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1. INTRODUCT I,_N .

Most atmospher c immersion type total teml*erature sensors are

designed to measure total temperature under steady state conditions.

3easing element design for present units provide fast time constants.

ihe units in fli:.,ht follow the total temper:_ture with fair accuracy

and hence develop high temperatures at Mach number above _i.O. Gen-

erally, tlle construction of the units limits o],erationtolSO0oC. The

present units operating above Maeh number 3.0 or above altitude of

l(;O,OOO feat require a correction of systematic err.rs due to radi-

ation, conduet,.on, tir.e constar_t and recover) _ factor. The accuracy

of Ltle systematic correction decreases as tile altitude arid Mach

lit/tuber are increased.

h'ork by RI]C under a previous contract .\..i:_8-527_t indicated the

f.1 1 owin.: results:

(1) Analysis of fli_ht test dat. on presellt total temper-

at:Ire sensors indie:,ted ti_at accuracy of ±lt_ could he obtained up

to /_5 Kms. of altitude.

(2) Large radiation errors could be suppressed if slow

ttme constant sensin_ elements were pr_,vided.

(3) Dynamic matching for temFerature s of se,_sing element

and radiation shield ai_l,e.r i,ractie.l, thus, further suppressing

radiation errors.

(tt) Due to practical size limitations, heat transfer oc-

curs by air gap conduction between radiation sitield and sensing ele-

ment. This occurs at Reynolds nm:,ber less than )O. This effect

further increases the need l',_z' dynamic matching of te_. erature

response between ratli,tt_on _hield .n,. sens_.n_ element.

Tile curre_t investi_ati.n has tlie followin,_ ob,lectives:

(1) Using the criteria developed under ftrst phase inv, s-

ti/.ation_ continue the analysis and (lesi'An ,)f a l,ractie.l sens.r

eo;_figur_ttit,ii.
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exi,ected i,erfor_,:ance.

(3) Con(h_et suuer_onJc _,ind tunucJ ex;'er!r,ents ia ;_

;,-verni, ont oper;,tina l aci lily wi th heat e(t fl,)_;.

(t_) Qle final i,h,tse also consists of fabl'icatlng four

f'rototype units Jot delivery to NASk.

?

" ,)ESfGN 01,' PItOTOTYI'E TOTAL T_),JI,RATL,R:_ SIL_;S¢,qL C(:NI'IiII:ILkTII)N_

Many of the factors affecting the uesign of total teaq_erature

sensor configurati,,n were analyzed under previous Contract N'.:_ti_5271,.

! _aal recommen(ta_on and coriclus[ons regarding tlJis desi_._n are listed

below for convenience.

(a) Sensing element shall be oriented parallel to t_he direct, ion

of air flow within the sensor.

(h) Mach number inside the radiation shiel(l and at the sensing

element shall be approximately 0.3.

_c) Diameter of the sensing element shall be about 2 nu_.

(d) Sensing element, should be located ai_l,roximately 25 ram.

from the leading edge of the shield.

_e) The shield construction sltould be double wall type with

an evacuated air space.

(f) i'he use of boundary layer suct,on h.les is optional.

In addition it was indicated that a parallel flow sensing ele-

ment was superior to the cross flow sensiug element also analyzed

on the base of the following:

(a) T:Le cross flow sensing elet_,ent loses lieat by raulati.n

throu h the open ends.

(t,) Recovery fact,,r for parallel llow seusi_ elements is hither.

(c) Cond.ction err. r for parallel flow element is minimized

by having :_qextended lengtl_ between the sensin_ element and the rear

mounti n_ portion.

(d) l)ynamic matching is easier to accomplish for parallel flow

eleme._. 1ieat transfer c,)efficientSare ,_iven by similar exi,ressi.n s

f,,r set, sis, eleme_t a,_d radiation shield.
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'2:i lieat Transfer Considerattons)

The relative axi_,l pasiti,n of the s¢'nsin_ element inside of

the s!,ield determines tile amount of heat loss by radiation through

the open end of the shield. Calculations were performed to determine

this heat loss as the distance varied from 5 to 37.5 ram. Details

of heat transfer are given in Appendix A at the end of this report.

The calculated radiation and convective heat transfer rates and their

ratio were calculated. ]'he results are presented as Figure 1 for

the following flight conditions.

Altitude 70 Km

Internal Mach numbers o.333

Recover Temp. 2_OOR

Wall Temp. 2330OR

Emissivity 0.O8

Reynolds No. _0.0

Test results utilizing a special apparatus, Reference I, indi-

cated that conduction of heat may occur between the sensing element

and the radiation shield. The amount of conduction or teml,eratur e

error was nut significant at Reynold's nu_,ber above 100 but became

significantly larger within decreasing !{eynolds number. At a Re X -

nold's am_ber of _O the error introduced by heat conduction has

been considered with res_lts plotted in k igure 2.

