specifications for both earthquake and wind. Since earthquake Code 

provisions are generally specified in the form of base shear coefficients 

and wind Code provisions as a distributed pressure, one must calculate 

either the base shear coefficients or the base forces for both loading 

conditions. In both cases the mass or weight of the structure has to be 

estimated. 

For convenience the base shear was chosen as the parameter of comparison, 

because earthquake loading is specified in this manner, whereas no base 

force is specified for wind. For wind the base shear coefficient can be 

computed by multiplying the distributed pressures times the exposed area 

and then dividing by the weight of the structure: 

P x Area 
W 

As an example the seismic and wind provisions of the latest edition of 

the Uniform Building Code were studied. The city of Chicago was chosen as 

the geographic location for this example. In this case, the base shear 
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coefficients were computed for a set of buildings having the same cross 

section but varying altitudes. The period of vibration was assumed to be 

the number of stories divided by ten and an average value of 12 ft per 

story was taken. The computed base shear coefficients for earthquake 

and wind are shown in Fig. 41. For wind, two cross sections were studied. 

The first is a 100 ft x 100 ft having a weight of 15 lbs/ft 3 and 

the second is a 200 ft x 200 ft with a weight of 10 1bs 1ft 3. 



113 

CHAPTER 6 

SUMMARY 

A procedure for the computation of along overall wind response of 

buildings and structures has been developed and presented. Such an 

approach is common to the techniques currently employed for the evaluation 

of forces and displacements arising from earthquake base excitation. 

The results presented in this study can be divided into four broad 

categories as follows: 

1) The development of a basic methodology for the computation 

of response spectra employing random vibration techniques. 

Specifically, in this study response spectra have been developed 

for wind loading by the noted technique. 

2) The analytical treatment of the equation of motion to obtain 

a solution in terms of participation factors for wind excitation. 

3) Development of simplified methods of analysis for wind loading. 

4) Comparison of wind and e~rthquake loadings and analysis pro­

cedures. 

The development of wind response spectra covered the three basic 

steps generally employed for the computation of earthquake response 

spectra, namely: 1) evaluation of the effective base parameters (in 

this case pressure and velocity) to account for the various sizes and 

intensities of the wind gusts; 2) computation of the amplification 

factors associated with the wind dynamic (fluctuating) loading; 3) de­

velopment of a suitable scale for the spectral representation of wind 

loading (similar to the tripartite plot). 
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There are various significant similarities between earthquake 

analysis techniques and the proposed procedure for analysis of wind 

loading: 

1) The general polygonal shape and the numerical values of 

the amplification factors for both spectra are similar. 

2) The equations for the distribution of base shear are the 

same. This fact permits the development of simple approximate 

procedures for the determination of which hazard (earthquake or 

wind) is the dominant parameter in design. In addition, this 

similarity in the distribution of base shear will enable the de­

termination of the seismic resistance of a building that has been 

designed to sustain wind loading and vice versa. 

3) Once the participation factors have been evaluated, the modal 

analysis techniques required for computation of the response 

associated with both loadings are basically similar. 

On the other hand, there are also differences between both loadings 

and spectral representations. Among these the more significant are the 

following: 

1) Wind forces are separated into a mean force which is treated 

as a static load, and a fluctuating force which represents the 

dynamic component of the loading. 

2) The range of frequencies of the amplified region of the fluctuating 

wind response spectra is considerably lower than the typical range 

of frequencies present in earthquake response spectra. This fact 

indicates that flexible structures with large periods of vibration 

are more sensitive to wind loading, whereas stiff structures are 
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likely to be more sensitive to earthquake forces, (with exception 

of long period waves). 

3. The amplified pressure ordinate for wind response spectra con­

verges to its terminal value (base line) at a frequency which is 

relatively low when compared with the 33 hertz recommended for 

earthquake response spectra. For this reason special provisions 

should be taken in combining high modes where loading contributions 

will be more of a static rather than of a dynamic type. Thi·s fact 

also suggests that the best combi~~tion of modal contributions for 

wind loading may be the algebraic sum in contrast to the square 

root of the sum of the squares currently used in earthquake engi­

neering and random vibration computation. 

The hyperbolic equations derived in Section 5-4 for the computation 

of gust factors are simple, easy to use and provide a technique for a 

quick estimate of the wind loading in cases of preliminary design. The 

gust factors computed using the equations are in good agreement with the 

results predicted by various gust factor procedures available in the 

literature. 

The two mode procedure discussed in Section 5-4 is an accurate tool 

of analysis (when compared to modal techniques) for the determination of 

wind forces on structures. 

The set of tables for the basic effective pressure are innovative in 

the sense that the damping has been used as one of the explicit parameters 

permitting, in this manner, more flexibility to the designer. 

A procedure based on the computation of the base shear has been employed 

as the technique for comparing wind and seismic effects upon buildings. This 
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procedure takes into consideration the geographic location and the con­

figuration of the building. The same approach can be used to evaluate 

the seismic resistance of a building that has been designed to sustain 

wind forces and vice versa. 

Finally a comparison of the results obtained using the procedures 

for wind loading developed in this study with full-scale measurements, 

shows values that are believed to be reasonable within the framework of 

the approximations involved, and the accuracy of the statistical functions 

employed as input, for the computation of wind response spectra. 

It is appreciated that this research investigation involves only 

analysis techniques and that the procedures developed and the computations 

presented in this study are valid only for the elastic range. However, an 

effort should be made to obtain a better understanding regarding loading 

and resistance. It is believed that more and more accurate records of 

wind velocity and wind pressure should be obtained. In addition, other 

parameters such as cross wind vibrations and possibly soil structure inter­

action as well as moderate inelastic behavior should be included in wind 

resistant design. 

Comparison of earthquake and wind loading suggest that both natural 

hazards need consideration in design. In some cases one or the other may 

be the controlling parameter, while in other cases both may be of nearly 

equal importance. However, even if the analysis techniques are similar 

for earthquake and wind loading, the design criteria and detailing require­

ments may be different. For example, earthquakes constitute strong events 

which may never or seldom occur during the expected life of the structure. 

