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A Novel Hybrid Framework for Co-Optimization of
Power and Natural Gas Networks Integrated with

Emerging Technologies
Mohammad Amin Mirzaei, Morteza Nazari-Heris, Student Member, IEEE, Behnam Mohammadi-Ivatloo, Senior

Member, IEEE, Kazem Zare, Senior Member, IEEE, Mousa Marzband, Senior Member, IEEE, and Amjad
Anvari-Moghaddam, Senior Member, IEEE

Abstract—This paper presents a novel hybrid information gap
decision theory (IGDT)-stochastic co-optimization problem for
integrating electricity and natural gas networks to minimize
total operation cost with the penetration of wind energy. The
proposed model considers not only the uncertainties regarding
electrical load demand and wind power output but also the
uncertainties of gas load demands for the residential consumers.
The impact of gas load uncertainty associated with the residential
consumers is more significant on the power dispatch of gas-fired
plants and power system operation cost since residential gas load
demands are prior than gas load demands of gas-fired units. The
proposed framework is a bi-level problem that can be reduced to
a one-level problem. Also, it can be solved by the implementation
of a simple concept without the need for Karush-Kuhn-Tucker
(KKT) conditions. Moreover, emerging flexible energy sources
such as the power to gas (P2G) technology and demand response
(DR) program are considered in the proposed model to facilitate
integration of renewable energy sources and to decrease the
total operation cost of the integrated network. Numerical results
indicate the applicability and effectiveness of the proposed model
under different working conditions.

Index Terms—hybrid IGDT-stochastic, co-optimization of
integrated gas and power system, power-to-gas (P2G) technology,
demand response (DR) program, wind power.

NOMENCLATURE
Indices

t time periods
i thermal units
l natural gas loads
s scenarios
r wind power plants
sp natural gas suppliers
pl pipelines
m, n nodes in natural gas network
st natural gas storage systems
k P2G technology
b, b’ buses
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j loads
L transmission lines

Constants
NT Number of time periods
NGL Number of natural gas loads
NU Number of non-gas fired units
NS Number of scenarios
NSP Number of gas suppliers
NST Number of gas storages
NR Number of wind power plants
NB Number of buses
GU Number of gas-fired units
Pmaxi , Pmini Min/Max capacity of thermal unit i (MW)
RU i, RDi Ramp up/down thermal unit i (MW)
TOn
i , TOff

i Minimum up/down time of unit i (h)
XL Reactance of line L (Ohm)
PFmaxL Maximum capacity of line L (MW)
Dj,t,s Expected hourly load (MW)
Cpl Constant of pipeline pl (kcf/Psig)
πmax
m , πmin

m Max/Min pressure (Psig)
Umax

sp , Umin
sp Max/Min natural gas injection (kcf)

Lmax
l , Lmin

l Max/Min natural gas load (kcf)
U out

s,max, U in
s,max Max release/store capacity of gas storage (kcf)

ηin
s , ηout

s Storing/releasing efficiency of gas storage
ηp2g
k Efficiency of P2G technology
Emax
s , Emin

s Max/min gas stored in gas storage system (kcf)
CSUP

sp Operation cost of natural gas supplier sp ($)
CGST

st Operation cost of gas storage ($)
Decision variables

FCi Cost function of thermal unit i
SU i, SDi Start-up / Shut-down cost of unit i
F gas unit
i,t,s Fuel function of gas-fired unit i
Fpl,t,s Gas flow on pipe pl
Pi,t,s Dispatch of unit i
Ii,t,s Binary on/off status indicator of unit i
πm,t,s Pressure of natural gas node m
Usp,t,s Gas delivery of supplier
Xon
i,t−1,

Xoff
i,t−1

On/Off time of unit i

LGm,t,s Natural gas load connected to node m
Pr,t,s Dispatch of wind power
PFL,t,s Line flow at line L
δb,t,s Voltage angle of network buses
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P p2gk,t,s Dispatch of P2G technology
Up2gk,t,s Natural gas production of P2G technology
U in

st,t,s, U
out
st,t,s Storing/Releasing rate of gas storage

Est,t,s Natural gas stored in gas storage system
DRj,t,s Adjustable load
dDR
j,t,s Load after implementation of DR program
DRmaxj,t Load shiftable factor as present
πs Probability of each scenario

