54 research outputs found

    Stronger at Depth: Jamming Grippers as Deep Sea Sampling Tools

    Get PDF
    In this work we experimentally demonstrate (a) that the holding strength of universal jamming grippers increases as a function of the jamming pressure to greater than three atmospheres, and (b) that jamming grippers can be used for deep sea grasping tasks in ambient pressures exceeding one hundred atmospheres, where such high jamming pressures can be readily achieved. Laboratory experiments in a pressurized, water filled test cell are used to measure the holding force of a \u27universal\u27 style jamming gripper as a function of the pressure difference between internal membrane pressure and ambient pressure. Experiments at sea are used to demonstrate that jamming grippers can be installed on, and operated from, remotely operated vehicles (ROVs) at depths in excess of 1200m. In both experiments, the jamming gripper consists of a latex balloon filled with a mixture of fresh water and ~200 micron glass beads, which are cheaply available in large quantities as sand blasting media. The use of a liquid, rather than gas, as the fluid media allows operation of the gripper with a closed loop fluid system; jamming pressure is controlled with an electrically driven water hydraulic cylinder in the lab, and with an oil hydraulic driven large-bore water hydraulic cylinder at sea

    A Lightweight Universal Gripper with Low Activation Force for Aerial Grasping

    Get PDF
    Soft robotic grippers have numerous advantages that address challenges in dynamic aerial grasping. Typical multi-fingered soft grippers recently showcased for aerial grasping are highly dependent on the direction of the target object for successful grasping. This study pushes the boundaries of dynamic aerial grasping by developing an omnidirectional system for autonomous aerial manipulation. In particular, the paper investigates the design, fabrication, and experimental verification of a novel, highly integrated, modular, sensor-rich, universal jamming gripper specifically designed for aerial applications. Leveraging recent developments in particle jamming and soft granular materials, the presented gripper produces a substantial holding force while being very lightweight, energy-efficient and only requiring a low activation force. We show that the holding force can be improved by up to 50% by adding an additive to the membrane's silicone mixture. The experiments show that our lightweight gripper can develop up to 15N of holding force with an activation force as low as 2.5N, even without geometric interlocking. Finally, a pick and release task is performed under real-world conditions by mounting the gripper onto a multi-copter. The developed aerial grasping system features many useful properties, such as resilience and robustness to collisions and the inherent passive compliance which decouples the UAV from the environment.Comment: 21 pages, 19 figures; corrected affiliation

    Active Vibration Fluidization for Granular Jamming Grippers

    Full text link
    Granular jamming has recently become popular in soft robotics with widespread applications including industrial gripping, surgical robotics and haptics. Previous work has investigated the use of various techniques that exploit the nature of granular physics to improve jamming performance, however this is generally underrepresented in the literature compared to its potential impact. We present the first research that exploits vibration-based fluidisation actively (e.g., during a grip) to elicit bespoke performance from granular jamming grippers. We augment a conventional universal gripper with a computer-controllled audio exciter, which is attached to the gripper via a 3D printed mount, and build an automated test rig to allow large-scale data collection to explore the effects of active vibration. We show that vibration in soft jamming grippers can improve holding strength. In a series of studies, we show that frequency and amplitude of the waveforms are key determinants to performance, and that jamming performance is also dependent on temporal properties of the induced waveform. We hope to encourage further study focused on active vibrational control of jamming in soft robotics to improve performance and increase diversity of potential applications.Comment: arXiv admin note: substantial text overlap with arXiv:2109.1049

    A Lightweight Universal Gripper with Low Activation Force for Aerial Grasping

    Get PDF
    Soft robotic grippers have numerous advantages that address challenges in dynamic aerial grasping. Typical multi-fingered soft grippers recently showcased for aerial grasping are highly dependent on the direction of the target object for successful grasping. This study pushes the boundaries of dynamic aerial grasping by developing an omnidirectional system for autonomous aerial manipulation. In particular, the paper investigates the design, fabrication, and experimental verification of a novel, highly integrated, modular, sensor-rich, universal jamming gripper specifically designed for aerial applications. Leveraging recent developments in particle jamming and soft granular materials, the presented gripper produces a substantial holding force while being very lightweight, energy-efficient and only requiring a low activation force. We show that the holding force can be improved by up to 50% by adding an additive to the membrane’s silicone mixture. The experiments show that our lightweight gripper can develop up to 15N of holding force with an activation force as low as 2.5N, even without geometric interlocking. Finally, a pick and release task is performed under real-world conditions by mounting the gripper onto a multi-copter. The developed aerial grasping system features many useful properties, such as resilience and robustness to collisions and the inherent passive compliance which decouples the UAV from the environment