On the other hand, moderate wind loading may frequently occur, and even 
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strong wind condtions may be expected to occur several times during the 

life span of the building. Moreover, little effort in the detailing of 

windows, roofs, and cladding may produce a substantial improvement in 

the overall wind resistance of the structure, whereas a ductile and redundant 

structural system should be provided to withstand moderate seismic loading 

and to prevent structural collapse and loss of human life in the event of a 

strong earthquake. 
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TABLE 1 COMPARISON OF TIME DOMAIN AND FREQUENCY 
DOMAIN SOLUTIONS FOR LINEAR SYSTEMS 

Input 

f(t) 

f(w) 

Linear System 
Transfer Function 

h (t-'r) 

H(w) 

Output 

x(t) = It h(t-T)f(T)dT 
o 

X(w) = H(w) F(w) 

TABLE 2 COEFFICIENT a FOR VARIOUS WIND EXPOSURES 
RECOMMENDED BY VARIOUS AUTHORS AND CODES 

Exposure 

A 
B 
C 

ANSI 

0.33 
0.22 
o. 14 

NBCC 

0.40 
0.28 
0.14 

Vickery (1970) 

0.35 
0.22 
0.14 



Type of 
Exposure 

Zo (meters) 
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TABLE 3 SUGGESTED VALUES OF z FOR 
VARIOUS TYPES OF EXPOgURE* 

Outskirts of Center of Centers of 
Coastal a Open Towns, Suburbs Towns Large Cities 

0.005- 0.03- 0.20-0.30 0.35-0.45 0.60-0.80 
0.01 0.10 

a Applicable to structures directly exposed to winds blowing from open water. 

* After Simiu and Lozier (1975) 

TABLE 4 RECOMMENDED DRAG AND 
LIFT COEFFICIENTS 

Exposure CD CL CL x (O.5)2a 

A 0.80 0.50 0.31 
B 0.80 0.50 0.34 
C 0.80 0.50 0.41 
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TABLE 5 SPECTRUM AMPLIFICATION FACTOR 
FOR ELASTIC WIND RESPONSE 

Damping Velocity 
% of Critical 

Pressure (Davenport 
Input) 

Pressure (Simiu 
Input) 

1% 
2% 
5% 

10% 

% 

3.53 
2.74 
2.24 
1.64 

5.10 
3.66 
2.60 
1 .87 

TABLE 6 SPECTRUM AMPLIFICATION FACTORS 
FOR HORIZONTAL ELASTIC RESPONSE* 

Damping, One Sigma (84.1%) ~1edian (50%) 
Critical A V D A V 

0.5 5.10 3.84 3.04 3.68 2.59 
1 4.38 3.38 2.73 3.21 2.31 
2 3.66 2.92 2.42 2.74 2.03 
3 3.24 2.64 2.24 2.46 1 .86 
5 2.71 2.30 2.01 2. 12 1.65 
7 2.36 2.08 1.85 1.89 1 .51 

10 1 .99 1.84 1.69 1 .64 1 .37 
20 1 .26 1.37 1.38 1 . 17 1.08 

* After Newmark and Hall (1978) 

0 

4.24 
3.08 
2.10 
1.64 

2.01 
1 .82 
1 .63 
1 .52 
1 .39 
1 .29 
1 .20 
1 .01 
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TABLE 7 EQUATIONS FOR SPECTRUM AMPLIFICATION 
FACTORS FOR HORIZONTAL MOTION* 

Quantity 
Cumulative 

Probabi 1 i ty, % Equation 

Acceleration 
Velocity 
Displacement 

84.1 (One Sigma) 4.38 - 1.04 tn S 
3.38 - 0.67 tn S 
2.73 - 0.45 tn f3 

Acceleration 
Velocity 
Displacement 

50 (Median) 

* After Newmark and Hall (1978) 

3.21 - 0.68 tn f3 
2.31 - 0.41 tn f3 
1.82 - 0.27 tn f3 

TABLE 8 RECOMMENDED AMPLIFICATION FACTORS FOR THE 
PRESSURE LINE OF ELASTIC WIND SPECTRUM 

Damping Frequency 
% of Critical Vel/1500 Ve1/h 15 Vel/h 

1% 5.36 5.10 1 
2% 4.21 3.66 1 
5% 3.25 2.60 1 

10% 2.43 1 .87 1 
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TABLE 9 AMPLIFIED PRESSURES FOR EXAMPLE 4-1 

Control Frequency 
Hertz 

V/1500 = 0.028 
A 0.026 
B 0.960 

Amplification 
Factor 

Amplified Pressure 
psf 

-----'-----------------,-----
4.21 
3.66 

1 

37.89 
15.41 
4.21 

TABLE 10 AMPLIFIED PRESSURES FOR EXAMPLE 4-2 

Control Frequency 
Hertz 

V/1500 = 0.026 
A = 0.050 
B = 2.428 

Amplification 
Factor 

5.36 
1 .10 
1 

Amplified Pressure 
psf 

26.26 
24.09 
4.90 



TABLE 11 CONTROL FREQUENCIES A AND B FOR DRAWING THE 
PRESSURE LINE OF WIND RESPONSE SPECTRUM 

WIND EXPOSURE 1% Damping 2% Damping 5~~ Damping 10% Damping 

City A 0.027vh-0. 71 0.020vh-0. 67 0.015vh-0. 6O 0.011vh-0.54 

B 1.31 vh-O. 71 0.75 vh-0. 67 0.30 vh-0.6O 0.12 vh-0.54 

Suburban A 0.017vh-0. 57 0.013vh-0. 5O 0.009vh-0. 4O 0.005vh-0. 31 

B 0.84 vh-0.57 0.48 vh-0. 5O 0.17 vh-0.4O 0.06 vh-0. 31 

Open A 0.013vh-0. 5O 0.010vh-0.42 0.006vh-0. 30 0.004vh-O. 19 
Country 

B 0.62 vh-0. 5O 0.36 vh-0. 42 0.13 vh-0. 30 0.04 vh-0. 19 

N 
co 



WIND EXPOSURE 

City 

Suburban 
Areas 

Open Country 

TABLE 12 EFFECTIVE PRESSURE COEFFICIENTS 

a COEFFICIENT Pr 1 a 

0.35 2.05 h-O. 4O 

0.22 0.76 h-0.27 

0014 0.27 h -0. 14 

Pr 3.5 a 

7.17 h-O. 4O 

2.67 h-0. 27 

0.95 h-0.14 
--I 

I".) 

