5 research outputs found

    Preamplifier for biological signals processing

    Get PDF
    PrĂĄce se zabĂœvĂĄ problematikou nĂĄvrhu a optimalizace zesilovačƯ v technologii CMOS s nĂ­zkĂœm napĂĄjecĂ­m napětĂ­m a nĂ­zkou spotƙebou. HlavnĂ­m zaměƙenĂ­m prĂĄce je navrhnout zesilovač pro zesĂ­lenĂ­ biologickĂœch signĂĄlu. V prvnĂ­ části prĂĄce je stručnĂœ Ășvod do teorie biologickĂœch signĂĄlĆŻ. DĂĄle prĂĄce obsahuje stručnĂœ popis metod zpracovĂĄnĂ­ biologickĂœch signĂĄlĆŻ a jejich vlastnosti. DĆŻleĆŸitou částĂ­ prĂĄce je popis metod pro snĂ­ĆŸenĂ­ napĂĄjecĂ­ napětĂ­ zesilovače. PraktickĂĄ část tĂ©to prĂĄce je zaměƙena na nĂĄvrh zesilovače s nĂ­zkĂœm napĂĄjecĂ­m napětĂ­m a s nĂ­zkou spotƙebou. VĆĄechny aktivnĂ­ prvky a pƙíklady aplikacĂ­ byly ověƙeny pomocĂ­ PSpice simulacĂ­ s vyuĆŸitĂ­m parametrĆŻ technologie 0,18 ”m TSMC CMOS. Pro ilustraci chovĂĄnĂ­ struktur je v diplomovĂ© prĂĄci zahrnuty simulačnĂ­ vĂœsledky.The work deals with the design and optimization of amplifiers in CMOS technology with low supply voltage and low power consumption. The main aim is to design an amplifier to amplify the biological signal. The first part is a brief introduction to the theory of biological signals. The work also contains a brief description of the biological signal processing methods and their properties. The important part is the description of the methods to reduce the supply voltage of the amplifier. The practical part of this thesis focuses on the design amplifiers with low supply voltage and low power consumption. All active elements and application examples have been verified by PSpice simulator using the 0.18 ”m TSMC CMOS parameters. Simulated plots are included in this thesis to illustrate behavior of structures.

    Design of low-voltage operational amplifier

    Get PDF
    Tato prĂĄce se zabĂœvĂĄ nĂĄvrhem operačnĂ­ho zesilovače s extrĂ©mně nĂ­zkĂœm napĂĄjecĂ­m napětĂ­m a nĂ­zkou spotƙebou. V teoretickĂ© části je pƙedstavena teorie zabĂœvajĂ­cĂ­ se strukturou a nĂĄvrhem operačnĂ­ho zesilovače. V nĂĄsledujĂ­cĂ­ části jsou popsĂĄny nĂĄvrhovĂ© metody vhodnĂ© k realizaci nĂ­zkonapěƄovĂœch obvodĆŻ. V dalĆĄĂ­ části byly navrhnuty dva operačnĂ­ zesilovače s pouĆŸitĂ­m nĂ­zkonapěƄovĂœch metod. Vlastnosti těchto operačnĂ­ch zesilovačƯ byly potĂ© ověƙeny simulacemi.This work deals with the design of operational amplifier with extremely low supply voltage and low power consumption. In the theoretical part is presented theory dealing with the structure and design of operational amplifier. In the following part are desribed design methods suitable for realization of low-voltage circuits. In the next part were designed two operational amplifiers using low-voltage design methods. Properties of these operational amplifiers were then tested by simulations.

