
A Methodology for Testing 
Virtualisation Security 

Scott Donaldson, Natalie Coull and David McLuskie 
Abertay University, Dundee, Scotland 

This is the accepted version of a paper presented at 
the International Conference on Cyber Situational 
Awareness, Data Analytics And Assessment (CyberSA 
2017), June 19-20, 2017, London, UK which will be 
published by IEEE  

© 2017 IEEE. Personal use of this material is permitted. 
Permission from IEEE must be obtained for all other 
uses, in any current or future media, including 
reprinting/republishing this material for advertising or 
promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Abertay Research Portal

https://core.ac.uk/display/141567454?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

 

 

A Methodology for Testing Virtualisation Security 
Scott Donaldson, Natalie Coull and David McLuskie 

Abertay University, Dundee, Scotland 
 

ABSTRACT 
There is a growing interest in virtualisation due to its central role in cloud 
computing, virtual desktop environments and Green IT. Data centres and cloud 
computing utilise this technology to run multiple operating systems on one 
physical server, thus reducing hardware costs. However, vulnerabilities in the 
hypervisor layer have an impact on any virtual machines running on top, making 
security an important part of virtualisation. 
 
In this paper, we evaluate the security of virtualisation, including detection and 
escaping the environment. We present a methodology to investigate if a virtual 
machine can be detected and further compromised, based upon previous 
research. Finally, this methodology is used to evaluate the security of virtual 
machines. 
 
The methods used to evaluate the security include analysis of known 
vulnerabilities and fuzzing to test the virtual device drivers on three different 
platforms: VirtualBox, Hyper-V and VMware ESXI.   Our results demonstrate that 
the attack surface of virtualisation is more prone to vulnerabilities than the 
hypervisor. Comparing our results with previous studies, each platform withstood 
IOCTL and random fuzzing, demonstrating that the platforms are more robust 
and secure than previously found. 
 
By building on existing research, the results show that security in the hypervisor 
has been improved. However, using the proposed methodology in this paper it 
has been shown that an attacker can easily determine that the machine is a 
virtual machine, which could be used for further exploitation. Finally, our 
proposed methodology can be utilised to effectively test the security of a 
virtualised environment.   
 

Keyword: Networking, Security, Virtualisation 
 

INTRODUCTION 

Virtualisation involves isolating the operating system (OS) in a virtual machine 
(VM) which enables the virtual layer to present hardware to the guest operating 
systems running on top. However, there are some concerns that the virtual layer 
adds new attack vectors to a network, which have not been fully researched. 
The virtual layer is a security risk in that if it were to be compromised, an 
attacker could potentially gain control of all the systems that run on top of it. 
According to Gartner (Gartner, 2010) an estimated 60 percent of virtualised 
servers implemented will be less secure than the physical servers they replace.  
 



 3 

Virtualisation has been rapidly adopted by enterprise for consolidation of servers 
as well as desktop virtualisation for system testing and development. One of the 
key concepts of virtualisation is that guest operating systems in VMs should be 
isolated duplicates of real machines, meaning they should behave in the same 
way. However, security researchers have found that VMs are not completely 
isolated and that the isolation can be broken. A vulnerable hypervisor could 
expose the virtual layer to several attacks including allowing arbitrary code from 
the guest operating system to be run on the host system. This type of attack is 
known as ‘escaping the virtual machine’. If an attacker can execute commands 
from a guest on the hypervisor or underlying host they would have complete 
control over the virtual environments that are running on the host machine. 
Virtualisation security is one of the most important parts of a modern network as 
it is a critical point of compromise. This paper aims to evaluate the security of 
virtualisation, including its resilience to detection and to propose a methodology 
that could be used as part of the penetration testing methodology to aid security 
researchers in evaluating the security of a virtual environment. 
 

LITERATURE REVIEW 

There are many new security challenges within virtualisation. These attacks can 
range from hyper jacking (Sgandurra & Lupu, 2016), guest jumping (Huang, 
Chen, Shih, & Lai, 2012), compromised administrator tools (Criscione, 2010) 
and exploiting software vulnerabilities (Economou, 2011). Although virtualisation 
is meant to somewhat ease system administrator’s workloads there are 
additional considerations that need to be made such as security policies for VM 
access, as well as vulnerability analysis and patch management for enterprise 
networks.  
 
Virtualisation Detection is often included in the attack surface and should be 
considered somewhat of a threat (Popek & Goldberg, 1974).  If an attacker has 
been able to detect that a machine is virtualised, they can launch attacks 
specific to the virtualisation layer. This has implications for security researchers 
as virtualisation is a common tool used in analysing malware. Ideally, users or 
attackers should not be able to detect that the system is virtualised. 
 