The effect o! increasing the dist,_uce of sensit_g element from

leading edge of the shield is two fold. First, a reduction of rad-

iation heat loss is effected. Second. an increase in air gap con-

duction occurs. _'or example, from Figure i ra,liat_on heat transfer

becomes about 5,_ _Jf the c(Jnduction at 25 ram. Air gap conducti,n,

Figure 2, is about l) per cent of the ternjerature difference between

the sensing element and the radiation shield. If effort is made

to match the time conntants of the sensing element and the radiation

shield t,,is effect can be minimized. The temi_erature difference

between these components should be insignificant as shown in Figure

_. The locati n of approximately 25 ram. w_,s selected for sensing
el e_,,ent location.



2.'2 Analysis ?[ r_,mjzjLr_tur e Sensor Theo r_ In Continuum and i,ac_,fied

Gas Flow.

A kn_wledge of the recovery factor and the heat transfer coef-

ficients is essential for the reduction of fli,_;ht test data. The

data obtained from the sensor is essentially the dynamic response

of the sensing clement, when subjected to varying conditions ,luring

the fli_4ht. Most of the flight will probably occur such that the

dynamic response can be calculated from continuum flow equations.

For flights above 60 kilometers, the rarefied atmosphere at the sensing

elemeat will influence the heat transfer coefficients_ A flow tran-

sition to slip flow occurs and the relevcrlt slip fl,,w equations must

be used. Figure 6 sh.ws a plot of Nusselt number against modified

Reynolds number, Z.

Re Pr

z (1)
where

Re _ Reynolds Number

Pr = Prandtl Nm,ber = 0..5

!J =Mach Number = 0.'50

The Mach number at the sensing element has been chosen to be

[).5 in all these calculations. The variation of Z with altitude

is also shown in Figure _.

In continuua flow the local heat transfer coefficient at a dis-

tance x from the leading edge is given by

Nu = O. [i32 Re o" 5 pr O. 333 (.0)
where, Nu and Re are based on tile ,listance x.

The average heat transfer coefficient over a length x is obtained

by integrating Equation (l). The resulting expreslion is

Nu ffi O.b64 Re O'5 pr O .335 ())
This relation is shown as a dashed line in Figure I.

The average heat transfer coefficient in slip flow is given

by the expression (Reference b),



5,1.: " _ '-:, d;4)

Nuw|ier_ p _t, :
Ire Pr

l'his i8 shown as a solid line in ._ure 4. lhe transition to

free molecule flow from continuum flow occurs between Z = 3°27 and

)2L7_ In this ronge a line has been dr.,_wn to smoothen the Nu-vari-

ation from the two ilow re_:imes. This line is expressed by

Nu = 0.865 Re 0'41_8

From this the local heat transfer heat transfer coefficient is ())
cy -,. I w_n by

Nu = 0.587 Re 0"_48

The dynamic response of the sensing element wls calculated

under the followin_ flow conditions:

Flow parallel to the sensin_,_ element.

Diameter of the sensing element o OO rams.

Mach Number in the shield = 0.3

Distance from the leading edge = 37.5 rams.

The precedure for calculating the response is described in

detail in Reference 1. Adopting t],is l_rocedure the dynamic response

was c_Jlculated usin_ both the continuum and slip flow relations

(Iquations (2) and (6))o I'he results have been tabulated in Table I.

It is seen from t.i_eTable that the dynamic response changes negli-

gibly when the slip flow equations are used. Based on these calcu-

lations, it has been decided rouse the continuum flow e,iuation throu_h-
out the fliAht trajectory.

2.3 t'hys i ca ] Requirement

Material used for fabric_tion of the scn_itt*X element and

shields should I_ave the following i,roperties.

(a) Ability to withsta,d and ret, in its mechanical strength
at hi_,h tempera C_,res.

(b) Good resistance to oxidati.n, corrosion, and t*ther atmo-
spheric action.

(c) Ability to tvke high polish, thus reducing emissivity

thereby reducing the heat trasfer to and trom t,'_esurface.

RI;;C ",'_ ,, r: _ 1652B



(d) Physical properties, especially tile specific heat and

its variation with teu.per_tture, should be k_lown.

(e) Material siiould be readily available, not prohibitively

expensive.

