385 research outputs found

    Proceedings of a Workshop on Polar Stratospheric Clouds: Their Role in Atmospheric Processes

    Get PDF
    The potential role of polar stratospheric clouds in atmospheric processes was assessed. The observations of polar stratospheric clouds with the Nimbus 7 SAM II satellite experiment were reviewed and a preliminary analysis of their formation, impact on other remote sensing experiments, and potential impact on climate were presented. The potential effect of polar stratospheric clouds on climate, radiation balance, atmospheric dynamics, stratospheric chemistry and water vapor budget, and cloud microphysics was assessed. Conclusions and recommendations, a synopsis of materials and complementary material to support those conclusions and recommendations are presented

    The contribution of convection to the stratospheric water vapor: the first budget using a Global-Storm-Resolving Model

    Get PDF
    The deepest convection on Earth injects water in the tropical stratosphere, but its contribution to the global stratospheric water budget remains uncertain. The Global Storm-Resolving Model ICOsahedral Non-hydrostatic is used to simulate the moistening of the lower stratosphere for 40 days during boreal summer. The decomposition of the water vapor budget in the tropical lower stratosphere (TLS, 10°S–30°N, and 17–20 km altitude) indicates that the average moistening (+21 Tg) over the simulated 40-day period is the result of the combined effect of the vertical water vapor transport from the troposphere (+27 Tg), microphysical phase changes and subgrid-scale transport (+2 Tg), partly compensated by horizontal water vapor export (−8 Tg). The very deep convective systems, explicitly represented thanks to the employed 2.5 km grid spacing of the model, are identified using the very low Outgoing Longwave Radiation of their cold cloud tops. The water vapor budget reveals that the vertical transport, the sublimation and the subgrid-scale transport at their top contribute together to 11% of the water vapor mass input into the TLS

    The water budget of a hurricane as dependent on its movement

    Full text link
    Despite the dangers associated with tropical cyclones and their rainfall, the origins of storm moisture remains unclear. Existing studies have focused on the region 40-400 km from the cyclone center. It is known that the rainfall within this area cannot be explained by local processes alone but requires imported moisture. Nonetheless, the dynamics of this imported moisture appears unknown. Here, considering a region up to three thousand kilometers from storm center, we analyze precipitation, atmospheric moisture and movement velocities for North Atlantic hurricanes. Our findings indicate that even over such large areas a hurricane's rainfall cannot be accounted for by concurrent evaporation. We propose instead that a hurricane consumes pre-existing atmospheric water vapor as it moves. The propagation velocity of the cyclone, i.e. the difference between its movement velocity and the mean velocity of the surrounding air (steering flow), determines the water vapor budget. Water vapor available to the hurricane through its movement makes the hurricane self-sufficient at about 700 km from the hurricane center obviating the need to concentrate moisture from greater distances. Such hurricanes leave a dry wake, whereby rainfall is suppressed by up to 40 per cent compared to its long-term mean. The inner radius of this dry footprint approximately coincides with the radius of hurricane self-sufficiency with respect to water vapor. We discuss how Carnot efficiency considerations do not constrain the power of such open systems that deplete the pre-existing moisture. Our findings emphasize the incompletely understood role and importance of atmospheric moisture supplies, condensation and precipitation in hurricane dynamics.Comment: 38 pages, 17 figures, 1 Table; extended analyses: available E/P ratios reviewed and explained (Table 1); rainfall and moisture distributions 3 days before and after hurricanes, propagation velocity and its relationship to radial velocity; efficiency for non-steady hurricanes; hurricane motion and rainfall asymmetries discusse

    The Hydrological Cycle over a Wide Range of Climates Simulated with an Idealized GCM

    Get PDF
    A wide range of hydrological cycles and general circulations was simulated with an idealized general circulation model (GCM) by varying the optical thickness of the longwave absorber. While the idealized GCM does not capture the full complexity of the hydrological cycle, the wide range of climates simulated allows the systematic development and testing of theories of how precipitation and moisture transport change as the climate changes. The simulations show that the character of the response of the hydrological cycle to variations in longwave optical thickness differs in different climate regimes. The global-mean precipitation increases linearly with surface temperature for colder climates, but it asymptotically approaches a maximum at higher surface temperatures. The basic features of the precipitation–temperature relation, including the rate of increase in the linear regime, are reproduced in radiative–convective equilibrium simulations. Energy constraints partially account for the precipitation–temperature relation but are not quantitatively accurate. Large-scale condensation is most important in the midlatitude storm tracks, and its behavior is accounted for using a stochastic model of moisture advection and condensation. The precipitation associated with large-scale condensation does not scale with mean specific humidity, partly because the condensation region moves upward and meridionally as the climate warms, and partly because the mean condensation rate depends on isentropic specific humidity gradients, which do not scale with the specific humidity itself. The local water vapor budget relates local precipitation to evaporation and meridional moisture fluxes, whose scaling in the subtropics and extratropics is examined. A delicate balance between opposing changes in evaporation and moisture flux divergence holds in the subtropical dry zones. The extratropical precipitation maximum follows the storm track in warm climates but lies equatorward of the storm track in cold climates

    Latent Heat Flux Profiles from Collocated Airborne Water Vapor and Wind Lidars during IHOP_2002