Virtual machines are now being used to analyse malware as it provides an 
isolated environment in which the malware can be contained. However, to stop 
security researchers from reverse engineering or analysing malware, malware 
writers are starting to include VM detection in their malware functionality, often 
called VM aware malware. Once the malware detects it is in a VM it can change 
how it behaves, attack the virtualisation layer or just refuse to run as intended 
and thus thwarting the proper analysis of the malware program. 

 

From a malicious intruder perspective, once virtualisation has been detected an 
attacker can launch malicious attacks against it such as a denial of service 
attack. This can cause the VM to unexpectedly exit or force it to be shut down by 
the Virtual Machine Monitor (VMM). Other attacks can include further 
penetrating the virtualisation layer by exploiting software bugs in the VMM or 
hypervisor. 

 

Ferrie (Ferrie, 2007) details attacks on virtual machine emulators and states that 
the interest in detecting virtualisation is not limited to VM aware malware but 



 4 

also to detect if malware is utilising virtualisation to run hidden from the host 
operating system, for example a hypervisor such as a virtual machine based 
rootkit. Ferrie describes common ways in which virtualisation can be detected. 
 
In theory, a virtual machine should not be able to be detected as the VMM can 
intercept sensitive instructions such as CPUID, which is used by software to 
identify the type of processor that is being used. Ferrie suggests that methods 
can be used to hide the presence of virtualisation such as clearing the CPUID 
flag which correspond to the hardware assisted VM extensions, however other 
artefacts are still present which can be used to indicate virtualisation.  Common 
detection methods and tools include RedPill, interrupt descriptor table (IDT) and 
Scooby Doo. The method presented by Quist and Smith (Quist, Smith, & 
Computing, 2006) is based around the local descriptor table (LDT). They state 
that the reason they use this method for detection is because the SIDT 
instruction based methods (e.g. RedPill) have various problems if a multi core 
CPUs are being used. This is because the interrupt descriptor table can change 
significantly when the process runs on multiple cores (Quist et al., 2006). Ferrie 
(Ferrie, 2007) further discusses this concept stating that VMware makes use of 
the LDT, which is not otherwise used by Windows in a non-virtualised system 
and thus if there was a non-zero LDT base then this is a good indicator that a 
virtualised system was being used. 

 

In the present state virtualisation is detectable, however detection methods can 
vary depending on the virtualisation architecture and how the vendors VMM 
handles non privileged instructions, Ferrie (Ferrie, 2007) concludes that there is 
ultimately nothing we can do about preventing virtualisation detection as the 
design of the VMM inherently permits interception of non-sensitive instructions, 
some of which can cause information leakage such as the SIDT instruction. 
Importantly, all the methods used to detect virtualisation involve the use of non-
privileged instructions which are not intercepted by the VMM or hypervisor and 
therefore these methods cannot be detected and prevented. 
 

Device Input/output 

An empirical study into security exposure of hosts of hostile virtualised 
environments (Ormandy, 2007) identifies that there are two sub systems that are 
the most complex components and thus more likely to harbour bugs. One of 
these sub systems is emulated I/O devices. This subsystem was identified 
because of handling invalid, illegal or non-sensitive I/O activity, essentially 
meaning that the sub system is prone to errors. I/O is a major part of 
virtualisation as it allows the guest OS to communicate with hardware or 
virtualised hardware. This sub system is complex and keeping the VMM or 
hypervisor small is difficult. The bigger a hypervisor the larger the attack surface 
is because it is more likely to have bugs. According to Karger and Safford 
(Karger & Safford, 2008) virtualising I/O has always been a more complex 
problem then virtualising the CPU. The authors describe three design concerns 
in providing virtualised access to devices: 
 

1. Are device drivers shared? 
2. Are they trusted? 
3. Where are they located? 

 



 5 

Answers to these depends on the virtualisation architecture, each with its own 
trade-offs in complexity, security and performance. An example of this is Xen 
where the I/O is separated from the hypervisor, it uses a privileged guest called 
a Dom0 partition. All VMs (DOMu's) I/O running on Xen will be redirected though 
the Dom0 partition which in turn has control of the device. This keeps the Xen 
hypervisor small, yet according to Karger and Safford (Karger & Safford, 2008) 
this has security implications. The main reason as to why they claim that this has 
security implications is because the Dom0 partition is shared between all the 
virtual machines and this means that pure isolation between the VMs cannot be 
achieved because if the I/O partition is compromised then it could be possible to 
compromise all the VMs from this partition. 
 