\.0 



TABLE 13 AMPLIFICATION FACTORS 

WIND EXPOSURE 1 % Dampi ng 2% Damping 5% Damping 10% Damping 

-0 4" -0 36 -0 30 -0 26 
City 1 12 ( fh ) . '- h 0. 1 2 0.90 (f~) . hO. 12 0.70 (f~) . hO. 12 0.58 (f~) . hO. 12 

. v 

Suburban -0 42 -0 36 -0 30 -0 26 
0.93 (f~) . hO.1S 0.77 (f~) . hO.18 0.59 (f~) . hO.1S 0.4S (f~) . h 0. lS 

Areas 

-0 42 -0 36 -0 30 -0 26 
Open Country 0.S2 (f~) · hO. 21 0.69 (f~) . hO. 21 0.54 (f~) . hO. 21 0.43 (f~) . hO.21 w 

a 



TABLE 14 PARAMETER F FOR COMPUTING GUST FACTORS 

WIND EXPOSURE 1 % Damping 2% Damping 5% Damping 

-0 42 -0 36 -0.30 
City 9 .. 23 (f~) · h-0. 28 7.42 (f~) . h-O. 28 5 . 77' (f~) h -° . 28 

Suburban -0 42 -0 36 -0.30 
2.73 (f~) . h-0 .09 2.26 (f~) . h-0 .09 1.73 (f~) h-0.09 

Areas 
w 
--' 

-0.42- -0.36 -0.30 
Open Country o . 83 (f~) h 0 .03 0.70 (f~) h 0.03 0.55 (f~) hO .. 03 
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TABLE 15 COMPARISON OF GUST FACTORS 

COMPUTED BY VARIOUS PROCEDURES 
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TABLE 16 PROPERTIES OF BUILDINGS STUDIED 
FOR THE COMPUTATION OF GUST FACTORS 

Building 1 Building 2 Building 3 

Height 150 I 500 I 1200 I 

Cross section 150 I x 150 I 200' x 200' 200 x 200 
Frequency 1 HERTZ 0.2 HERTZ 0.1 HERTZ 
Velocity Open 110ft hec. 130 ft hec. 150 ft hec. 
Velocity City 65 ft hec. 95 ft hec. 130 ft hec. 

TABLE 17 FORCES AT LEVELS FOR EXAMPLE-2 SECTION 5-3 

1 eve1 mass 

1 2.38 
2 2.38 
3 2.38 
4 2.38 
5 2.38 
6 2.38 
7 2.38 
8 4.24 

Units: 
mass: kps/g 
h: ft. 
force: 1 bs. 

h P mean 

14 1527 
28 2498 
42 3321 
56 4064 
70 4754 
84 5400 
98 6468 

114 3727 

P background P linear P correction P tota 1 

3475 585 265 5872 
4464 1170 212 8344 
5151 1754 158 10384 
5700 2339 104 12207 
6164 2924 51 13893 
6571 3509 -3 15477 
7444 4093 -56 17949 
4127 8483 --209 16138 
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TABLE 18 EFFECTIVE VELOCITY PRESSURES FOR 
CITY EXPOSURE AND 1% DAMPING 

Basic Wind Velocity (mph) 
Height 
(ftl 50 60 70 80 90 100 110 120 130 140 
50 3 4 6 9 12 15 19 24 29 34 

1 2 3 5 7 9 12 15 19 24 
100 4 6 9 12 16 21 26 32 39 47 

2 3 5 7 9 13 16 21 26 31 
150 4 7 10 14 19 25 31 39 47 56 

2 3 5 8 11 15 19 24 30 36 
200 5 8 12 17 22 29 36 44 54 64 

2 4 6 9 12 17 22 27 34 41 
250 6 9 13 18 25 32 40 49 60 71 

2 4 7 10 14 18 23 30 37 44 
300 6 10 15 20 27 35 44 54 65 78 

3 5 7 11 15 20 25 32 39 48 

350 7 11 16 22 29 37 47 58 70 83 
3 5 8 11 16 21 27 34 42 51 

400 7 11 17 23 31 40 50 62 75 89 
3 5 8 12 16 22 28 35 44 53 

450 8 12 18 25 33 42 53 65 79 94 
3 6 9 12 17 23 29 37 46 56 

500 8 13 19 26 35 44 56 69 83 99 
3 6 9 13 18 24 31 39 48 58 

550 9 14 20 27 36 47 58 72 87 104 
3 6 9 13 19 25 32 40 49 60 

600 9 14 21 28 38 49 61 75 91 108 
4 6 10 14 19 25 33 41 51 62 

650 9 15 21 30 39 51 64 78 94 112 
4 6 10 14 20 26 34 43 53 64 

700 10 15 22 31 41 53 66 81 98 117 
4 7 10 15 20 27 35 44 54 65 

750 10 16 23 32 42 54 68 84 101 121 
4 7 10 15 21 28 36 45 55 67 

800 10 16 24 33 44 56 70 87 104 124 
4 7 11 16 21 28 37 46 57 69 

850 11 17 25 34 45 58 73 89 108 128 
4 7 11 16 22 29 37 47 58 70 

900 11 17 25 35 46 60 75 92 111 132 
4 7 11 16 22 30 38 48 59 72 

950 11 18 26 36 48 61 77 94 114 135 
4 7 11 17 23 30 39 49 60 73 

1000 12 18 27 37 49 63 79 97 117 139 
4 8 12 17 23 31 40 50 62 75 
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TABLE 19 EFFECTIVE VELOCITY PRESSURES FOR 
CITY EXPOSURE AND 2% DAMPING 