I. INTRODUCTION

THE penetration of renewable energy sources such as
wind turbines and photovoltaics have been dramatically

increased due to concerns on the reduction of fossil fuels
and global issues of greenhouse gases emissions [1], [2]. The
speculation of 2182 TWh wind power generation by 2030,
reported by International Energy Agency (IEA), highlights
such contribution of renewable sources in supplying demand
in power systems [3]. However, the variation of wind power
generation with respect to the forecasted amount and uncertain
nature of such energy source makes it important to find an
appropriate strategy to control such situations. A practical
solution for handling the above-mentioned issue is to develop
natural gas-fired generation plants, which can not only of
decrease emissions of pollutant gases up to 60% compared
to the coal-fired plants, but also deal with the variation of
renewable energy generation by high ramp-rates and fast
start-up characteristics [4]. In addition, introduction of shale
gas production technology in U.S.A had a significant effect
on reducing the natural gas price leading to extending gas
combined-cycle plants. The statistics proves considerable
alteration in employing gas-fired plants in power systems
such as growth rate of gas consumption in U.S.A for power
generation to 39% in 2012. The impactful role of natural gas is
observed not only in expansion of natural gas-fired plants but
also in employment of power to gas (P2G) technology. P2G
as a novel approach for storing energy as natural-gas plays
an important role for accommodation of renewable energy
variability [5]. Accordingly, a heated topic on integrated
energy systems has enlivened the previous studies regarding
interdependency of electrical and gas networks according to
the influence of natural gas-fired units and P2G systems.

Integrated electricity and gas networks are hotly studied
in recent publications focusing on co-optimization models of
such networks, as well as technologies developed such as P2G
system and demand response (DR) programs. Several works
have concentrated on proposing approaches for relaxation
of coupling constraints including a convex relaxation model
[6], Lagrangian relaxation [7], Benders decomposition [8],
and alternating direction method of multipliers [9]. A
security-constrained model for integrated gas and electricity
networks has been proposed investigating the effect of gas
pipelines disruptions and power transmission losses [10].
A bi-level framework for co-optimization of integrated gas
and electricity networks has been introduced in [11] with
two agents, where the former agent aims at minimizing
the operation cost of the integrated network, and the latter
one seeks to maximize the profit of private owners. A
bi-level model for the optimal operation of integrated gas

and electricity networks is presented in [12], which intends to
study the operation of the electricity network and supplying the
gas network in upper-level and lower-level, respectively. The
authors have analyzed the impact of cooperation of gas-fired
power generation plants in integrated networks and energy
market considering gas network constraints [13]. The role of
the P2G system in optimal management of integrated networks
is studied proposing a robust framework [14].

Information gap-decision theory (IGDT) is introduced as a
high-performance modeling concept for studying uncertainties
of systems’ parameters and data, which does not need the
probability distribution function of the uncertain parameters
in contrast with conventional methods such as Monte
Carlo simulation method and scenario-based programming
procedure. Moreover, one other advantage of the IGDT is to
provide flexible different strategies for the operator since the
radius upper bound of the uncertain parameter is not needed
to be known when employing this method. In other words,
IGDT determines the maximum uncertainty radius of the
uncertain parameters by satisfying the objective function in the
predefined interval. Notable efforts have been made in the area
of studying uncertainty in electrical energy networks such as
bidding strategies in the power systems [15], unit commitment
[16] and restoration of electrical distribution systems [17],
self-scheduling of generation companies [18].

Table I indicates the comparison of the main contributions of
the literature and the proposed model in studying the integrated
gas and electricity networks by providing summarized cases
on the remarkable contribution of models. In comparison with
the literature, this study presents a new IGDT-stochastic-based
model for the optimal operation of integrated power and
gas systems in the presence of wind power and emerging
technologies. The proposed model makes it possible to deal
with uncertainties associated with both power and gas systems
in contrast with the recent studies, where robust and stochastic
modeling methods are applied to investigate the uncertain
parameters in optimal operation of integrated gas and power
systems, and the uncertainties of the gas network are not taken
into account. The main contributions of this paper can be
summarized as follows:

1) The proposed hybrid IGDT-stochastic framework takes
advantages of both IGDT and stochastic programming
methods, which makes the use of two risk-seeker and
risk-averse strategies for modeling the uncertainty of
residential gas load. This is effective in increasing the
flexibility of the decision-making process of the network
operator in overcoming such uncertainties, however, the
robust model only considers the undesirable impact
of the uncertain parameter. Also, the proposed hybrid
method aims to determine the forecast error of uncertain
parameter (i.e., residential gas load) with respect to
its predicted value, where the error is obtained by
the desirable operation cost of the network operator.
Accordingly, the uncertainty radius is not known in
contrast to the robust optimization method.

2) The presented hybrid IGDT-stochastic model is a bi-level
problem, which can be changed to a single-level problem
and can be solved with a simple approach without
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requiring the KKT conditions.
3) The uncertainties of both gas and power networks are

considered in the proposed hybrid model. On the contrary,
recent studies considered only the uncertainties of the
power system. The proposed hybrid IGDT-stochastic
model addresses the uncertainties regarding wind power
output and power and residential gas load demands,
where the Montel Carlo simulation method is applied
for modeling the power system uncertainties and IGDT
is employed to deal with the uncertainty of natural gas
system.

4) The emerging technologies in power and gas networks
such as DR programs and P2G technology are taken
into account to boost the flexibility of the integrated
network. Moreover, the influence of such technologies is
investigated in increasing and decreasing the penetration
of wind power and the operation cost of the system,
respectively.

II. PROBLEM FORMULATION BASED ON HYBRID
IGDT-STOCHASTIC APPROACH

The mutual connection of gas and electricity networks
has been increased considering the increment of integrated
gas-fired plants in the power systems. Accordingly, the
solution of optimal management regarding the integrated
network needs to consider not only the uncertain parameters
of the electricity network but also the uncertainties associated
with the gas network since the consideration of uncertainties
associated with the gas network parameters plays a significant
role in the commitment of gas-fired plants in power systems.
In this paper, the uncertainties of electrical load demand, wind
power output, and the residential gas load consumer have been
estimated by IGDT approach.

A. Problem formulation based on Stochastic programming

In this section, the co-optimization problem of integrated
gas and electricity networks is explained based on a stochastic
model that is performed by Monte Carlo simulation method.
The objective function and constraints are defined as follows:

1) Objective function: The main objective of the presented
model is to minimize the operation cost in the integrated
networks in presence of wind energy and emerging
technologies. Equation (1) indicates the objective function of
the proposed model, which is defined as the costs associated
with coal-fueled generation units, natural gas-fired plants and
operation cost of the gas storage system.It is notable that the
cost of gas-fired units is considered in the cost of gas suppliers.

min
∑NT

t=1

∑NS
s=1 πs


∑NU

i=1

[
FC
i (Pi,t,s) + SUi,t + SDi,t

]
+
∑NSP

sp=1 C
SUP
sp Usp,t,s

+
∑NST

st=1 C
GST
st Uout

st,t,s


(1)

The objective function should be optimized considering
several constraints including coal-fueled and natural gas-fired
plants, natural gas storage, P2G system, DR program,
electrical network and gas systems, which are described in
the following.

2) Unit commitment constraints: The power generated by
the non-gas fired and gas-fired plants should be restricted to
the upper and lower bounds as stated in (2). Ramp-up and
ramp-down rates for generation plants are formulated as (3)
and (4), respectively. The relation between auxiliary variables
applied in ramp-up and ramp-down rates are pointed out in (5)
and (6). Equations (7) and (8) indicate that each generation
plant should be limited by minimum up-time and down-time
constraints. Also, (9)-(12) show the start-up and shut-down
cost of non-gas-fired units and gas consumption associated
with start-up and shut-down of gas-fired plants.