Research Methods Considered 

There are not many methodologies developed specifically for testing and 
researching virtualisation security however some researchers have applied 
common testing methods to investigate security in this area. Criscione 
(Criscione, 2010) developed a virtualisation assessment toolkit (VASTO) 
for Metasploit which aims to aid in a penetration test of a virtualised 
system. 
 
A penetration test involves assessing the full security of an infrastructure i.e. 
escaping and compromising the hypervisor is not the only goal. The aim 
is to totally own the whole environment. A standard penetration test 
would not fully consider all the virtual layers and as a result will not fully 
test the virtualisation attack surface. 
 
One of the reasons as to why the virtualisation layer is not fully tested is 
because According to Criscione (Criscione, 2010), tools are not 
virtualisation aware and knowledge of virtualisation security issues are not 
well known. However, the VASTO toolkit for Metasploit aims to solve 
this problem by being one of the few packages specifically created for 
testing virtualisation security.  
 
Ormandy (Ormandy, 2007) uses a combination of methods to find 
vulnerabilities in different virtualisation vendor software. Ormandy uses a 
combination of manual analysis of code where source was available and 
closed source software analysis, which involves black box testing such as 
fuzzing. 
 
Economou and Horan (Economou, 2011) used a similar method to investigate 
virtualisation security. Economou took interest in a security patch bulletin posted 
by Microsoft MS10-102 Hyper-V VMbus vulnerability CVE-2010-3960. The 
exploit developed allows a Denial of Service (DoS) attack on the Hyper-V 
service, this is done from a guest OS and crashes the main service affecting 
all VM running on the hypervisor. To further investigate the vulnerability 
the authors started by trying to find the original bug by reversing the patch. 
This was done by installing the patch and looking at what files were changed. 
The files modified were vmbus.sys, vmswitch.sys and storvsp.sys. After 
running a binary difference tool, changes were found to a function’s name 
across the three files, according to Economou and Horan the change 
made was to split one function into two. 
 



 6 

Each method for investigating virtualisation presented here highlights that 
current methods used for investigating security such as penetration testing 
methodologies and stress testing can be applied to virtualisation if modified. 
The main aim of this paper is to propose a methodology that can be used to help 
a security researcher perform a penetration test to evaluate the security of 
virtualisation systems. Once the methodology has been proposed the next aim 
of this paper is to evaluate the effectiveness of the methodology for use in the 
penetration testing process. 

 

PROCEDURE 

This section describes our procedure for evaluating the security of virtualisation. 
This includes virtualisation detection and escaping the environment. 
 
This can be done using our proposed methodology to assess different types of 
virtualisation architectures to identify vulnerabilities. Previously discovered 
vulnerabilities can also be used to demonstrate the potential risk of security 
issues that are possible in a virtualised environment. The methodology is based 
on the procedure used by security researchers to find vulnerabilities in 
virtualisation. Three approaches are tested: 
 

 Penetration testing methodology presented by Criscione (Criscione, 
2010) using VASTO an exploit package for Metasploit. 

 Stress testing (fuzzing) with further analysis by Ormandy (Ormandy, 
2007). 

 Reverse patch investigation and debugging by Economou and Horan 
(Economou, 2011). 

 

Methodology for investigating virtualisation security 

The methodology that will be adopted for this paper is as follows: 
 

I. Discovery 
a. Detecting Virtualisation 

II. Information gathering 
a. Identifying virtualisation vendor or type 
b. Identifying services and versions running 

III. Vulnerabilities and exploits 
a. Demonstrating flaws in virtualisation found from CVE 

investigation 
IV. Fuzzing and further investigation 

a. Apply fuzzing techniques to I/O 
b. Demonstrating any flaws found from fuzzing 

 
The first stage of the methodology is Discovery; this is used to identify if the 
system is virtualised. Tools such as Metasploit have built-in scripts that 
can be utilized in our procedure to test and discover virtualisation. 
 
Information Gathering and Enumeration is another important part of penetration 
testing. This stage gathers more information about the system, such as 
operating system, version of operating system, patches installed and 
virtualisation software being used. The information is then used in the next stage 
of the methodology, Vulnerabilities and Exploits. This can be used to analyse the 



 7 

effectiveness of tools like VASTO and others at gathering and enumerating 
information from virtualised environments. 
 
From the information gathered, exploits can be used on any vulnerabilities 
found. This stage of the methodology involves identifying known exploits and 
vulnerabilities. Analysis of previous exploits and vulnerabilities will aid in the 
fuzzing stage to identify new, unknown vulnerabilities. The practical work here 
will be carried out using VASTO as a penetration testing tool for exploitation. 
 
The results gathered from the methodology will be used as evidence to address 
the aim of the project. Analysis and discussion of the results will be used to 
evaluate how secure virtualisation security is. 
 

