3,439,214 research outputs found
Total temperature probes for high-temperature hypersonic boundary-layer measurements
The design and test results of two types of total temperature probes that were used for hypersonic boundary-layer measurements are presented. The intent of each design was to minimize the total error and to maintain minimal size for measurements in boundary layers 1.0 in. thick and less. A single platinum-20-percent-rhodium shield was used in both designs to minimize radiation heat transfer losses during exposure to the high-temperature test stream. The shield of the smaller design was flattened at the flow entrance to an interior height of 0.02 in., compared with 0.03 in. for the larger design. The resulting vent-to-inlet area ratios were 60 and 50 percent. A stainless steel structural support sleeve that was used in the larger design was excluded from the smaller design, which resulted in an outer diameter of 0.059 in., to allow closer placement of the probes to each other and to the wall. These small design changes to improve resolution did not affect probe performance. Tests were conducted at boundary-layer-edge Mach numbers of 5.0 and 6.2. The nominal free-stream total temperatures were 2600 degrees and 3200 degrees R. The probes demonstrated extremely good reliability. The best performance in terms of recovery factor occurred when the wire-based Nusselt number was at least 0.04. Recommendations for future probe designs are included
Room temperature plasmon laser by total internal reflection
Plasmon lasers create and sustain intense and coherent optical fields below
light's diffraction limit with the unique ability to drastically enhance
light-matter interactions bringing fundamentally new capabilities to
bio-sensing, data storage, photolithography and optical communications.
However, these important applications require room temperature operation, which
remains a major hurdle. Here, we report a room temperature semiconductor
plasmon laser with both strong cavity feedback and optical confinement to
1/20th of the wavelength. The strong feedback arises from total internal
reflection of surface plasmons, while the confinement enhances the spontaneous
emission rate by up to 20 times.Comment: 8 Page, 2 Figure
Total site targeting with stream specific minimum temperature difference
The paper focuses on extending traditional Total Site Integration methodology to produce more meaningful utility and heat recovery targets for the process design. The traditional methodology leads to inadequate results due to inaccurate estimation of the overall Total Site heat recovery targets. The new methodology is a further development of a recently extended traditional pinch methodology. The previous extension was on the introduction of using an individual minimum temperature difference (δTmin) for different processes so that the δTmin is more representative of the specific process. Further this paper deals with stream specific δT min inside each process by setting different δT contribution (δTcont) and also using different δTcont between the process streams and the utility systems. The paper describes the further extended methodology called stream specific targeting methodology. A case study applying data from a real diary factory is used to show the differences between the traditional, process specific and stream specific total site targeting methodologies. The extended methodology gives more meaningful results at the end of the targeting with this avoiding the over or under estimated heat exchanger areas in the process design
On the Navier-Stokes equations with constant total temperature
For various applications in fluid dynamics, it is assumed that the total temperature is constant. Therefore, the energy equation can be replaced by an algebraic relation. The resulting set of equations in the inviscid case is analyzed. It is shown that the system is strictly hyperbolic and well posed for the initial value problems. Boundary conditions are described such that the linearized system is well posed. The Hopscotch method is investigated and numerical results are presented
Study to determine suitable high temperature, high altitude, total temperature sensors Final report
High temperature, high altitude total temperature sensor development - thermocouple devic
Thermal Casimir effect for neutrino and electromagnetic fields in closed Friedmann cosmological model
We calculate the total internal energy, total energy density and pressure,
and the free energy for the neutrino and electromagnetic fields in Einstein and
closed Friedmann cosmological models. The Casimir contributions to all these
quantities are separated. The asymptotic expressions for both the total
internal energy and free energy, and for the Casimir contributions to them are
found in the limiting cases of low and high temperatures. It is shown that the
neutrino field does not possess a classical limit at high temperature. As for
the electromagnetic field, we demonstrate that the total internal energy has
the classical contribution and the Casimir internal energy goes to the
classical limit at high temperature. The respective Casimir free energy
contains both linear and logarithmic terms with respect to the temperature. The
total and Casimir entropies for the neutrino and electromagnetic fields at low
temperature are also calculated and shown to be in agreement with the Nernst
heat theorem.Comment: 23 pages, to appear in Phys. Rev.