Basic Wind Velocity (mph) 
Height 
(ft) 50 60 70 80 90 100 110 120 130 140 

50 2 4 5 7 10 13 16 20 24 29 
0 1 2 3 5 6 8 11 13 17 

100 3 5 7 10 14 18 22 27 33 39 
1 2 3 5 7 9 12 15 18 22 

150 4 6 9 13 17 22 27 33 40 48 
1 2 4 6 8 11 14 18 22 27 

200 5 7 11 15 19 25 31 38 46 55 
2 3 4 7 9 12 16 20 25 30 

250 5 8 12 16 24 28 35 43 51 61 
2 3 5 7 10 13 17 22 27 33 

300 6 9 13 18 24 30 38 47 56 67 
2 3 5 8 11 14 19 24 29 35 

350 6 10 14 19 26 33 41 50 60 72 
2 4 6 8 12 15 20 25 31 38 

400 7 10 15 21 27 35 44 54 65 77 
2 4 6 9 12 16 21 26 33 40 

450 7 11 16 22 29 37 46 57 69 81 
2 4 6 9 13 17 22 28 34 41 

500 7 12 17 23 31 39 49 60 72 86 
2 4 7 10 13 18 23 29 36 43 

550 8 12 18 24 32 41 51 63 76 90 
3 4 7 10 14 19 24 30 37 45 

600 8 13 19 26 34 43 54 66 79 94 
3 5 7 10 14 19 25 31 38 46 

650 9 13 19 27 35 45 56 69 83 98 
3 5 7 11 15 20 26 32 39 48 

700 9 14 20 28 37 47 58 71 86 102 
3 5 8 11 15 20 26 33 41 49 

750 9 15 21 29 38 48 60 74 89 105 
3 5 8 11 16 21 27 34 42 51 

800 10 15 22 30 39 50 62 76 92 109 
3 5 8 12 16 22 28 35 43 52 

850 10 16 22 31 40 52 64 79 95 112 
3 5 8 12 17 22 28 36 44 53 

900 10 16 23 32 42 53 66 81 98 116 
3 6 9 12 17 23 29 36 45 54 

950 11 17 24 33 43 55 68 84 100 119 
3 6 9 13 17 23 30 37 46 55 

1000 11 17 25 34 44 56 70 86 103 122 
3 6 9 13 18 23 30 38 47 56 
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TABLE 20 EFFECTIVE VELOCITY PRESSURES FOR 
CITY EXPOSURE AND 5% DAMPING 

Basic Wind Velocity (mph) 
Hei ght 

{ft} 30 60 70 80 90 100 110 120 130 140 

50 2 3 4 6 8 11 13 16 20 23 
0 0 0 1 2 3 4 5 7 9 

100 3 4 6 9 12 15 19 23 28 33 
0 0 1 2 3 5 7 9 11 14 

150 3 5 8 11 14 18 23 28 34 40 
0 1 2 3 5 6 8 11 14 17 

200 4 6 9 13 17 21 27 32 39 46 
0 1 2 4 5 7 10 13 16 19 

250 5 7 10 14 19 24 30 36 44 52 
1 2 3 4 6 8 11 14 17 21 

300 5 8 11 16 21 26 33 40 48 57 
1 2 3 5 7 9 12 15 19 23 

350 6 9 12 17 22 29 35 43 52 61 
1 2 3 5 7 10 13 16 20 25 

400 6 9 13 18 24 31 38 46 56 66 
1 2 4 6 8 11 14 18 22 26 

450 6 10 14 19 26 33 40 49 59 70 
1 2 4 6 8 11 15 18 23 28 

500 7 10 15 21 27 34 43 52 63 74 
1 3 4 6 9 12 15 19 24 29 

550 7 11 16 22 28 36 45 55 66 78 
1 3 4 7 9 12 16 20 25 30 

600 8 12 17 23 30 38 47 57 69 81 
2 3 5 7 10 13 17 21 26 32 

650 8 12 17 24 31 40 49 60 72 85 
2 3 5 7 10 13 17 22 27 33 

700 8 13 18 25 32 41 51 62 75 88 
2 3 5 7 10 14 18 22 28 34 

750 9 13 19 26 34 43 53 65 78 92 
2 3 5 8 11 14 18 23 29 35 

800 9 14 20 27 35 44 55 67 80 95 
2 3 5 8 11 15 19 24 29 36 

850 9 14 20 28 36 46 57 69 83 98 
2 3 6 8 11 15 19 24 30 36 

900 9 15 21 28 37 47 59 72 86 101 
2 4 6 8 12 15 20 25 31 37 

950 10 15 22 29 38 49 61 74 88 104 
2 4 6 9 12 16 20 26 32 38 

1000 10 15 22 30 40 50 62 76 91 107 
2 4 6 9 12 16 21 26 32 39 
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TABLE 21 EFFECTIVE VELOCITY PRESSURES FOR 
SUBURBAN EXPOSURE AND 1% DAMPING 

Basic Wind Velocity (mph) 
Height 
{ft} 50 60 70 80 90 100 110 120 130 140 

50 5 8 12 17 23 29 37 46 56 66 
2 4 6 9 12 17 22 27 34 41 

100 7 11 16 22 29 37 47 58 70 84 
3 5 8 12 16 21 28 35 43 52 

150 8 12 18 25 33 43 54 67 81 97 
3 6 9 13 18 25 32 40 49 60 

200 9 14 20 28 37 48 60 74 89 107 
4 7 10 15 20 27 35 44 54 66 

250 9 15 22 30 40 51 65 80 96 115 
4 7 11 16 22 29 38 47 58 71 

300 10 16 23 32 43 55 69 85 103 122 
4 8 12 17 23 31 40 50 62 75 

350 11 17 24 34 45 58 73 89 108 129 
5 8 12 18 25 32 42 53 65 78 

400 11 18 26 35 47 61 76 94 113 135 
5 8 13 19 26 34 44 55 67 82 

450 12 18 27 37 49 63 79 97 118 141 
5 9 13 19 27 35 45 57 70 85 

500 12 19 28 38 51 65 82 101 122 146 
5 9 14 20 27 36 47 59 72 87 

550 12 20 29 40 53 68 85 104 126 150 
6 9 14 21 28 37 48 60 74 90 

600 13 20 30 41 54 70 88 108 130 155 
6 10 15 21 29 38 49 62 76 92 

650 13 21 30 42 56 72 90 111 134 159 
6 10 15 22 30 :39 51 64 78 95 

700 14 21 31 43 57 74 92 113 137 163 
6 10 16 22 31 40 52 65 80 97 

750 14 22 32 44 59 75 95 116 140 167 
c. '1" 1C. ')") ")1 11'1 c") 66 01') f'ln 
U IV IU L';) ,;)1 '"tl ~.) OL ':J':J 

