2,311 research outputs found

    Depressions at the surface of an elastic spherical shell submitted to external pressure

    Full text link
    Elasticity theory calculations predict the number N of depressions that appear at the surface of a spherical thin shell submitted to an external isotropic pressure. In a model that mainly considers curvature deformations, we show that N only depends on the relative volume variation. Equilibrium configurations show single depression (N=1) for small volume variations, then N increases up to 6, before decreasing more abruptly due to steric constraints, down to N=1 again for maximal volume variations. These predictions are consistent with previously published experimental observations

    Механизм управления ресурсами облачных вычислений

    Get PDF
    В данной работе даются основные понятия облачных технологий. Рассмотрен механизм управления ресурсами облачных вычислений. Показан принцип работы гипервизора.Дается общая архитектура VMware vSphere. В заключение резюмируется преимущества от внедрения VMware vSphere на производстве.This instruction presents the basic concept of cloud computing. The paper shows the mechanism of resource management in cloud computing. The general architecture of the hypervisor is showed in the paper. There is a picture of the general architecture of VMware vSphere in the paper. There are summarizes of the benefits of VMware vSphere in conclusion

    Solution of the Young-Laplace equation for three particles

    Get PDF
    This paper presents the solution to the liquid bridge profile formed between three equally sized spherical primary particles. The particles are equally separated, with sphere centres located on the vertices of an equilateral triangle. Equations for the problem are derived and solved numerically for given constant mean curvature H0, contact angle , and inter-particle separation distance S. The binding force between particles is calculated and plotted as a function of liquid bridge volume for a particular example. Agreement with experiment is provided

    A methodology for testing virtualisation security

    Get PDF
    There is a growing interest in virtualisation due to its central role in cloud computing, virtual desktop environments and Green IT. Data centres and cloud computing utilise this technology to run multiple operating systems on one physical server, thus reducing hardware costs. However, vulnerabilities in the hypervisor layer have an impact on any virtual machines running on top, making security an important part of virtualisation. In this paper, we evaluate the security of virtualisation, including detection and escaping the environment. We present a methodology to investigate if a virtual machine can be detected and further compromised, based upon previous research. Finally, this methodology is used to evaluate the security of virtual machines. The methods used to evaluate the security include analysis of known vulnerabilities and fuzzing to test the virtual device drivers on three different platforms: VirtualBox, Hyper-V and VMware ESXI. Our results demonstrate that the attack surface of virtualisation is more prone to vulnerabilities than the hypervisor. Comparing our results with previous studies, each platform withstood IOCTL and random fuzzing, demonstrating that the platforms are more robust and secure than previously found. By building on existing research, the results show that security in the hypervisor has been improved. However, using the proposed methodology in this paper it has been shown that an attacker can easily determine that the machine is a virtual machine, which could be used for further exploitation. Finally, our proposed methodology can be utilised to effectively test the security of a virtualised environment

    Designing a VM-level vertical scalability service in current cloud platforms: A new hope for wearable computers

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Public clouds are becoming ripe for enterprise adoption. Many companies, including large enterprises, are increasingly relying on public clouds as a substitute for, or a supplement to, their own computing infrastructures. On the other hand, cloud storage service has attracted over 625 million users. However, apart from the storage service, other cloud services, such as the computing service, have not yet attracted the end users’ interest for economic and technical reasons. Cloud service providers offers horizontal scalability to make their services scalable and economical for enterprises while it is still not economical for the individual users to use their computing services due to the lack of vertical scalability. Moreover, current virtualization technologies and operating systems, specifically the guest operating systems installed on virtual machines, do not support the concept of vertical scalability. In addition, network remote access protocols are meant to administer remote machines but they are unable to run the non-administrative tasks such as playing heavy games and watching high quality videos remotely in a way that makes the users feel as if they are sitting locally on their personal machines. On the other hand, the industry is yet unable to make efficient wearable computers a reality due to the limited size of the wearable devices, where it is infeasible to place efficient processors and big enough hard disks. This paper aims to highlight the need for the vertical scalability service and design the appropriate cloud, virtualization layer, and operating system services to incorporate vertical scalability in current cloud platforms in a way that will make it economically and technically efficient for the end users to use cloud virtual machines as if they are using their personal laptops. Through these services, the cloud takes wearable computing to the next stage and makes wearable computers a reality
    corecore