Gage measures total radiation, including vacuum UV, from ionized high-temperature gases
Transient-heat transfer gage measures the total radiation intensity from vacuum ultraviolet and ionized high temperature gases. The gage includes a sensitive piezoelectric crystal that is completely isolated from any ionized flow and vacuum ultraviolet irradiation
Temperature dependence of the probability of "small heating" and total losses of ucns on the surface of fomblin oils of different molecular mass
We measured the temperature dependence of the probability of small heating
and total losses of UCNs on the PFPE Fomblin Y surface with various molecular
masses Mw=2800, 3300, 6500 amu in the temperature range of 100-300 K. The
probability of small heating sharply decreases with increasing Mw and
decreasing temperature. The probability of total loss weakly decreases with
decreasing temperature and takes the minimum value at Mw=3300 amu. As this oil
provides a homogeneous surface with minimal probabilities of small heating and
total losses of UCNs, it is the preferred candidate for experiments on
measuring the neutron lifetime
Seasonal measurements of total OH reactivity fluxes, total ozone loss rates and missing emissions from Norway spruce in 2011 [Discussion paper]
Numerous reactive volatile organic compounds (VOCs) are emitted into the atmosphere by vegetation. Most biogenic VOCs are highly reactive towards the atmosphere's most important oxidant, the hydroxyl (OH) radical. One way to investigate the chemical interplay between biosphere and atmosphere is through the measurement of total OH reactivity, the total loss rate of OH radicals. This study presents the first determination of total OH reactivity emission rates (measurements via the Comparative Reactivity Method) based on a branch cuvette enclosure system mounted on a Norway spruce (Picea abies) throughout spring, summer and autumn 2011. In parallel separate VOC emission rates were monitored by a Proton Transfer Reaction-Mass Spectrometer (PTR-MS), and total ozone (O3) loss rates were obtained inside the cuvette. Total OH reactivity emission rates were in general temperature and light dependent, showing strong diel cycles with highest values during daytime. Monoterpene emissions contributed most, accounting for 56–69% of the measured total OH reactivity flux in spring and early summer. However, during late summer and autumn the monoterpene contribution decreased to 11–16%. At this time, a large missing fraction of the total OH reactivity emission rate (70–84%) was found when compared to the VOC budget measured by PTR-MS. Total OH reactivity and missing total OH reactivity emission rates reached maximum values in late summer corresponding to the period of highest temperature. Total O3 loss rates within the closed cuvette showed similar diel profiles and comparable seasonality to the total OH reactivity fluxes.
Total OH reactivity fluxes were also compared to emissions from needle storage pools predicted by a temperature-only dependent algorithm. Deviations of total OH reactivity fluxes from the temperature-only dependent emission algorithm were observed for occasions of mechanical and heat stress. While for mechanical stress, induced by strong wind, measured VOCs could explain total OH reactivity emissions, during heat stress they could not. The temperature driven algorithm matched the diel course much better in spring than in summer, indicating a different production and emission scheme for summer and early autumn. During these times, unmeasured and possibly unknown primary biogenic emissions contributed significantly to the observed total OH reactivity flux
Quantum Gravity Effect on the Tunneling Particles from 2+1 dimensional New-type Black Hole
We investigate the Generalized Uncertainty Principle (GUP) effect on the
Hawking temperature for the 2+1 dimensional New-type black hole by using the
quantum tunneling method for both the spin-1/2 Dirac and the spin-0 scalar
particles. In computation of the GUP correction for the Hawking temperature of
the black hole, we modified Dirac and Klein-Gordon equations. We observed that
the modified Hawking temperature of the black hole depends not only on the
black hole properties, but also on the graviton mass and the intrinsic
properties of the tunneling particle, such as total angular momentum, energy
and mass. Also, we see that the Hawking temperature was found to be probed by
these particles in different manners. The modified Hawking temperature for the
scalar particle seems to be lower compared to its standard Hawking temperature.
Also, we find that the modified Hawking temperature of the black hole caused by
Dirac particle's tunnelling rised by the total angular momentum of the
particle. It is diminishable by the energy and mass of the particle and
graviton mass as well. These intrinsic properties of the particle, except total
angular momentum for the Dirac particle, and graviton mass may cause screening
for the black hole radiation.Comment: 11 page
- …