800 14 22 33 45 60 77 97 119 144 171 
6 11 16 23 32 42 54 68 83 101 

850 15 23 33 46 61 79 99 121 147 175 
6 11 16 24 32 43 55 69 85 102 

900 15 23 34 47 62 80 101 124 149 178 
7 11 17 24 33 44 56 70 86 104 

950 15 24 35 48 64 82 103 126 152 181 
7 11 17 24 33 44 57 71 87 106 

1000 15 24 35 49 65 83 104 128 155 184 
7 11 17 25 34 45 58 72 89 107 
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TABLE 22 EFFECTIVE VELOCITY PRESSURES FOR 
SUBURBAN EXPOSURE AND 2% DAMPING 

Basic Wind Velocity (mph) 
Height 
(ft~ 50 60 70 80 90 100 110 120 130 140 
50 5 8 11 15 20 26 33 40 48 58 

1 3 4 6 9 12 16 20 25 31 

100 6 10 14 20 26 33 42 51 62 73 
2 4 6 9 12 16 21 27 33 40 

150 7 11 16 23 30 :38 48 59 71 84 
3 5 7 10 14 19 25 31 38 46 

200 8 13 18 25 33 43 53 65 79 93 
3 5 8 12 16 21 27 34 42 51 

250 9 14 20 27 36 46 58 71 85 101 
3 6 9 13 17 23 30 37 46 55 

300 9 15 21 29 38 49 61 75 91 108 
4 6 9 14 19 25 32 40 49 59 

350 10 15 22 31 40 52 65 79 96 113 
4 6 10 14 20 26 33 42 51 62 

400 10 16 23 32 42 54 68 83 100 119 
4 7 10 15 21 27 35 43 53 64 

450 11 17 24 34 44 57 71 87 104 124 
4 7 11 16 21 28 36 45 55 67 

500 11 18 25 35 46 59 73 90 108 129 
4 7 11 16 22 29 37 47 57 69 

550 12 18 26 36 48 61 76 93 112 133 
5 8 12 17 23 :30 38 48 59 71 

600 12 19 27 37 49 63 78 96 115 137 
5 8 12 17 23 31 40 49 61 73 

650 12 19 28 38 50 65 81 99 119 141 
5 8 12 18 24 32 41 51 62 75 

700 13 20 29 39 52 66 83 101 122 145 
5 8 13 18 25 32 42 52 64 77 

750 13 20 29 40 53 68 85 104 125 148 
5 9 13 19 25 33 42 53 65 78 

800 13 21 30 41 54 70 87 106 128 151 
5 9 13 19 26 34 43 54 66 80 

850 14 21 31 42 56 71 89 108 130 155 
5 9 14 19 26 35 44 55 68 81 

900 14 22 31 43 57 72 90 111 133 158 
5 9 14 20 27 35 45 56 69 83 

950 14 22 32 44 58 74 92 113 136 161 
6 9 14 20 27 36 46 57 70 84 

1000 14 23 33 45 59 75 94 115 138 164 
6 9 14 20 28 36 46 58 71 86 
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TABLE 23 EFFECTIVE VELOCITY PRESSURES FOR 
SUBURBAN EXPOSURE AND 5% DAMPING 

Basic Wind Velocity (mph) 
Height 
{ftl 50 60 70 80 90 100 110 120 130 140 
50 4 6 9 13 17 22 27 34 40 48 

0 0 1 3 4 6 9 11 14 18 

100 5 9 12 17 22 28 35 43 52 61 
1 2 3 5 7 10 13 17 21 26 

150 6 10 14 20 26 33 41 50 60 71 
1 3 4 7 9 12 16 20 25 31 

200 7 11 16 22 29 37 46 56 67 79 
2 3 5 8 11 14 18 23 28 34 

250 8 12 17 24 31 40 49 60 72 86 
2 4 6 8 12 16 20 25 31 38 

300 8 13 19 25 33 43 53 64 77 91 
2 4 6 9 13 17 22 27 33 40 

350 9 14 20 27 35 45 56 68 82 97 
3 4 7 10 13 18 23 29 35 43 

400 9 14 21 28 37 47 59 72 86 101 
3 5 7 10 14 19 24 30 37 45 

450 10 15 22 30 39 49 61 75 89 106 
3 5 8 11 15 20 25 31 39 47 

500 10 16 23 31 40 51 64 78 93 110 
3 5 8 11 15 20 26 33 40 48 

550 10 16 23 32 42 53 66 80 96 114 
3 5 8 12 16 21 27 34 41 50 

600 11 17 24 33 43 55 68 83 99 117 
3 6 8 12 17 22 28 35 43 51 

650 11 17 25 34 44 56 70 85 102 121 
3 6 9 13 17 22 29 36 44 53 

700 11 18 25 35 46 58 72 88 105 124 
4 6 9 13 18 23 29 37 45 54 

750 12 18 26 36 47 59 74 90 108 127 
4 6 9 13 18 24 30 38 46 55 

800 12 19 27 37 48 61 76 92 110 130 
4 6 9 14 18 24 31 39 47 57 

850 12 19 27 37 49 62 77 94 113 133 
4 6 10 14 19 25 32 39 48 58 

900 13 20 28 38 50 64 79 96 115 136 
4 7 10 14 19 25 32 40 49 59 

950 13 20 29 39 51 65 80 98 117 138 
4 7 10 14 20 26 33 41 50 60 

1000 13 20 29 40 52 66 82 100 119 141 
4 7 10 15 20 26 33 41 51 61 
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TABLE 24 EFFECTIVE VELOCITY PRESSURES FOR OPEN 
COUNTRY EXPOSURE AND II DAMPING 