Pmin
i Ii,t ≤ Pi,t,s ≤ Pmax

i Ii,t (2)

Pi,t,s − Pi,t−1,s ≤ (1− Yi,t)Rupi + Yi,tP
min
i (3)

Pi,t−1,s − Pi,t,s ≤ (1− Zi,t)Rdni + Zi,tP
min
i (4)

Yi,t − Zi,t = Ii,t − Ii,t−1 (5)

Yi,t + Zi,t ≥ 1 (6)

(Xon
i,t−1 − T oni ) (Ii,t−1 − Ii,t) ≥ 0 (7)

(Xoff
i,t−1 − T

off
i ) (Ii,t − Ii,t−1) ≥ 0 (8)

SUi,t ≥ sui (Ii,t − Ii,t−1) i /∈ GU (9)

SDi,t ≥ sdi (Ii,t−1 − Ii,t) i /∈ GU (10)

SUGi,t ≥ sugi (Ii,t − Ii,t−1) i ∈ GU (11)

SDGi,t ≥ sdgi (Ii,t−1 − Ii,t) i ∈ GU (12)

3) Demand response program constraints: In this paper, the
proposed DR program is modeled as shiftable approach. In this
concept, the responsive loads can be programmed to run within
a particular time due to lower electricity prices. Equation (13)
demonstrates the network load after the execution of the
DR program. Equation (14) presents the limitation of the
shiftable load at each hour. Equations (15) and (16) indicate
the boundary of the variation rate of sensitive loads to price
in continuous time intervals. Finally, (17) shows the curtailed
load as the determined time should be shifted to another time.

dDRj,t,s = Dj, t,s +DRj,t,s (13)

|DRj,t,s| ≤ DRmax
j,t Dj,t,s (14)

dDRj,t,s − dDRj,t−1,s ≤ ∆dup
j

(15)

dDRj,t−1,s − dDRj,t,s ≤ ∆ddn
j

(16)

NT∑
t=1

DRj, t, s = 0 (17)

4) Power system security constraints: Equation (18) shows
that the power balance of the network should be taken into
consideration to ensure the supply of power load demand by
the generation plants and power flow through system lines.
Moreover, (19) and (20) demonstrate DC power flow and the
line capacity limitation of DC power flow, respectively.
NUb∑
i=1

Pi,t,s+

NRb∑
r=1

Pr,t,s−
NKb∑
k=1

P p2gk,t,s−
NJb∑
j=1

dDRj,t,s =

NLb∑
l=1

PFL,t,s

(18)

PFL,t,s =
δb, t,s − δb′ , t,s

xL
(19)

−PFmax
L ≤ PFL,t,s ≤ PFmax

L (20)
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TABLE I: Comparison of the literature with the current work

Reference Co-optimization Uncertainties Uncertainty Flexible
modeling Technologies

Gas load Electric load Wind Line outage P2G DR
[19] X X Stochastic
[20] X X Stochastic
[21] X X Stochastic X
[14] X X X Robust X
[22] X X X Robust X
[23] X X Robust
[24] X X X X Robust
[25] X X X Stochastic

Proposed X X X X IGDT-Stochastic X X

5) Natural gas storage: The natural gas storage system
has been considered in this study to inject the storage gas
to the integrated network for flattening the gas load profile.
The gas storage unit can be utilized as an appropriate option
when the gas load cannot be supplied due to the limitation
of the gas capacity supplier or gas transmission pipeline
capacity. Equations. (21) and (22) restrict the storage and
release capacity of the gas storage. The storage balance
and capacity limitations are provided by (23) and (24),
respectively. Also, (25) and (26) meet the initial and final
requirements of the natural gas storage unit.

0 ≤ Uoutst,t ≤ Uoutst,max (21)

0 ≤ U inst,t ≤ U inst,max (22)

Est, t, s = Est, t−1, s + ηinstU
in
st, t, s −

Uoutst, t, s

ηoutst

(23)

Emin
st ≤ Est, t, s ≤ Emax

st (24)

Est, 0, s = Est, intial, s (25)

Est, 0, s = Est, end, s (26)

6) Natural gas network constraints: The natural gas flow
through the gas pipeline is provided in (27) and (28), which
is a function of gas pressure at two ends of the pipeline.
Equation (29) specifies the connection of residential gas
demands and gas-fired units to each node of the gas system.
The consumption of gas by gas-fired generation plants is
formulated in (30), which is connected to a gas storage unit.
Also, (31) considers the P2G system as a gas supplier. The
limitation of gas supplier and node pressure are mentioned
in (32) and (33). Finally, (34) indicates the natural gas balance
considering gas suppliers, gas load, gas injected by P2G
system, and gas flow through the gas pipeline.

