299,938 research outputs found
Airborne Doppler radar for wind shear detection
There has been extensive discussion concerning the use of ground based Doppler radars for the detection and measurement of microburst features and the mapping of associated wind shears. Recent and planned research at Langley into technology and techniques useful for the future development of airborne Doppler weather radar systems for both turbulence and wind shear detection are addressed. Such systems, if successfully developed, would represent a marked increase in performance over airborne weather radars currently available. A principal difficulty in extending to airborne radars the capabilities of current ground based Doppler radars is emphasized
Cockpit display of hazardous wind shear information
Information on cockpit display of wind shear information is given in viewgraph form. Based on the current status of windshear sensors and candidate data dissemination systems, the near-term capabilities for windshear avoidance will most likely include: (1) Ground-based detection: TDWR (Terminal Doppler Weather Radar), LLWAS (Low-Level Windshear Alert System), Automated PIREPS; (2) Ground-Air datalinks: Air traffic control voice channels, Mode-S digital datalink, ACARS alphanumeric datalink. The possible datapaths for integration of these systems are illustrated in a diagram. In the future, airborne windshear detection systems such as lidars, passive IR detectors, or airborne Doppler radars may also become available. Possible future datalinks include satellite downlink and specialized en route weather channels
Solar Magnetic Feature Detection and Tracking for Space Weather Monitoring
We present an automated system for detecting, tracking, and cataloging
emerging active regions throughout their evolution and decay using SOHO
Michelson Doppler Interferometer (MDI) magnetograms. The SolarMonitor Active
Region Tracking (SMART) algorithm relies on consecutive image differencing to
remove both quiet-Sun and transient magnetic features, and region-growing
techniques to group flux concentrations into classifiable features. We
determine magnetic properties such as region size, total flux, flux imbalance,
flux emergence rate, Schrijver's R-value, R* (a modified version of R), and
Falconer's measurement of non-potentiality. A persistence algorithm is used to
associate developed active regions with emerging flux regions in previous
measurements, and to track regions beyond the limb through multiple solar
rotations. We find that the total number and area of magnetic regions on disk
vary with the sunspot cycle. While sunspot numbers are a proxy to the solar
magnetic field, SMART offers a direct diagnostic of the surface magnetic field
and its variation over timescale of hours to years. SMART will form the basis
of the active region extraction and tracking algorithm for the Heliophysics
Integrated Observatory (HELIO)
- …