Basic Wind Velocity (mph) 
Height 

{ ft~ 50 60 70 80 90 100 110 120 130 140 

50 8 13 19 27 36 46 58 71 86 103 
3 5 9 13 18 24 31 39 49 60 

100 10 16 23 32 43 55 69 85 103 123 
4 7 11 16 22 30 39 49 60 73 

150 11 l8 26 36 48 61 77 95 115 137 
5 8 13 18 25 34 44 55 68 82 

200 12 19 28 39 51 66 83 102 124 147 
5 9 14 20 28 37 47 60 74 89 

250 13 20 29 41 54 70 88 108 131 156 
6 10 15 22 30 39 51 63 78 95 

300 13 21 31 43 57 73 92 113 137 163 
6 10 16 23 31 41 53 67 82 99 

350 14 22 32 44 59 76 96 118 142 170 
6 11 16 24 33 43 55 69 86 104 

400 14 23 33 46 61 79 99 122 147 176 
7 11 17 25 34 45 57 72 89 107 

450 15 23 34 47 63 81 102 125 152 181 
7 12 18 25 35 46 59 74 91 110 

500 15 24 35 49 65 83 105 129 156 186 
7 12 18 26 36 47 61 76 94 113 

550 16 25 36 50 66 85 107 132 159 190 
7 12 19 27 37 49 62 78 96 116 

600 16 25 37 51 68 87 110 135 163 194 
7 13 19 27 38 50 64 80 98 119 

650 16 26 38 52 69 89 112 137 166 198 
0 1") 1')(\ 1')0 ')0 1:'1 r:r 011 111"\1"\ 121 U I") LV La ,)0 ;:)1 0;:) 01 IUU 

700 17 26 38 53 70 91 114 140 169 202 
8 13 20 29 39 52 66 83 102 123 

750 17 27 39 54 72 92 116 142 172 205 
8 13 20 29 40 53 67 84 104 126 

800 17 27 40 55 73 94 118 145 175 209 
8 14 21 30 40 53 68 86 105 128 

850 18 28 40 56 74 95 119 147 178 212 
8 14 21 30 41 54 70 87 107 129 

900 18 28 41 56 75 97 121 149 180 215 
8 14 21 30 42 55 71 88 100 131 

950 18 28 41 57 76 98 123 151 183 218 
8 14 22 31 42 56 71 90 110 133 

1000 18 29 42 58 77 99 124 153 185 220 
9 14 22 31 43 56 72 91 III 135 
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TABLE 25 EFFECTIVE VELOCITY PRESSURES FOR OPEN 
COUNTRY EXPOSURE AND 2% DAMPING 

Basic Wind Velocity (mph) 
Height 
~ft) 50 60 70 80 90 100 110 120 130 140 

50 8 12 18 24 32 42 52 64 77 91 
2 4 6 10 13 18 24 30 37 46 

100 9 15 21 29 39 50 62 76 92 109 
3 6 9 13 18 24 31 39 48 58 

150 10 16 24 33 43 55 69 85 102 121 
4 7 10 15 20 27 35 44 54 65 

200 11 18 26 35 47 60 75 91 110 131 
4 7 11 16 23 30 38 48 59 71 

250 12 19 27 37 49 63 79 97 117 138 
5 8 12 18 24 32 41 51 63 76 

300 13 20 28 39 52 66 83 101 122 145 
5 8 13 19 26 34 43 54 66 80 

350 13 20 30 41 54 69 86 105 127 151 
5 9 14 20 27 35 45 56 69 83 

400 14 21 31 42 56 71 89 109 131 156 
6 9 14 20 28 37 47 58 72 86 

450 14 22 32 43 57 73 92 112 135 161 
6 10 15 21 29 38 48 60 74 89 

500 14 22 32 45 59 75 94 115 139 165 
6 10 15 22 30 39 50 62 76 92 

550 15 23 33 46 60 77 97 118 142 169 
6 10 16 22 30 40 51 64 78 94 

600 15 23 34 47 62 79 99 121 146 173 
6 11 16 23 31 41 52 65 80 96 

650 15 24 35 48 63 81 101 123 149 176 
7 11 16 23 32 42 53 67 82 98 

700 16 24 35 49 64 82 103 126 151 180 
7 11 17 24 32 43 54 68 83 100 

750 16 25 36 49 65 84 104 128 154 183 
7 11 17 24 33 43 55 69 85 102 

800 16 25 37 50 66 85 106 130 157 186 
7 11 17 25 34 44 56 70 86 104 

850 16 26 37 51 67 86 108 132 159 189 
7 12 18 25 34 45 57 71 87 105 

900 17 26 38 52 68 88 109 134 161 191 
7 12 18 26 35 46 58 72 89 107 

950 17 26 38 53 69 89 111 136 163 194 
7 12 18 26 35 46 59 73 90 108 

1000 17 27 39 53 70 90 112 137 165 196 
7 12 18 26 36 47 60 74 91 110 
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TABLE 26 EFFECTIVE VELOCITY PRESSURES FOR OPEN 
COUNTRY EXPOSURE AND 5% DAMPING 