Lab Configuration 

Table 1 shows the configuration of the test labs used for the methodology and 
experiments. Each virtualisation platform was configured to use bridged 
networking and Intel virtualisation technology extensions (VT-x). 
 

Platform Operating System 

VirtualBox Windows 7 

Windows Server 2008 R2 
(Hyper-V) 

Windows 7 

VMWare ESXI 5.0.0 Windows 7 

TABLE I.  TEST CONFIGURATIONS 

Discovery 

There are several methods which can be used to detect virtualisation 
using low level instructions. Here, we use a Metasploit Post Exploitation 
script to detect virtualisation on multiple virtualisation platforms and analyse 
their effectiveness. 
 

1) Metasploit Checkvm Post Exploitation 

During a penetration test it may not be possible for the tester to determine if a 
system is running in a virtualised environment remotely. However, once 
they have compromised the system, tools can be used locally to detect 
virtualisation in the post exploitation phase. The Meterpreter is Metasploit’s post 
exploitation module and boasts various tools which can be used to further 
compromise a network or maintain access. There are three scripts that 
can be used relating to virtualisation however only one for detection, 
checkvm. The checkvm script is used on all the virtualisation platforms 
tested in the methodology. 
 
Firstly, to get the Meterpreter connected the guest machine needs to be 
compromised with the Meterpreter payload, this can be done using various 
methods. Once the guest OS is compromised the penetration test moves to 
the post exploitation phase. A hacker may want to detect if the machine 
that has been compromised is virtualised. To test for this checkvm is 
used in the Meterpreter shell. 
 

2) Virtualisation artefacts in the guest OS 



 8 

Guest additions are likely to be installed on the guest OS to support better 
performance, shared folders and additional tools. The guest additions will install 
as a regular program in Windows creating registry entries, install folders, 
files and services. Checking the running processes and services should 
reveal information. Guest additions are likely to be installed in a virtualised 
guest OS as there is a big performance and stability gain when they are 
used. The guest tools will leave footprints behind on the guest OS and these 
artefacts can be used during a penetration test to reveal that a virtualised 
system is being used. A process was developed to analyse the footprints. Guest 
additions were installed on all guest OS's, each platform has their own 
method of installing these tools. Hyper-V will install the guest additions and 
drivers automatically after the OS is installed using plug and play. VMware 
and VirtualBox both have an .ISO file that is used and mounted inside the 
VM, from there the tools are installed as normal applications. 
 
The following process was used on all three platforms to check for virtualisation 
artefacts: 
 
1) Checking for installation files and folders 
2) Checking for running processes and services 
 

Information Gathering 

The information gathering phase of a penetration test involves 
enumerating services to gather more information about the system. This 
phase of the methodology attempts to try and identify which versions of each 
virtualisation platform tested is running, as well as gather ing more 
information about the virtualised environment. 
 

1) Version Information 

Post exploitation techniques can be used locally to gather information about the 
system such as what device drivers are installed. Running Metasploit’s 
enum_devices script can provide information about device drivers to identify the 
underlying operating system version.  
 

Vulnerabilities and Exploits 

Analysis of previous exploits and vulnerabilities will provide more information 
about where common vulnerabilities are in virtualisation and how they are 
exploited. The analysis of previous vulnerabilities will also provide information for 
the next phase of the methodology which is intended to find similar 
vulnerabilities, as discussed in the literature review. 
 

1) VASTO Install 

VASTO is an exploit pack developed by Criscione (Criscione, 2010). This tool 
will be used to attack the surface of virtualisation demonstrating that the 
attack surface provides ways in which to penetrate virtualisation other than 
directly exploiting the hypervisor. 
 

2) Client Side MITM attack (VMWARE_vilurker exploit) 

VMware has a binary client for accessing and managing the virtualisation 
infrastructure called vSphere. The attack to be analysed is a MITM on the 



 9 

client, all versions of VMware are susceptible to this type of attack. The 
attack exploits the auto update feature. An XML file is sent in the 
handshaking process which determines what version of the client 
(vSphere) should be running. If it is not running the correct version, then it 
is directed to a URL which will link to the installer. 
 
This opens the handshaking process to MITM attacks, a crafted XML file can be 
sent with a modified version of vSphere. Criscione (Criscione, 2010) 
demonstrated this attack on VMware ESXI 4.0.0 using VASTO. This tool will 
be used to analyse how successful it is on the newer version of VMware ESXI 
5.0.0. 
 

a) Exploit Configuration 

The module used in this attack is VMware_vilurker. This module will run a server 
holding the modified vilurker.exe to be run on the client machine. 
 

b) Client side MITM 

On the client side a MITM attack can be used to get the clients vSphere 
application to access the server now running on backtrack. For simpler 
analysis, the vSphere application was pointed to backtrack using the IP 
address to directly connect. 
 