Fpl,t,s = sgn(πm,t,s, πn,t,s) Cm,n

√∣∣π2
m,t,s − π2

n,t,s

∣∣ (27)

sgn(πm,t,s, πn,t,s) =

{
1 πm,t,s ≥ πn,t,s
−1 πm,t,s ≤ πn,t,s

(28)

LGm,t,s =

NGm∑
g=1

RGg,t +

NGUm∑
i=1

F gasi,t,s i ∈ GU (29)

F gasi,t,s = αi + βiPi,t,s + γiP
2
i,t,s + SUGi,t + SDGi,t

+
∑NSi

s=1 (U ins, t,s − Uouts, t,s) i ∈ GU
(30)

Up2gk,t,s = ϕP p2gk,t,s η
p2g
k (31)

NSPm∑
sp=1

U
sp,t,s

− LGm,t,s +

Nkm∑
k=1

Up2gk,t,s =

NPLm∑
pl=1

Fpl,t,s (32)

πmin
m ≤ πm,t,s ≤ πmax

m (33)

Umin
sp ≤ Usp,t,s ≤ Umax

sp (34)

7) Hybrid IGDT-stochastic framework: In this paper, an
IGDT-stochastic model is proposed to minimize the total
operation cost, which is a co-optimization problem for
integrating electricity and natural gas networks. The proposed
hybrid model is described in algorithm. (1) in details.
Moreover, it differs from the stochastic programming method
in three aspects: 1) In stochastic programming only based on
scenarios, the load demand is a function of scenarios, where
the increment of the calculations has a direct relationship with
the number of scenarios. On the other hand, IGDT requires
no scenario generation. 2) In stochastic programming only
based on scenarios, the probability distribution of uncertain
parameter is needed to model; however, such function is
not required in IGDT model. 3) In the proposed model, the
decision makers can decide on two various strategies when
encountering with the uncertain parameter, which increases the
flexibility of decision making in response to the uncertainties
of the system parameters.
Algorithm 1 THE PROPOSED HYBRID IGDT-STOCHASTIC
FRAMEWORK
Require: Data collection

Data collection regarding power demands, wind power and residential gas loads.
1) Scenario Generation (uncertainty methods)

Application of data and probability distribution function for scenario generation of
power demands and wind power

2) Scenario Reduction
Application of Fast-Backward approach for reducing the number of scenarios

3) Stochastic programming (Eqs. (1)-(34))
Stochastic programming

4) Calculation (Eq. (1))
Calculation of the operation cost

5) Uncertainty modeling (Eqs. (35)-(53))
Modeling the uncertainty of residential gas load using IGDT method

6) Risk-averse: Eqs. (36)-(44)
Application of risk-averse strategy

7) while dr = dr−1 do Increment of cost deviation factor: dr = dr−1, r=1,...,
NR obtaining optimal robustness factor

8) end while
9) Risk-seeker (Eqs. (45)-(53))

Risk-seeker strategy (opportunistic)
10) while dp = dp−1 do Decrement of cost deviation factor: dp = dp−1, p=1,...,

NP obtaining optimal opportunistic factor Save the variables
11) end while

The uncertainty in an optimization problem using IGDT
is modeled as (35), where U is the set of input uncertain
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parameter. Ψ is the predicted amount of the uncertain
parameter Ψ. Also, the deviation lower bound of the uncertain
parameter from the predicted amount is defined by ε . This
parameter is introduced as an uncertain unknown radius of
the decision maker.