    The Jamming Donut: A Free-Space Gripper based on Granular Jamming

    Full text link
    Fruit harvesting has recently experienced a shift towards soft grippers that possess compliance, adaptability, and delicacy. In this context, pneumatic grippers are popular, due to provision of high deformability and compliance, however they typically possess limited grip strength. Jamming possesses strong grip capability, however has limited deformability and often requires the object to be pushed onto a surface to attain a grip. This paper describes a hybrid gripper combining pneumatics (for deformation) and jamming (for grip strength). Our gripper utilises a torus (donut) structure with two chambers controlled by pneumatic and vacuum pressure respectively, to conform around a target object. The gripper displays good adaptability, exploiting pneumatics to mould to the shape of the target object where jamming can be successfully harnessed to grip. The main contribution of the paper is design, fabrication, and characterisation of the first hybrid gripper that can use granular jamming in free space, achieving significantly larger retention forces compared to pure pneumatics. We test our gripper on a range of different sizes and shapes, as well as picking a broad range of real fruit

    Haptic Edge Detection Through Shear

    Get PDF
    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals

    A design approach to a standard manipulator

    Full text link
    New structures for gripping objects in robotic manipulation processes are oriented to the new arrangement of mechanical structures using new materials and processing technologies and innovative procedures for the implementation of contact gripping element links to an object with a high degree of adaptively of applications together with the ability to alter the structure of grip and limiting the intensity of the contact stiffness variation of snap elements custody and pliability. The application of elastomeric materials and surface finishes is important. This paper presents both a new gripper design for robot arms but also the search of the selected materials to make an experimental evaluation of technical parameters that are used to assess their application potential and suitability for the targeted applications. Also the results and conclusions for gripper testing in manipulation operations with two different robot arms are presented.Sellés Cantó, MÁ.; Pérez Bernabeu, E.; Sanchez-Caballero, S.; Cihlar, J. (2012). A design approach to a standard manipulator. Scientific Bulletin of "Petru Maior" Universityof Tîrgu-Mureş. 9(2):66-70. http://hdl.handle.net/10251/62593S66709

    Design and analysis of a variable-stiffness robotic gripper

    Get PDF
    This paper presents the design and analysis of a novel variable-stiffness robotic gripper, the RobInLab VS gripper. The purpose is to have a gripper that is strong and reliable as rigid grippers but adaptable as soft grippers. This is achieved by designing modular fingers that combine a jamming material core with an external structure, made with rigid and flexible materials. This allows the finger to softly adapt to object shapes when the capsule is not active, but becomes rigid when air suction is applied. A three-finger gripper prototype was built using this approach. Its validity and performance are evaluated using five experimental benchmark tests implemented exclusively to measure variable-stiffness grippers. To complete the analysis, our gripper is compared with an alternative gripper built by following a relevant state-of-the-art design. Our results suggest that our solution significantly outperforms previous approaches using similar variable stiffness designs, with a significantly higher grasping force, combining a good shape adaptability with a simpler and more robust design.This paper describes research conducted at UJI Robotic Intelligence Laboratory. Support for this laboratory is provided in part by Ministerio de Ciencia e Innnovación (DPI2015-69041-R and DPI2017-89910-R), by Universitat Jaume I (UJI-B2018-74), and by Generalitat Valenciana (PROMETEO/2020/034)

    RFID Gazebo-Based Simulator With RSSI and Phase Signals for UHF Tags Localization and Tracking

    Get PDF
    Radio Frequency Identification (RFID) technology is becoming very popular in the new era of Industry 4.0, especially for warehouse management, retails, and logistics. RFID systems can be used for objects identification, localization, and tracking, facilitating everyday operators' efforts. However, the deployment of RFID tags and reader antennas in real-world application scenarios is crucial and takes time. Indeed, deciding where to place tags and/or readers' requires examining many conditions. If some weaknesses appear in the design, the arrangement must be reconsidered. The proposed work presents a novel open-source RFID simulator that allows modeling environments and testing the deployment of RFID tags and antennas apriori. In such a way, validating the performance of the localization or tracking algorithms in simulation, possible weaknesses that could arise may be fixed before facilities are applied on the field. Any number of tags and antennas can be placed in any position in the created scenario, and the simulator provides the phase and the RSSI signals for each tag. Every reader antenna is parametrized so that different antennas of different vendors can be reproduced. The simulator is implemented as a plugin of Gazebo, a widely used robotic framework integrated with the Robot Operating System (ROS), to reach a broad audience. In order to validate the simulator, a warehouse scenario is modeled, and a tag localization algorithm that uses the phase unwrapping technique and hyperbolae intersection method employing a reader antenna mounted on a mobile robot is used to estimate the position of the tags deployed in the scenario. The outcomes of the experiments showed realistic results
    corecore