When the client application connects to the MITM server the user will be 
presented with an SSL warning dialogue box and the user will be asked if they 
want to proceed. If this is accepted the user will be prompted to download the 
malicious installer which they will think is just an update for the 
application. If they click no then the process can be repeated later. The 
user can either run the update straight away or save it for later. 
 
Once the update has been installed the payload can then be loaded on to the 
client machine and executed. Because VASTO uses Metasploit there are 
several payloads that can be used with this attack. 
 

Virtual Device Driver Fuzzing 

All virtual devices in a virtual machine are emulated in some way, the emulation 
depends on the virtualisation platform. From the literature reviewed, 
the area to focus on for virtualisation security is I/O device emulation. 
Ormandy (Ormandy, 2007) uses stress testing (fuzzing) to analyse device 
I/O for errors, once an error was found it was investigated further to see if 
it was exploitable. 
 
This phase of the methodology aims to build on the research already 
done and further the knowledge of virtualisation security. The results 
of which will determine if security in device I/O has improved since the time of 
the research discussed in the literature review. 
 
The method used in this phase involves testing input/output controls (IOCTL) 
specifically in Windows guest OS’s. IOCTL is a gateway for user mode 
applications to access kernel functions, for example accessing devices. 
Hardware devices are only addressable from the kernel, if applications running 
in user space want to communicate with the underlying hardware a device 



 10 

driver is used. An example of a typical vulnerability in a device driver is where a 
local user can pass invalid buffers to IOCTL calls and cause a system 
failure similar to (CVE-2011-2305) analysed later in this section. 
 
The experiments will work by sending random data via IOCTL to the driver which 
will in turn communicate with the kernel to make a system call to the device. 
Because the guest OS is virtualised the emulated device will be queried 
with the data passed to it. If there is a flaw in the emulated device it will 
cause an error, most likely crashing the hypervisor or creating some sort of 
warning. 
 

1) Virtual Device Driver Fuzzing Experiments 

a) IOCTLFuzzer 

At the start of this section two vulnerabilities in virtual device drivers were 
analysed. Both CVE-2011-2305 and CVE-2007-5671 were found to have 
vulnerabilities in the guest driver which is used for communication 
between the guest and host. The device driver is what allows 
communication between the guest OS and host or hypervisor. From 
the literature reviewed, the future research stated by various authors 
suggests that device I/O fuzzing should be the focus of security research.  
 
This phase of the methodology will analyse IOCTLs  using IOCTLfuzzer 
to analyse and evaluate fuzzing as a method of efficiently testing virtual device 
I/O security. 
 
Attempts by the guest operating system to access the hardware are 
routed to the virtual device driver using IOCTLs which in turn interact with the 
virtualisation I/O stack. Testing of this area seeks to exercise the underlying 
virtualisation layer and how it handles these requests. IOCTLfuzzer 
uses a driver that hooks into DeviceIoControlFile to manipulate and fuzz 
IOCTLs to the system. The procedure outlined below will be used on all 
three platforms. 
 

b) Attack Surface Analysis 

To get the maximum out of the testing, the drivers attack surface needs to be 
analysed, this is done using the attack surface analysing feature, as shown 
below: 
 
1. ioctlfuzzer.exe –boot 
 
The next time the system restarts ioctlfuzzer will log all the information 
found from IOCTL requests. Analysis of the log file will show all the collected 
IOCTL information which can be used for fuzzing. The analysis is done with the 
command shown below: 
 
2. ioctlfuzzer.exe --analyze --loadlog %SystemDrive%\ioctls.log  

 

c) IoSpy and IoAttack 

IoSpy and IoAttack are two tools that are part of the Windows driver 
development environment used for testing IOCTLs and WMI requests. IoSpy is 



 11 

used to analyse the environment it does this by monitoring IOCTL requests 
and logging them. IoAttack then uses this information from IoSpy to 
target specific drivers. This phase of the methodology will analyse 
IOCTLs using IoSpy and IoAttack to analyse and evaluate fuzzing as a 
method of efficiently testing virtual device I/O security.  
 

RESULTS 

In this section, the results from the experiments are presented in the same order 
in which the methodology was carried out. 
 

Discovery Analysis 

The methods used in this section show that virtualisation detection is 
possible. For each of the three platforms tested, the virtualised operating 
system revealed information which demonstrated that they were in a virtualised 
environment. This can have an impact on how malware operates and poses a 
significant threat to virtual honeypots and how they operate, since it means that 
malware writers can detect the VM and stop researchers from finding out how 
the malware works. 
 