    Utilizing Unconventional CMOS Techniques for Low Voltage Low Power Analog Circuits Design for Biomedical Applications

    Get PDF
    Tato disertačnĂ­ prĂĄce se zabĂœvĂĄ navrĆŸenĂ­m nĂ­zkonapěƄovĂœch, nĂ­zkopƙíkonovĂœch analogovĂœch obvodĆŻ, kterĂ© pouĆŸĂ­vajĂ­ nekonvenčnĂ­ techniky CMOS. LĂ©kaƙskĂĄ zaƙízenĂ­ na bateriovĂ© napĂĄjenĂ­, jako systĂ©my pro dlouhodobĂœ fyziologickĂœ monitoring, pƙenosnĂ© systĂ©my, implantovatelnĂ© systĂ©my a systĂ©my vhodnĂ© na noĆĄenĂ­, musĂ­ bĂœt male a lehkĂ©. Kromě toho je nutnĂ©, aby byly tyto systĂ©my vybaveny bateriĂ­ s dlouhou ĆŸivotnostĂ­. Z tohoto dĆŻvodu pƙevlĂĄdajĂ­ v biomedicĂ­nskĂœch aplikacĂ­ch tohoto typu nĂ­zkopƙíkonovĂ© integrovanĂ© obvody. NekonvenčnĂ­ techniky jako napƙ. vyuĆŸitĂ­ transistorĆŻ s ƙízenĂœm substrĂĄtem (Bulk-Driven “BD”), s plovoucĂ­m hradlem (Floating-Gate “FG”), s kvazi plovoucĂ­m hradlem (Quasi-Floating-Gate “QFG”), s ƙízenĂœm substrĂĄtem s plovoucĂ­m hradlem (Bulk-Driven Floating-Gate “BD-FG”) a s ƙízenĂœm substrĂĄtem s kvazi plovoucĂ­m hradlem (Bulk-Driven Quasi-Floating-Gate “BD-QFG”), se v nedĂĄvnĂ© době ukĂĄzaly jako efektivnĂ­ prostƙedek ke zjednoduĆĄenĂ­ obvodovĂ©ho zapojenĂ­ a ke snĂ­ĆŸenĂ­ velikosti napĂĄjecĂ­ho napětĂ­ směrem k prahovĂ©mu napětĂ­ u tranzistorĆŻ MOS (MOST). V prĂĄci jsou podrobně pƙedstaveny nejdĆŻleĆŸitějĆĄĂ­ charakteristiky nekonvenčnĂ­ch technik CMOS. Tyto techniky byly pouĆŸity pro vytvoƙenĂ­ nĂ­zko napěƄovĂœch a nĂ­zko vĂœkonovĂœch CMOS struktur u některĂœch aktivnĂ­ch prvkĆŻ, napƙ. Operational Transconductance Amplifier (OTA) zaloĆŸenĂ© na BD, FG, QFG, a BD-QFG techniky; Tunable Transconductor zaloĆŸenĂœ na BD MOST; Current Conveyor Transconductance Amplifier (CCTA) zaloĆŸenĂœ na BD-QFG MOST; Z Copy-Current Controlled-Current Differencing Buffered Amplifier (ZC-CC-CDBA) zaloĆŸenĂœ na BD MOST; Winner Take All (WTA) and Loser Take All (LTA) zaloĆŸenĂœ na BD MOST; Fully Balanced Four-Terminal Floating Nullor (FBFTFN) zaloĆŸenĂœ na BD-QFG technice. Za Ășčelem ověƙenĂ­ funkčnosti vĂœĆĄe zmĂ­něnĂœch struktur, byly tyto struktury pouĆŸity v několika aplikacĂ­ch. VĂœkon navrĆŸenĂœch aktivnĂ­ch prvkĆŻ a pƙíkladech aplikacĂ­ je ověƙovĂĄn prostƙednictvĂ­m simulačnĂ­ch programĆŻ PSpice či Cadence za pouĆŸitĂ­ technologie 0.18 m CMOS.This doctoral thesis deals with designing ultra-low-voltage (LV) low-power (LP) analog circuits utilizing the unconventional CMOS techniques. Battery powered medical devices such as; long term physiological monitoring, portable, implantable, and wearable systems need to be small and lightweight. Besides, long life battery is essential need for these devices. Thus, low-power integrated circuits are always paramount in such biomedical applications. Recently, unconventional CMOS techniques i.e. Bulk-Driven (BD), Floating-Gate (FG), Quasi-Floating-Gate (QFG), Bulk-Driven Floating-Gate (BD-FG) and Bulk-Driven Quasi-Floating-Gate (BD-QFG) MOS transistors (MOSTs) have revealed as effective devices to reduce the circuit complexity and push the voltage supply of the circuit towards threshold voltage of the MOST. In this work, the most important features of the unconventional CMOS techniques are discussed in details. These techniques have been utilized to perform ultra-LV LP CMOS structures of several active elements i.e. Operational Transconductance Amplifier (OTA) based on BD, FG, QFG, and BD-QFG techniques; Tunable Transconductor based on BD MOST; Current Conveyor Transconductance Amplifier (CCTA) based on BD-QFG MOST; Z Copy-Current Controlled-Current Differencing Buffered Amplifier (ZC-CC-CDBA) based on BD MOST; Winner Take All (WTA) and Loser Take All (LTA) based on BD MOST; Fully Balanced Four-Terminal Floating Nullor (FBFTFN) based on BD-QFG technique. Moreover, to verify the workability of the proposed structures, they were employed in several applications. The performance of the proposed active elements and their applications were investigated through PSpice or Cadence simulation program using 0.18 m CMOS technology.