U = U(
−
Ψ, ε) =

Ψ :

∣∣∣∣∣∣Ψ−
−
Ψ

−
Ψ

∣∣∣∣∣∣ ≤ ε
 (35)

In the proposed hybrid IGDT-stochastic model, the system
operator can present two strategies to control the uncertainty
of the system, which is discussed as follows:

8) Risk-averse strategy: In this strategy, the operator
separates the uncertain parameter having an undesirable effect
on the objective function. Given that the main goal of this
paper is to reduce the total operation cost, the risk-averse
utilizes a schedule to overcome the decrement of operation
cost resulting from the undesirable variation of the residential
gas load from the predicted value. Hence, the mathematical
model of the risk-averse can be formulated as follows:
α(X,∆C) =Max

 ε :

 Max

Ψ∈U(
−
Ψ, ε)

OF ≤ ∆C = (1 + dr)OFb

 (36)

∆C defines the critical value of operation cost. dr is critical
level of operation cost. Also, OFb is the operation cost in
the base condition, where the uncertain parameter has no
variation concerning the predicted value. Moreover, renewable
sources are not considered in the base condition. X is also
an array containing the decision variables. The main aim of
implementing the IGDT model for the operator is to decrease
the radius of the uncertain parameter between the uncertain
and forecasted values, which is proposed as a bi-level problem
in (37)-(40).

α = Max ε (37)

Subject to:

max
NT∑
t=1

NS∑
s=1

πs


∑NU

i=1

[
FC

i (Pi,t,s) + SUi,t + SDi,t

]
+

∑NSP
sp=1 C

SUP
sp (Usp,t,s)

+
∑NST

st CGST
st Uout

st,t,s

 ≤ ∆C (38)

(1− ε)
∧

RGg,t ≤ RGg,t ≤ (1 + ε)
∧

RGg,t (39)

Eqs. (2)− (34) (40)

The reduction of the residential gas load has a positive
influence on operation cost. In other words, the increment of
the gas load has an undesirable effect. Accordingly, in the
proposed risk-averse model, the maximum operation cost is
related to the condition that the gas load is increased with
respect to the predicted value. Thus, the proposed bi-level
model in (37)-(40) is converted to a single-level problem as
pointed out by (41)-(44).

α(X,∆C) = Max ε (41)

Subject to:
NT∑
t=1

NS∑
s=1

πs

[ ∑NU
i=1

[
FC

i (Pi,t,s) + SUi,t + SDi,t

]
+

∑NSP
sp=1 C

SUP
sp (Usp,t,s) +

∑NST
st CGST

st Uout
st,t,s

]
≤ ∆C

(42)

LGm,t,s =

NGm∑
g=1

RGg,t(1 + ε) +

NGUm∑
i=1

F gasi,t,s (43)

Eqs. (2)− (28) and Eqs. (30)− (34) (44)

9) Risk-seeker (RS) strategy: It should be mentioned that
the uncertainty of parameters does not always have the
detrimental effect on the objective function. Consequently, RS
strategy is introduced for taking into account the situation that
the objective function takes advantage of positive effect of the
uncertain parameter. Actually, the aim of the decision maker
is to provide lower objective function than the basic condition
value. The formulation of the objective function regarding the
RS strategy (called opportunity function) is stated as follows:

β(X,∆C) =

min

 ε :

 Min

Ψ∈U(
−
Ψ, ε)

OF ≤ ∆C = (1− dp)OFb

 (45)

β(X,∆C) = Min ε (46)

Subject to:

min
NT∑
t=1

NS∑
s=1

πs


∑NU

i=1

[
FC

i (Pi,t,s) + SUi,t + SDi,t

]
+

∑NSP
sp=1 C

SUP
sp (Usp,t,s)

+
∑NST

st CGST
st Uout

st,t,s

 ≤ ∆C (47)

(1− ε)
∧

RGg,t ≤ RGg,t ≤ (1 + ε)
∧

RGg,t (48)

Eqs. (2)− (34) (49)

dp is optimistic level of operation cost. As previously
mentioned, the reduction of the residential gas load has
a positive impact on the operation cost. Therefore, in the
introduced risk-seeker framework, the minimum operation cost
belongs to the situation that the gas load is decreased regarding
the forecasted amount. Consequently, the single-level problem
in (50)-(53) can be presented instead of the proposed bi-level
model in (45)-(48):

β(X,∆C) = Min α (50)

Subject to:
NT∑
t=1

NS∑
s=1

πs

[ ∑NU
i=1

[
FC

i (Pi,t,s) + SUi,t + SDi,t

]
+

∑NSP
sp=1 C

SUP
sp (Usp,t,s) +

∑NST
st CGST

st Uout
st,t,s

]
≤ ∆C

(51)

LGm,t,s =

NGm∑
g=1

RGg,t(1− ε) +

NGUm∑
i=1

F gasi,t,s (52)

Eqs. (2)− (28) and Eqs. (30)− (34) (53)

III. CASE STUDY AND SIMULATION RESULTS
The introduced framework has been implemented on a

test system for determining the efficiency of the model. The
proposed case study, which is depicted in Fig. 1, is an
integrated 6-bus electrical network to a 6-node gas system. The
coefficients of operation cost and operational characteristics
of the thermal plants are adapted from [19]. The information
of forecasted wind power generation, the electricity load, and
residential gas load demands are demonstrated in Fig. 1.