Materials were analyzed taking into account the above require-

meats. We finally decided to construct both tile sensing element

and the radiation shields from 347 S-;f. This ,uaterial may not be

operated to as high a te_,.perature as others, Considering that ini-

tial units are prototypes, it appears that t_lis material would be

very practical. Temperature sensor would be limited to approximately

140()°C. The product of density times specific heat determines time

response of the sensiag elemeut. Variation of this product for Lhree

stainless steel materials is shown in Table IIo These data are neces-

sary for the prediction of the time constants of the sensin_, element.

More details are included in the next section. The sensing elemeJ,t

is actually chromel alumel thermocouple tvl,ich is insulated from ti_(_

3_7 stainless shell by use of aluminum oxide insulation AL2Os. Pro-

perties of the aluminum oxide are also important. The graph of

variation of the product of density times specific heat with temper-

ature for aluminum oxide and 347 stainless are shown in Figure 5.

The product of the two materials is similar over an extended temper-

ature range, 500-22OOOR, as indicated.

3o PROTOTYPF SENSOR CONFIGt]tlTI_N.

A sketch of one of the prototype sensors is shown in Figure 6.

The sensor consi|ts of a 347 SST shield housing and a sensing element

assembly. The element assembly consists of a 347 S_T rod with an

embedded chromel-alumel thermocouple, and a )21 SST stem (or element

supp_)rt tube) containing chromel-alumel wires supported by aluminum

oxide (alumina) insulators. The stem design minimizes conduction

errors, maintaias high insulation resistance at elevated temperatures,

and provides adequate lead wire support.

Three different prototype element asserablies were fabricated

and designated as types A, B, and C. Types A and B, shown in Figure

7 (I{EC [)rawin7 No. 5o3-I01) share the sarao element configuration,

-- REC 'tel'(' r '_ 11652B -6-



but have different transition sections between element _,n(l stem.

Type A element is attached to the stem by ]'our 302 SST supp,,rt wires,

each welded to tile element on one end and secured to the stem with

a refractory cement on the other, desi;-ned to mitlimize h,._t conduction

between the element and s_er,,. Type B element consists of a tapered

transiti,,n section which )*as fabric_,ted integrat wltit ti_e element.

This conventional mountin_ Pruvtdes a hermetic_lly sealed unit w,ich

is more rugged thon type A element. Type C element, the third prOLo-

type element assea, bly, Is s,own in Figure t_ (i_t:C Drawizig 10_5-109),

and consists ol ,_n elemen_ with a diameter. ,l_,st double that of

element ty, es h and II (O.125 in. diameter for type C as compered to

O.ob5 in. daametcr lot both tyl)es A and il}. l'ype C element was designed

to provide time constants that are about half as fast as the time

COnstaltts for type B element. A phtograph of tj sensor housing (,nd

elements A and B are shown in Figure 9.

Three prototype sensor housings have internal flow o! _iach 0.1.

Each housing consists of two parts, of which olje was cooled, the other

heated for an interference fit asse_blyo Tw,, housings were of the

configuration shuwn in Figure 6 and botll Were designated as shield

}t. The third prototype iiousing _'as similar d_mensionaliy to shield

]) except that the iuside (li-meter of the st_ield was 0.TbO ino (instead

of 0.787 in.) and the four air exit porL_ _cre O.15_ in. diameter

each (instead of O.IO] in. diameter), i'he inner shield thicknesses

of 0.02C) in .... for shield C and 0.013 in. for shield B wer,., designed

to provide dynamic teml.eratur c respon.ue matc;_ing with the correspondin_

elements, l'he m;,tched shield for i.iement C w_ls 'lesioned from the

establts!_t:d sc_isor I_ conli_urat)oll. Th_ w_ts acco':iplls],(,d by n,,_iil-

taining a constant Surl.ce (if'ca to volume ratio l'or })Ot]l sensing elc,-

merit and inner sh.teld, t)old_ng equal Shield diameters and clement

lengths for each sensor. The reduced simpIiI'ied ratio sl)eci_y

that the ratio of inner s:ield t hicknes:_ foe both sensors e,lut_lu

the corresl)onding ratio of sen._l,_g cletu,r_t diar:,et(,rs.

REC Ro):,,r ( 11052B
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_ _'lfLOR'_ AND _' ' .....
• _.,.t_,I,IkLNT,_L ;_]il .]$IINA'II,: N Of 'I'IML CtWS"' .,,. l .,.\TS

/t.i Analytical Preaiction of lime Constal_ts of tile Sensing r_lealent.