1) Detection using checkvm Metasploit 

Table II shows the results for the checkvm script using the post exploitation 
module available in Meterpreter. 
 
Out of the three platforms tested using this method all were detected correctly 
using the checkvm Meterpreter script. This information reveals that the guest OS 
is running on a virtualisation platform. 
 

Platform Virtualisation Detected? 

VirtualBox Yes 

Windows Server 2008 R2 
(Hyper-V) 

Yes 

VMWare ESXI 5.0.0 Yes 

TABLE II.  RESULTS OF VIRTUAL MACHINE DETECTION 

2) Virtualisation artefact findings 

All the platforms were tested for software artefacts after the guest additions were 
installed on the virtual machine. The results as shown in Table III found that all 
guest addition tools leave behind artefacts that can be used to identify the 
virtualisation platform. Artefacts found included installation fi les, system 
services and running processes. 
 

Platform Artefacts Detected? 

VirtualBox Yes 

Windows Server 2008 R2 
(Hyper-V) 

Yes 

VMWare ESXI 5.0.0 Yes 

TABLE III.  RESULTS OF ARTEFACT  DETECTION 

Information Gathering 



 12 

1) Version Information 

Metasploit’s enum_devices script successfully revealed all drivers running for 
that particular operating system. For each virtual machine tested, driver names 
were returned which indicated that the underlying architecture was a virtual 
machine, for example “VMWare Tool Service” and “VirtualBox Device”. This 
information can be used to fingerprint the underlying virtual machine software. 
All platforms tested returned virtualised devices that can be used to detect 
virtualisation. The information gathered could be useful if there is a known 
vulnerability in a driver that allows privilege escalation in the guest OS. 
 

Previous Vulnerabilities and Exploits 

1) Client side MITM attack findings 

The results from the client side MITM attack show that virtualisation adds 
more risk to a network as it can be used to compromise machines. Figure 1 
shows what the client sees after the malicious installer has been run, it notifies 
the user to restart the application 
 

 

FIGURE 1 CLIENTS VIEW AFTER COMPROMISE 

After the malicious client is installed the payload is run and executed, bind 
TCP was used in the experiment. The server will receive a message that the 
client has connected and downloaded the executable. Using Metasploit a bind 
TCP handler can be started which connects to the client machine which is now 
compromised. 
 
The results from this experiment show that this type of attack is still possible 
using version 5.0.0 of VMware ESXI. However, the attack is only made possible 
by the user accepting the SSL certificate. Furthermore, it shows that 
virtualisations attack surface adds an increase risk to the network by 
providing another attack vector. 
 

Virtual Device Driver Fuzzing Findings 

1) Crashme Results 

Crashme was executed on all three platforms to stress test the robustness of the 
underlying virtualisation layers. The program was run for 10 hours on each 
platform with logging enabled and verbose mode set to 3. Once the 
program had finished, the logging information was analysed for 
anomalies. 
 
There were no significant findings in the results from this experiment even 
after being subject to 10 hours of stress testing. All three platforms were 
unaffected by Crashme. When compared with the findings of Ormandy 



 13 

(Ormandy, 2007), the results show that virtualisation security has 
improved vastly in this area from the time of Ormandy’s initial research. 
 

2) IOCTLfuzzer Findings 

a) Attack surface results 

The results from the attack surface show that drivers were found that could be 
fuzzed using IOCTLs. All the platforms tested returned similar results to that of 
the information gathered at the start of the methodology. The information 
gathered in this stage is used in the next phase when fuzzing DWORDS with 
random data. The reconnaissance and attack surface built up a picture of what 
devices were available to be fuzzed. This was successful on all platforms tested. 
 
No meaningfully results were obtained from this process on any of the 
three platforms tested. Like that of the Crashme results, this indicates that the 
security in this area has been improved. 
 

3) IoSpy and IoAttack Findings 

IoSpy also provide a similar attack surface analysed to IOCTLfuzzer, 
however this was required to be run before IoAttack would run. This was so 
that the tool could capture IOCTLs to be used in the fuzz testing. Only two 
drivers were found to be fuzzable by IoSpy using the VirtualBox platform . 
The procedure was also repeated on Hyper-V and VMware with results 
returned showing drivers that were fuzzable.  
 
Because the results of IoSpy were limited on all platforms, the test case lists 
were small. From analysis of fuzzing using these tools on all three platforms, no 
results were obtained that pointed to bugs or vulnerabilities in the drivers tested.  
 