    FPGA Application - Data Collector for TI MicroReaders Group

    Get PDF
    Import 04/07/2011CĂ­lem tĂ©to diplomovĂ© prĂĄce je realizace mikroprocesorovĂ©ho systĂ©mu se čtyƙmi asynchronnĂ­mi sĂ©riovĂœmi rozhranĂ­mi na bĂĄzi hradlovĂ©ho pole, kterĂœ bude zprostƙedkovĂĄvat sběr dat ze čteček RFID a jejich pƙedĂĄvĂĄnĂ­ pomocĂ­ sĂ©riovĂ©ho rozhranĂ­. Data budou pƙebĂ­rĂĄna ve formĂĄtu, jakĂœ produkuje čtečka Micro-reader RI-STU-MRD1, nĂĄsledně zpracovĂĄna a v novĂ©m formĂĄtu posĂ­lĂĄna pro nadƙazenou aplikaci. PrvnĂ­ část prĂĄce je zaměƙena na pouĆŸitĂ© technologie a jejich vlastnosti. Jsou zde popsĂĄny vĆĄechny dĆŻleĆŸitĂ© technologie nezbytnĂ© pro vytvoƙenĂ­ diplomovĂ© prĂĄce. DruhĂĄ část je zaměƙena na pouĆŸitĂœ hardware a takĂ© hardware, kterĂœ je nutnĂœ navrhnout pomocĂ­ FPGA SmartFusion. Ve tƙetĂ­ časti je popsĂĄn software nezbytnĂœ k funkčnosti mikroprocesorovĂ©ho systĂ©mu. PƙedposlednĂ­ kapitola pojednĂĄvĂĄ o testovĂĄnĂ­ aplikace a konečně poslednĂ­ kapitola podĂĄvĂĄ vĂœsledek a pƙínos diplomovĂ© prĂĄce.The aim of this thesis is the realization of a microprocessor system with four asynchronous serial interfaces based on gate array, which will arrange the collection of data from RFID readers and their transmission over the serial interface. Data will be taken over in a format that produces the reader-Micro Reader RI-STU-MRD1, then they will be processed and sent to a new format for a superior application. The first part focuses on the applied technology and its properties. All the important technologies which are needed for the thesis are desribed there. The second part focuses on the hardware used and also the hardware that is required to design FPGA SmartFusion. The third section describes a software that is neccesarry for the functioning of the microprocessor system. The penultimate chapter deals with testing of application and finally the last chapter provides a result and benefit of the thesis.460 - Katedra informatikyvĂœborn