Basic Wind Velocity (mph) 
Height 

(ft) 50 60 70 80 90 100 110 120 130 140 

50 6 11 16 21 28 36 45 55 66 78 
0 1 3 5 7 10 14 18 23 28 

100 8 13 19 26 34 43 54 66 79 94 
2 3 5 8 11 15 20 26 32 39 

150 9 15 21 29 38 48 60 73 88 104 
2 4 7 10 14 19 24 30 37 45 

200 10 16 23 31 41 52 65 79 95 112 
3 5 8 11 16 21 27 34 41 50 

250 11 17 24 33 43 55 69 84 101 119 
3 6 9 12 17 23 29 36 45 54 

300 11 18 25 35 46 58 72 88 105 125 
4 6 9 13 18 24 31 39 47 57 

350 12 18 26 36 47 60 75 92 110 130 
4 6 10 14 19 25 33 41 50 60 

400 12 19 27 37 49 63 78 95 114 134 
4 7 10 15 20 27 34 42 52 63 

450 13 20 28 39 51 64 80 98 117 138 
4 7 11 15 21 28 35 44 54 65 

500 13 20 29 40 52 66 82 100 120 142 
4 7 11 16 22 29 36 45 56 67 

550 13 21 30 41 53 68 84 103 123 146 
5 8 12 17 22 29 38 47 57 . 69 

600 14 21 30 42 55 69 86 105 126 149 
5 8 12 17 23 30 39 48 59 70 

650 14 22 31 42 56 71 88 107 129 152 
5 8 12 17 24 31 39 49 60 72 

700 14 22 32 43 57 72 90 109 131 155 
5 8 13 18 24 32 40 50 61 74 

750 15 22 32 44 58 74 91 111 133 158 
5 8 13 18 25 32 41 51 62 75 

800 15 23 33 45 59 75 93 113 136 160 
5 9 13 19 25 33 42 52 64 76 

850 15 23 33 45 60 76 94 115 138 163 
5 9 13 19 26 33 43 53 65 78 

900 15 24 34 46 61 77 96 117 140 165 
5 9 14 19 26 34 43 54 66 79 

950 15 24 34 47 61 78 97 118 142 168 
6 9 14 20 26 35 44 55 67 80 

1000 16 24 35 47 62 79 98 120 144 170 
6 9 14 20 27 35 45 55 68 81 
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TABLE 27 MASS AND STIFFNESS FOR 25 STORY BUILDING(*) 

25 
24 
23 
22 
21 
20 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 

MASS STIFFNESS 
Kps 103 Kps/in. 

492 
3082 
4175 
2973 
2957 
2474 
3170 
3170 
3215 
3259 
3259 
3299 
3436 
3436 
3465 
3693 
3443 
3555 
3820 
3820 
3848 
4097 
4097 
4368 
4635 

0.3 
4.4 
5.3 
7.2 
7.3 
8.7 

10. 1 
10. 1 
13.3 
14.1 
14. 1 
16.3 
19.5 
19.5 
21.0 
21 .0 
21 .0 
23.2 
31.8 
31 .9 
33.4 
39.8 
39.5 
42.4 
28. 1 

* After Blume, Newmark and Corning (1961) 

TABLE 28 MASS AND STIFFNESS FOR 8 STORY BUILDING(*) 

1 
2 
3 
4 
5 
6 
7 
8 

STIFFNESS 
Kps/in. 

4005 
3483 
3606 
3493 
3914 
3373 
3045 
2409 

* After Nielsen (1968) 

MASS 2 
Kps sec lin. 

2.38 
2.38 
2.38 
2.38 
2.38 
2.38 
2.38 
4.24 
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TABLE 29 PRINCIPAL PROPERTIES OF 
JOHN HANCOCK CENTER 

Height 

Cross Section: 

Base 165 x 265 ft. 

Top 100 x 160 ft. 

Frequency E-W (Observed) 0.21 hertz 

Damping E-W (Observed) 0.4% 

TABLE 30 MEAN PRESSURES AND DISPLACEMENTS 
FOR JOHN HANCOCK CENTER 

July 25 
Velocity at top 59 ft/sec 

P 4.14 psi 
0 

Mean Linear mode 0.51 inch 

Deflection Cantilever mode 0.49 inch 

July 27 

42 ft/sec 

2.16 psi 

0.26 inch 

0.25 inch 
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TABLE 31 RESONANT RESPONSE AT TOP OF 
THE JOHN HANCOCK CENTER 

Velocity 

ft/sec 

42 

59 

Deflection at top of Structure (inches) 

Linear 
Mode 

0.031 

0.079 

Cantilever 
Mode 

0.030 

0.076 

Measured 

0.017 

0.042 
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APPENDIX A EVALUATION OF RESPONSE SPECTRA 

A-l Introduction. 

For evaluating the parameters associated with wind response spectra, 

namely equivalent pressure coefficients, amplification factors and correction 

functions, numerical integration techniques were employed. 

The response integral for the mean square response as defined by Eq. 

(2-68) has the following form: 

where 

. ·S(w) = 1/2n f 
o 

~ 

IJ(w)1 2 IH(w)1 2 S.(w) dw 
1 

S(w) is the mean square response as a function of frequency, 

(A-l) 

Si(w) is the power spectral density function of the input function, 

IJ(w)1 2 represents the correlation of the input loading. For a perfectly 

correlated load IJ(w)1 2 = 1. 

IH(w)1 2 is the frequency transfer function Eq. (2-48). 

In random vibration a narrow band approximation has been used generally 

for obtaining results of practical application. However, the narrow band 

approximation does not give good results when the natural frequency of 

vibration and the damping are relatively high. The narrow band approximation 

is extensively discussed in the literature (see, for example, Newmark and 

Rosenblueth (1975)). 

A-2 General Procedure for Computing Response Spectra Employing Random 

Vibration Techniques. 

In this study a new procedure for the evaluation of the response integral 

Eq. (A-l) was developed. This procedure is based on the premise that some 
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bounds of the response integral have an actual physical meaning which can 

be related to the spectral base lines and amplification factors employed 

in the deterministic analysis of dynamic loading. 

The evaluation technique developed in this study can be summarized 

as follows: 

1) A lower bound of the response can be computed as the static 

response of a rigid building. For a rigid building having an in­

finite frequency of vibration the function /H(w)/2 Eq. (2-48) is 

equal to one. Therefore the lower bound of the response is given 

by the expression: 

1 A =-27T o 
f 

00 
IJ(w)/2 Si(w) dw (A-2) 

2) An upper bound of the dynamic response can be computed by assuming 

that the pressures (forces) are perfectly correlated. A perfectly 

correlated pressure implies that the function /J(w)/2 is equal to one. 

Therefore an upper bound of the response is given by: 

_ 1 
B - 27T 

o 

00 
J I H ( w) /2 S i (w) dw (A-3) 

Moreover a dynamic amplification factor can be obtained by dividing 

Eq. (A-3) by its terminal value as follows: 

B C = ----00-----
1/27T J 

o 
(A-4) 
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The denominator of Eq. (A-4) is just the terminal value of Eq. 

(A-3), or in other words, the value of Eq. (A-3) when the 

natural frequency of the system approaches infinity. 

3) A correction function can be evaluated to interpolate 

between A and B as follows: 

00 

(",' S(w) 1/2n of Si(w) dw 
o = ~~ or D = ---=-~::-----A x B A x C (A-5) 

The products A x B x 0 or A x C x 0, depending on the definition of 0, give 

the exact value of the response integral Eq. (A-l). 