    Get PDF
    Latent heat flux profiles in the convective boundary layer (CBL) are obtained for the first time with the combination of the DLR water vapor differential absorption lidar (DIAL) and the NOAA high resolution Doppler wind lidar (HRDL). Both instruments were integrated nadir viewing on board the DLR “Falcon” research aircraft during the International H2O Project (IHOP_2002) over the U.S. Southern Great Plains. Flux profiles from 300 – 2500 m AGL are computed from high spatial resolution (150 m horizontal and vertical) two-dimensional water vapor and vertical velocity lidar cross sections using the eddy covariance technique. All cospectra show significant contributions to the flux between 1 and 10 km wavelength, with peaks between 2 and 6 km, originating from large eddies. The main flux uncertainty is due to low sampling (55 % rmse at mid-CBL), while instrument noise (15 %) and systematic errors (7 %) play a minor role. The combination of a water vapor and a wind lidar on an aircraft appears as an attractive new tool that allows measuring latent heat flux profiles from a single over-flight of the investigated area

    Interannual Variability in the Large-Scale Dynamics of the South Asian Summer Monsoon

    Get PDF
    This study identifies coherent and robust large-scale atmospheric patterns of interannual variability of the South Asian summer monsoon (SASM) in observational data. A decomposition of the water vapor budget into dynamic and thermodynamic components shows that interannual variability of SASM net precipitation (P − E) is primarily caused by variations in winds rather than in moisture. Linear regression analyses reveal that strong monsoons are distinguished from weak monsoons by a northward expansion of the cross-equatorial monsoonal circulation, with increased precipitation in the ascending branch. Interestingly, and in disagreement with the view of monsoons as large-scale sea-breeze circulations, strong monsoons are associated with a decreased meridional gradient in the near-surface atmospheric temperature in the SASM region. Teleconnections exist from the SASM region to the Southern Hemisphere, whose midlatitude poleward eddy energy flux correlates with monsoon strength. Possible implications of these teleconnection patterns for understanding SASM interannual variability are discussed

    Indian Monsoon Depression: Climatology and Variability

    Get PDF
    The monsoon climate is traditionally characterized by large amount of seasonal rainfall and reversal of wind direction (e.g., Krishnamurti 1979). Most importantly this rainfall is the major source of fresh water to various human activities such as agriculture. The Indian subcontinent resides at the core of the Southeast Asian summer monsoon system with the monsoon trough extended from northern India across Indochina to the Western Tropical Pacific (WTP). Large fraction of annual rainfall occurs during the summer monsoon season, i.e., June – August1, with two distinct maxima. One is located over the Bay of Bengal with rainfall extending northwestward into eastern and central India, and the other along the west coast of India where the lower level moist wind meets the Western Ghat Mountains (Saha and Bavardeckar 1976). The rest of the Indian subcontinent receives relatively less rainfall.https://digitalcommons.usu.edu/modern_climatology/1001/thumbnail.jp

    The Tropical Precipitation Response to Orbital Precession

    Get PDF
    Orbital precession changes the seasonal distribution of insolation at a given latitude but not the annual mean. Hence, the correlation of paleoclimate proxies of annual-mean precipitation with orbital precession implies a nonlinear rectification in the precipitation response to seasonal solar forcing. It has previously been suggested that the relevant nonlinearity is that of the Clausius–Clapeyron relationship. Here it is argued that a different nonlinearity related to moisture advection by the atmospheric circulation is more important. When perihelion changes from one hemisphere’s summer solstice to the other’s in an idealized aquaplanet atmospheric general circulation model, annual-mean precipitation increases in the hemisphere with the brighter, warmer summer and decreases in the other hemisphere, in qualitative agreement with paleoclimate proxies that indicate such hemispherically antisymmetric climate variations. The rectification mechanism that gives rise to the precipitation changes is identified by decomposing the perturbation water vapor budget into “thermodynamic” and “dynamic” components. Thermodynamic changes (caused by changes in humidity with unchanged winds) dominate the hemispherically antisymmetric annual-mean precipitation response to precession in the absence of land–sea contrasts. The nonlinearity that enables the thermodynamic changes to affect annual-mean precipitation is a nonlinearity of moisture advection that arises because precession-induced seasonal humidity changes correlate with the seasonal cycle in low-level convergence. This interpretation is confirmed using simulations in which the Clausius–Clapeyron relationship is explicitly linearized. The thermodynamic mechanism also operates in simulations with an idealized representation of land, although in these simulations the dynamic component of the precipitation changes is also important, adding to the thermodynamic precipitation changes in some latitudes and offsetting it in others

    Soil moisture initialization effects in the Indian monsoon system

    Get PDF
    Towards the goal to understand the role of land-surface processes over the Indian sub-continent, a series of soil-moisture sensitivity simulations have been performed using a non-hydrostatic regional climate model COSMO-CLM. The experiments were driven by the lateral boundary conditions provided by the ERA-Interim (ECMWF) reanalysis. The simulation results show that the pre-monsoonal soil moisture has a significant influence on the monsoonal precipitation. Both, positive and negative soil-moisture precipitation (S-P) feedback processes are of importance. The negative S-P feedback process is especially influential in the western and the northern parts of India
    • 

    corecore