The proposed mixed integer non-linear programming
(MINLP) model is solved in GAMS environment using
DICOPT solver. The forecasted error of uncertain parameters
is based on a normal distribution function with a 5% and
10% standard deviation for the electric load and wind turbines,
respectively. A thousand scenarios are generated using Monte
Carlo simulation approach, which is reduced to five scenarios
utilizing Fast-Backward approach. Four case studies are taken
into account to ensure the practicality and effectiveness of the
proposed framework as follows:
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Fig. 1: The proposed case study

Fig. 2: Forecasted wind power, electric load and residential
gas load

A. Case 1: stochastic co-optimization of integrated gas and
electricity networks without considering P2G technology and
DR program

In this case, the uncertainties of the integrated network
include the power generation of the wind turbines and the
electric load of the network. The interaction between the wind
power dispatch and natural gas storage without considering
P2G is shown in Fig. 3. The analysis of this figure proves the
extreme dependency of the gas and power networks to each
other. In other words, the gas storage stored the natural gas
when wind power dispatch is increased, and injected the stored
gas to node 1 of the gas network when the wind power dispatch

Fig. 3: Relation between natural gas storage and wind power
dispatch

Fig. 4: The impact of DR program on electricity load profile
and power dispatch of unit G2

is decreased. Accordingly, the natural gas storage makes it
possible to supply gas to the gas-fired plant G1 in peak hours
when encountering gas supply shortage in the gas network.
This is effective in cooperation of high-cost generation plants
and decrement of the system operation cost. The operation
cost of the system in this case study is equal to $114604.998.

B. Case 2: stochastic co-optimization of integrated gas and
electricity networks considering DR program

In this case study, the effect of DR programs is investigated
on the operation of integrated gas and power networks. The
load participation factor (LPF) of the DR program is assumed
to be 10%. The impact of the DR program on the load profile
concerning the system and power dispatch of the expensive
generation plant G2 is depicted in Fig. 4. As seen in this
figure, the electric load demand is shifted from on-peak hours
to off-peak hours, which leads to the participation reduction
of plant G2 in supplying electric load demand. It should be
mentioned that the generation of plant G2 is decreased to
82.933 MWh with regards to the production of 320.85 MWh
in Case 1. Table II indicates the influence of the application
of DR program with various LPF on the operation cost of
the power and gas systems. As it is obvious from the results,
the operation cost of power and gas systems and consequently
total operation cost is reduced. Moreover, by enhancing the
LPF, the wind power dispatch is increased due to the increment
of load demand in off-peak hours.
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TABLE II: The impact of LPF of DR on the operation cost
and dispatched wind power

LPF in DR program (%) 2 4 6 8
Gas system operation cost ($) 134545.4 134554.14 134689.51 134810.37
Power system operation cost ($) 10207.96 8067.604 6974.621 5962.375
Total operation cost ($) 143744.91 142621.74 141664.13 140772.75
Dispatched wind power (MWh) 1451.133 1471.767 1492.364 1511.973

Fig. 5: Expected wind power dispatch for different cases

C. Case 3: stochastic co-optimization of integrated gas and
electricity networks considering P2G technology and DR
program

In this situation, P2G technology and DR program are
considered simultaneously. Fig. 5 and Table III provide the
effect of P2G technology on the total operation cost of the
system and wind power dispatch in comparison with recent
studies. As can be seen, wind power dispatch is increased
in this case study with respect to recent cases since P2G
converts the extra wind power to gas in off-peak hours, and the
generated gas is used by natural gas consumers. The operation
cost of this case is decreased because this natural gas is
produced by extra wind power, which would be lost if it is not
used. The operation cost of the system, in this case, is equal
to $138794.506.
TABLE III: Operation cost and wind power dispatch in
different cases