It can be seen that any two of the quantities A, B or 0 can be 

arbitrarily defined, but the third parameter is enforced by the evaluation 

of the response integral Eq. (A-l). 

For dynamic problems it is convenient to arbitrarily define the 

quantities A and C because it is possible to find physical meaning for 

both quantities. Indeed, A is the equivalent base line or terminal line 

of the response spectrum. On the other hand, C has a meaning similar in 

concept to the amplification factors of deterministic analysis. 

It is convenient to define A and C in a manner such that at a very 

high frequency (over 100 hertz) the effects of the correction function 

are negligible and the following relation is satisfied: 

S (w) = A x C 

Moreover since for a high frequency system the amplification function, 

C, approaches one the response is further simplified as follows: 
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S(w) = A 

w -+ 00 

Therefore, the value of A can be taken as the base line of the response 

spectrum. On the basis of the above definition of A and C, 0 must con­

verge to 1 at the high frequency, but does not converge to 1 in the low 

frequency range. The advantage of this normalization is that the ampli­

fied bounds of the response spectra will converge to the base line A in 

the high frequency range. 

The advantages of employing this evaluation procedure for the computa-

tion of the spectra are the following: 

1) Represents the exact response. 

2) A physical meaning can be associated with some of the parameter. 

3) Permits a graphical representation and a simple computation 

similar to the familiar earthquake response spectra. 

A-3 Evaluation of Effective Pressure Response Spectra for Wind Loading. 

The procedure described in the previous Section will be employed now 

to evaluate the response spectra for wind loading. 

Equivalent pressure coefficients -- In order to compute the equivalent 

frequency coefficients, P , as the root mean square of a rigid system the 
r 

frequency transfer function has by definition a numerical value equal to 

one. In this case, the mean square response, Eq. (A-l), is reduced to the 

following expression: 

where 

00 

A = Sr = 1/2n J IJ(w)1 2 Sv(w) dw 
o 

(A-6) 
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Sv is the power spectral density function of the wind velocity, IJ((JJ)1 2 

is the aerodynamic transfer function that will be evaluated herein. 

The effective pressure coefficients as defined in Section 4-3 are 

given by the square root of Eq. (A-6). 

To obtain the numerical value of Eq. (A-6), the aerodynamic transfer 

function IJ(w)1 2 has to be evaluated. The function IJ(w)1 2 represents an 

average value of the intensity of the fluctuating pressure over the complete 

face of the structure. Therefore the square of the equivalent pressure co-

efficients can be written as follows: 

S = ~- J (Xl S (w) Jh Jh Jb Jb 
r 2n 0 v 0 0 0 0 

(A-7) 

The functions Ru and Sv(w) have been defined in Chapter 3. Comparison of 

Eq. (A-6) and Eq. (A-7) shows that the quantity /J(u.))1 2 is defined as 

fo 11 ows : 

Simiu and Lozier (1975) have presented a procedure based on Montecarlo 

integration techniques to carry out the four fold integration. Once the 

four fold geometrical integral has been evaluated, the integration along 

the frequency line can be accomplished by employing Simpson's rule or any 

other one dimensional integration technique. 

In this study the procedure proposed by Simiu and Lozier was employed 

for computing the geometrical integral (four fold integral in y,yU z and Zl) 

and then SimpsonDs rule was used for the integration on the frequency line. 

The operation was repeated for a large number of cases for various values of 
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altitude, aspect ratio and types of exposure conditions, namely center of 

cities and open country_ The effective pressure coefficients can be com-

puted by taking the square root of Eq. (A-7). These results have been 

presented in Figs. 13 and 14. 

Amplification factor -- The numerical evaluation of the amplification 

factors is simpler than that required for the equivalent pressure co­

efficients because the correlation function is defined to be equal to one 

and the four fold integration is eliminated. 

The amplification factors have been defined in Section 4-3 as the 

square root of Eq. (A-4). For wind, Eq. (A-4) is written as follows: 

O
f CXJ I H (w) /2 S v ( w ) dw 

C =(Amp (w) )2 = ----------
CXJ 

(A-B) 

The numerator of Eq. (A-B) represents the response of a perfectly correlated 

single degree of freedom. The denominator of Eq. (A-B) is the terminal 

value of the numerator. In this manner the amplification factors will 

be always equal to or larger than one, converging to one in the high 

frequency range. The denominator has to be evaluated only once during the 

computation of the amplification factors. On the other hand the numerator 

should be calculated for a large sample of oscillators with various fre-

quencies of vibration and excited by different levels of wind velocities. 

The numerical techniques required for the evaluation of the amplification 

factors are reduced to only one dimensional numerical integration along the 

frequency line which was carried out by employing the Simpson1s rule procedure. 

Results of the evaluation of the square root of Eq. (A-B) have been presented in 
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Correction function -- The evaluation of the correction function in-

volves a combination of both the effective pressure coefficients and the 

amplification factors. The correction function as defined by Eq. (A-5) 

has the following form for wind input: 

00 

IJ(w)1 2 2 
00 

J S (w) I H (w) I dw J S (w) dw v v 
Sc(w) 

0 0 D (A-9) = = J (X) IJ(w)1 2 00 2 
Sv(w) dw J S v ( w) I H ( w) I dw 

0 0 

where 

Joo IJ(w)1 2 Sv(w)IH(w)1 2 dw is the total response given by Eq. (A-3), o . 

1 

Sv(w) dw is the denominator of the amplification factor Eq. (A-B), 
o 

Joo I 12 H(w) 5v(w) dw is the numerator of the amplification factor Eq. (A-B), 
o 

Joo IJ(w)1 2 Sv(w) dell is the effective pressure coefficient Eq. (A-7). 
o 

It is easy to see that the effects of the exposure are canceled out 

and the correction function is expected to be a function only of the fre-

quency, velocity, damping and geometric properties of the structure. During 

the computation of the correction function it was found that it has a strong 

dependency with the damping and the ratio f x h/V. However, the aspect 

ratio has a small effect in the correction function and this dependency 

was ignored. The results of the evaluation of the square root of Eq. (A-9) 

have been presented in Fig. 19. 