Our results demonstrate that it is relatively easy to identify the presence of a 
virtualised environment due to how device drivers are used and reported in the 
environment. Information gathering and enumeration reveal more information 
about virtualisation, specifically the Metasploit modules that reveal virtual 
machines in ESXI's data store. These results have a significant impact on 
virtualisation security. The findings explored in the MITM attack show that the 
attack surface of virtualisation needs to be moderated. 
 
Furthermore, the results from fuzzing show that fault tolerance and isolation 
have improved and that resources are relatively security to IOCTL fuzzing. The 
analysis of the results from testing virtual device drivers shows that security 
improvements have been made. 
 

DISCUSSION 

Virtualisation security has an impact on malware research, virtual honeypots and 
cloud computing as well as any other implementation that uses virtualisation. 
Security issues in virtualisation are therefore high risk and security should be 
considered a high priority. Existing research provides an analysis of virtualisation 
and an evaluation of the attack surface which was utilized for our methodology.  
 
Our literature review highlighted the complexity and wide attack surface of 
virtualisation, and we have only been able to address a subset of this attack 



 14 

surface in this paper.  This was done without compromising the results that 
could affect a full analysis of virtualisation security. Due to hardware limitations 
Intel VT-x could not be analysed. This meant that pass-through functionality of 
virtualisation platforms was not analysed as part of the methodology. 
 
The results revealed that all the operating systems tested contained artefacts 
relating to virtualisation as shown in tables II and III. From the results, it shows 
that hiding the presence of virtualisation is extremely challenging if not 
impossible as artefacts are left behind by each platform tested. Virtualisation can 
be detected using low level instructions or by looking for artefacts such as 
device driver information. 
 
Detecting virtualisation can be a threat however this depends on the situation. 
Because most servers are being or are already virtualised, detection is not as 
big of a threat as systems are more likely to be virtualised. If malware detects 
virtualisation and does not run then malware becomes ineffective, assuming the 
virtualised environment is the end destination. Virtual honeypots can become 
more effective as systems are more likely to be in a virtual machine, therefore 
attackers are unlikely to leave if they detect virtualisation. However, from the 
findings of the enumeration and information gathering experiments further 
probing after detection reveals information about the environment which could 
be used against it  
 
The results from enumeration and information gathering show that systems can 
reveal device version information. Attackers can then look for vulnerabilities 
present in these versions to further compromise the environment. The 
methodology primarily focused on analysing modules present in Metasploit to 
demonstrate information that could be enumerated from the ESXI server. The 
results from these experiments showed that VMware ESXI 5.0.0 can be 
enumerated to reveal users and groups, user’s permissions, all the virtual 
machines installed on the server and the physical hardware on which it runs. 
Enumerating what virtual machines are present on the server poses the most 
risk to a network. The results also reveal the configuration of each virtual 
machine, including what guest OS is running inside each VM. This can give vital 
information to an attacker, however the majority of the modules used require 
logon credentials for the ESXI server. 
 
The main findings of the methodology highlight that the attack surface of 
virtualisation is more prone to vulnerabilities than the actual hypervisor itself. All 
the additional components of virtualisation each add to the attack surface. All 
three platforms tested have very different attack surfaces, however do share 
similarities in that guest and management tools are used. 
 
The MITM attack demonstrated against the VMware's vSphere client shows that 
additional risks are present from the addition of virtualisation to the network. A 
new attack vector is now possible because of the new infrastructure and 
components added. The MITM attack resulted in the end client machine being 
compromised by accepting a malicious update to the application. The result from 
this experiment shows that this type of attack is still possible using the latest 
version of VMware and should work for any other version. However, the attack is 
only made possible by the user accepting the SSL certificate. Mitigation for the 
type of attack demonstrated is using signed SSL certificates and user education. 



 15 

 
The Hyper-V DoS attack could not be analysed as the proof of concept source 
code returned several warnings and errors. Attempts were made to correct the 
issues, none of which worked. However Economou and Horan (Economou, 
2011) provide a small description of what is meant to happen. When a value is 
passed from the guest to the host it is checked against another value, this 
results in a bug triggering a process which never ends because a flag is not set. 
This type of attack demonstrates that although the virtual machines may be 
isolated they can still affect other virtual machines running on the same 
hardware. This type of attack is amplified in virtual desktop infrastructures and 
data centres where multiple server will run on the same hardware using 
virtualisation. 
 
From analysis, interaction between the VM and hypervisor is where the majority 
of arbitrary code execution or VM escape vulnerabilities are found. The most 
common two are when isolation between the guest and host is broken or when 
crafted code from the guest triggers a bug in the way that the hypervisor handles 
the data passed to it. 
 
While there are other ways in which to compromise virtualisation, the hypervisor 
remains the main target. From analysis of the literature and experiment results 
vulnerabilities present in the hypervisor have the biggest consequences that are 
amplified to all the upper layers. 
 