Cases Case 1 Case 2 Case 3
Gas system operation cost ($) 134397.039 134898.33 134335.406
Power system operation cost ($) 10207.959 4459.1 4459.1
Total operation cost ($) 144604.998 139357.43 138794.506
Dispatched wind power (MWh) 1429.668 1531.450 1756.619

D. Case 4: hybrid stochastic IGDT co-optimization for cases
1-3

Under these circumstances, the uncertainty of residential gas
load is considered using IGDT. The operation cost in base
condition (i.e., Case 1) equals to $138794.506. The parameter
dr is increased from 0.01 to 0.1 by 0.01 steps to implement
the risk-averse strategy of IGDT. As it is obvious from Fig.
6, the robustness function α is boosted, which means that
the system operator can tolerate a wider range of gas load
uncertainty by the increment of dr. Also, the operator attains
a more robust decision making considering the uncertainty of
gas load demand by the increment of robustness parameter
dr. For instance, the robustness function for a value of 0.05
for without the presence of flexible units, is 0.065, which
means that a forecast error of 0.065 for gas load unacceptable
for the system operator by increasing the operation cost of

Fig. 6: Variation of robustness optimum function against
robustness parameter

Fig. 7: Power dispatch of units in risk-averse strategy

the network by 5%. Moreover, as can be seen in Fig. 6,
the robustness function has greater values in the presence
of flexible units that means the system operator can tolerate
wider ranges of uncertainty and consequently the uncertainty
of gas demand has a lower influence on the operation cost
of the system. The effect of robustness function on power
generation of units is demonstrated in Fig. 7, which indicates
that the power dispatch of gas-fired unit G1 is decreased by
the increment of the density of gas pipelines and lack of gas
served to this unit.

The opportunity parameter dρ is raised from 0.01 to 0.1 to
address the risk-seeker strategy, which resulted in a decrease
of operation cost from its base condition (i.e., $138794.506). It
can be observed from Fig. 8 that the network operator should
consider the gas load demand reduction by 4.35% concerning
its predicted value to attain an optimistic desirable operation
cost of (1-0.03) $134630.671 without considering flexible
units. The opportuneness function β has a direct relation with
increasing the amount of opportunity parameter dρ. Moreover,
as can be seen in this figure, when the emerging flexible units
are taken into account, the network operator attains to the
desired operation cost with a lesser optimistic error concerning
the condition that such units do not exist. Indeed, the network
operator considers optimistic error in the residential gas load
to attain a desirable operation cost of (1-0.04)×$138794.506.
Consequently, it results in the decrement of the operation cost
belong to the uncertainty associated with the residential gas
load demand.

IV. CONCLUSION

This study proposed a novel hybrid IGDT-stochastic
framework for co-optimization of integrated gas and power
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networks with penetration of wind turbines. The proposed
model considered uncertainties associated with both gas and
power networks, where the uncertainty of power system
including wind power output and load demand was modeled
using the scenario-based method, and the uncertainty of
gas network containing residential gas consumers was
estimated by applying IGDT. The proposed hybrid model took
advantages of both scenario-based modeling method and IGDT
and applied two risk-seeker and risk-averse strategies enabling
the network operator to make decisions on system operation
with higher inflexibility rate. Moreover, the effect of emerging
technologies such as demand response program and power
to gas (P2G) unit was studied in the proposed model. The
investigation of the presented model provides some remarkable
achievements in co-optimization of integrated gas and power
networks as follows:

1) The simultaneous consideration of emerging flexible
technologies was influential in decreasing total operation
cost of the system in comparison with the consideration
of such technologies individually.

2) The simultaneous presence of emerging flexible
technologies was beneficial in increasing the penetration
of wind power in the power system.

3) The network operator reaches the profit regarding the
emerging flexible technologies in both risk-averse and
risk-seeker strategies in a way that the operator was able
to take into consideration the risk against the uncertainty
of gas network in risk-averse strategy with the lower
cost. Also, the operator benefited from the risk in better
condition against the uncertainty in risk-seeker strategy.
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