    Low Voltage Low Power Analogue Circuits Design

    Get PDF
    DisertačnĂ­ prĂĄce je zaměƙena na vĂœzkum nejbÄ›ĆŸnějĆĄĂ­ch metod, kterĂ© se vyuĆŸĂ­vajĂ­ pƙi nĂĄvrhu analogovĂœch obvodĆŻ s vyuĆŸitĂ­ nĂ­zkonapěƄovĂœch (LV) a nĂ­zkopƙíkonovĂœch (LP) struktur. Tyto LV LP obvody mohou bĂœt vytvoƙeny dĂ­ky vyspělĂœm technologiĂ­m nebo takĂ© vyuĆŸitĂ­m pokročilĂœch technik nĂĄvrhu. DisertačnĂ­ prĂĄce se zabĂœvĂĄ prĂĄvě pokročilĂœmi technikami nĂĄvrhu, pƙedevĆĄĂ­m pak nekonvenčnĂ­mi. Mezi tyto techniky patƙí vyuĆŸitĂ­ prvkĆŻ s ƙízenĂœm substrĂĄtem (bulk-driven - BD), s plovoucĂ­m hradlem (floating-gate - FG), s kvazi plovoucĂ­m hradlem (quasi-floating-gate - QFG), s ƙízenĂœm substrĂĄtem s plovoucĂ­m hradlem (bulk-driven floating-gate - BD-FG) a s ƙízenĂœm substrĂĄtem s kvazi plovoucĂ­m hradlem (quasi-floating-gate - BD-QFG). PrĂĄce je takĂ© orientovĂĄna na moĆŸnĂ© zpĆŻsoby implementace znĂĄmĂœch a modernĂ­ch aktivnĂ­ch prvkĆŻ pracujĂ­cĂ­ch v napěƄovĂ©m, proudovĂ©m nebo mix-mĂłdu. Mezi tyto prvky lze začlenit zesilovače typu OTA (operational transconductance amplifier), CCII (second generation current conveyor), FB-CCII (fully-differential second generation current conveyor), FB-DDA (fully-balanced differential difference amplifier), VDTA (voltage differencing transconductance amplifier), CC-CDBA (current-controlled current differencing buffered amplifier) a CFOA (current feedback operational amplifier). Za Ășčelem potvrzenĂ­ funkčnosti a chovĂĄnĂ­ vĂœĆĄe zmĂ­něnĂœch struktur a prvkĆŻ byly vytvoƙeny pƙíklady aplikacĂ­, kterĂ© simulujĂ­ usměrƈovacĂ­ a induktančnĂ­ vlastnosti diody, dĂĄle pak filtry dolnĂ­ propusti, pĂĄsmovĂ© propusti a takĂ© univerzĂĄlnĂ­ filtry. VĆĄechny aktivnĂ­ prvky a pƙíklady aplikacĂ­ byly ověƙeny pomocĂ­ PSpice simulacĂ­ s vyuĆŸitĂ­m parametrĆŻ technologie 0,18 m TSMC CMOS. Pro ilustraci pƙesnĂ©ho a ĂșčinnĂ©ho chovĂĄnĂ­ struktur je v disertačnĂ­ prĂĄci zahrnuto velkĂ© mnoĆŸstvĂ­ simulačnĂ­ch vĂœsledkĆŻ.The dissertation thesis is aiming at examining the most common methods adopted by analog circuits' designers in order to achieve low voltage (LV) low power (LP) configurations. The capability of LV LP operation could be achieved either by developed technologies or by design techniques. The thesis is concentrating upon design techniques, especially the non–conventional ones which are bulk–driven (BD), floating–gate (FG), quasi–floating–gate (QFG), bulk–driven floating–gate (BD–FG) and bulk–driven quasi–floating–gate (BD–QFG) techniques. The thesis also looks at ways of implementing structures of well–known and modern active elements operating in voltage–, current–, and mixed–mode such as operational transconductance amplifier (OTA), second generation current conveyor (CCII), fully–differential second generation current conveyor (FB–CCII), fully–balanced differential difference amplifier (FB–DDA), voltage differencing transconductance amplifier (VDTA), current–controlled current differencing buffered amplifier (CC–CDBA) and current feedback operational amplifier (CFOA). In order to confirm the functionality and behavior of these configurations and elements, they have been utilized in application examples such as diode–less rectifier and inductance simulations, as well as low–pass, band–pass and universal filters. All active elements and application examples have been verified by PSpice simulator using the 0.18 m TSMC CMOS parameters. Sufficient numbers of simulated plots are included in this thesis to illustrate the precise and strong behavior of structures.
    corecore