From the literature reviewed, virtual device drivers were the most talked about 
security issue that needed further exploration and research. Device drivers were 
analysed in detail for vulnerabilities and security flaws by way of fuzzing IOCTLs. 
Three tools were used in this process IOCTLfuzzer, IoSpy and IoAttack neither 
of which found any security issues in the device drivers tested. This shows that 
since the time of the research carried out by Ormandy (Ferrie) and others 
security in device I/O have improved significantly. 
 
Hypervisor security has improved as platforms now have a much smaller 
footprint, the thin smaller code base means that there is not as big of a level of 
exposure as previous versions. Countermeasures to most problems found in the 
hypervisor is to patch it vigorously. Any shared folders or applications used to 
pass data to one another should be disabled, and a good password policy put in 
place will fend off any brute force attempts on the ESXI server. 
 
While identifying a critical vulnerability that could enable escaping a virtual 
machine can be patched, this wouldn’t prevent unknown vulnerabilities from 
compromising security. 
 

CONCLUSIONS 

Virtualisation is a major part of modern networks therefore researching 
virtualisation security has important benefits. As explored in the attack surface, 
virtualisation can add additional security risks to the network. 
 
Attacks are amplified in virtual desktop infrastructures and data centres where 
multiple servers will run on the same hardware using virtualisation. The results 
of this research demonstrate that although the virtual machines may be isolated 
they can still affect other virtual machines running on the same hardware. From 



 16 

analysis, interaction between the VM and hypervisor is where the majority of 
arbitrary code execution or VM escape vulnerabilities are found. 
 
Each virtualisation platform has a unique attack surface with some similarities, 
therefore there is a need for a standard methodology or framework that can be 
adapted to test a unique environment. 
Our proposed methodology, based on techniques employed by more traditional 
penetration testing methodologies demonstrates that this approach can be 
adopted to test the security of a virtualised environment. The steps in our 
methodology are:  
 

I. Discovery (i.e. detecting if we are in a virtualised environment) 

II. Information gathering (i.e. identifying VM vendor, version and 
services running) 

III. Vulnerabilities and exploits (i.e. demonstrating flaws in virtualisation 
from previous exploits) 

IV. Fuzzing and further investigation (i.e. Applying fuzzing techniques to 
I/O and finding flaws from fuzzing) 

By building on existing research, our proposed methodology has been proven to 
be viable for use by penetration testers and network managers to more fully test 
and secure their virtualisation environments. 
 

REFERENCES 

 
Criscione, C. (2010). Virtually Pwned Pentesting Virtualization. Paper presented at the 

BlackHat Conference, USA. 
Economou, A. H., A. (2011). Behind the Curtain: A Journey into Reversing the Hyper-V 

VMBus Exploit (MS10-102).   Retrieved from 
https://www.coresecurity.com/blog/behind-the-curtain-a-journey-into-reversing-
the-hyper-v-vmbus-exploit-ms10-102 

Ferrie, P. (2007). Attacks on more virtual machine emulators.   Retrieved from 
www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf 

Gartner. (2010). Percent of Virtualized Servers Will Be Less Secure Than the Physical 
Servers They Replace Through 2012.   Retrieved from 
http://www.gartner.com/newsroom/id/1322414 

Huang, Y.-L., Chen, B., Shih, M.-W., & Lai, C.-Y. (2012). Security impacts of virtualization 
on a network testbed. Paper presented at the Software Security and Reliability 

(SERE), 2012 IEEE Sixth International Conference on. 
Karger, P. A., & Safford, D. R. (2008). I/O for virtual machine monitors: Security and 

performance issues. IEEE Security & Privacy, 5(6), 16-23.  
Ormandy, T. (2007). An empirical study into the security exposure to hosts of hostile 

virtualized environments: Citeseer. 
Popek, G. J., & Goldberg, R. P. (1974). Formal requirements for virtualizable third 

generation architectures. Communications of the ACM, 17(7), 412-421.  
Quist, D., Smith, V., & Computing, O. (2006). Detecting the presence of virtual machines 

using the local data table. Offensive Computing.  
Sgandurra, D., & Lupu, E. (2016). Evolution of attacks, threat models, and solutions for 

virtualized systems. ACM Computing Surveys (CSUR), 48(3), 46.  

 

https://www.coresecurity.com/blog/behind-the-curtain-a-journey-into-reversing-the-hyper-v-vmbus-exploit-ms10-102
https://www.coresecurity.com/blog/behind-the-curtain-a-journey-into-reversing-the-hyper-v-vmbus-exploit-ms10-102
www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf
http://www.gartner.com/newsroom/id/1322414