A kn, wledge of tile time constaat of the sensing elc,_ent is

essential in analyzing,, the Ill _,t test data. bnder conditions of

consta_|t velocity- :,nd sr:_all r.e_-:'er:,tur,.; !iffere,,ce, the Lime constant

will remain unchan,_.ed, but the following parm_eters w,ry durl_g a

flight and thus influet_ce the time consta_.,ts:

(:t) Specific heat of the element i.ateri.,l.

(by Uensity of the element _,ateri,_i.

(c) Specific heat of air.

(d) Density of air

(e) Viscosity of air.

(f) Thermal conductivity of oir.

_g) Velocity in the shield.

The above factors vary af,i_recJ_tbly wit It te,.i,eratt, re but negligibly

with pressure (except the density of air). in these calculations

the weak pressure del)endetJc e is neglected.

At any instant el cooling (or t.be i_eating) of the sensin_ elemL_at,

the energy balance calJ be written as

_t;ere ,

hA
a i' ,it (1)

h = convective heat tr;tt:._lcr (:oeff_ci,.nt;
,)

B/hr- f t'- °F

A _ ttl'ea of s_irlace o_ t!._. e|_:_lunL, ft.

T = temperature of the element aL _i_.e t, °[L

'1 : _tmt, it, nt L,:ml_,,r,:_,_r e ,[_
ct

_= mass of the s.nsin_ elemc|:_, lb._.

Cp = specific heat of the laaterial of the

elol_ont, it _] b_L'/'

t = time , hr.

The above equation inclH(|es th,, ]ipIt_. tr;,_sf,,r by convection to the

sensing element and tlt#_ he,it tr_nsf_r as r_lat, ed to the mass sl,eci-

fic heat and time rat(, of (:i,t,_e in t)_, .%,.r,:_it_;..elemeHt Lc,,,,er.t_,r(_.



Lt_t _ = T-i' the teraperature e_cess.

d 9 h A

dt - wCp G

Tile solution to Equati_,n '2 can be *ritLen as:

_ = G Exp. (_hA__ t
,_ w6p

where _0 is the temperatL;ro excess at :,,v_ t_t:o.

an expont_nt.) Differea_iatin_ (3) again we get:

Takin_ the ratio

_rhev. E,!_iat, i,,n ] becomes:

(,.,)

from _._quat] .ns t3) _,z_(! _%) we get;
d(_ '(i t

wC

The i,alunwler _Cp/hA _s known as the Lime constant.
wC

For a (ircular cblinder parallel to the flow direction I, can be

t'urtl,er siml,lified a_ follows: hA

A
:)L .!,

_ density of the I_aterial of the element, lb_ft 3

d = diameter of the element, ft.

L ffi length of the element, ft.

The expression for tl,e convective he_t transfer is:

where, k = therm, l c_.¢_uct, ivit b of ._r, t_ I.r-ft-_i ''

x = distance /rein ti, c eleme_t leading:, edpe, ft.

--- vel¢,('it3, ft,,'Lr.

f = densit, of ,iv, It; ft 5

#M- viscosil 5 of air, lb, lt-[,r.

P =: t'ra_dtl au_:ber _,f air, dimen:,ionlcss
r

The velocity V caa be explesse¢l its, lerms o( _i,cll nm.,bcr as

v= ax_ iS)

where, a = velocity of ._ou.d, ft/hr.

E _. [h:ch n_.ber ot flow in.,-:ide the shield.

ltEC Report 11652B -9-



Combining Equations (b), (/) an,i t_) we _:et:

i ihA = _ _OCp)Hat'l. 1.53'_' (k) (xV_)lJ.5 '1.353• 2" r

Uain,_ the perfect ;:as law the densStx c,n _,_ _x:,ressed in terms of

[)r,r_sure _,',i teml,ela_ .re. fi,,.n f!_e fo] i_w_nr, expression res.lts:

wC i ( ,_Cp)Mat, 1 (_)O. 5ta _.5 )_.5__2= _ ) )._3'-' (7) (phA

i_ _: _l.s co_Istant of ;_tr, It
i)

l' = pressure, lb ft"

(_2%)""

2r

(9

r

The above equation can also be writ, ten as follows:

1 2
¢_ d (_) 1;2 (H) '
d_V'dt -_(U.,53.') " _,I" _l p

wh e re,

(_I)

1I = (pCi,)Mat 'i = f(l'a) = te,nl;er.l-ur e ,l,, e,..t.,_ part, meter

of s,'ns_nA elo:._e:_I, t_,Lteri.tl to, .rt_es, l_tu/ft 5 v_.,

"4 = _a_r) I/z i'r I 3 k := f(Vo.T _/2 _ temt,er,,ture

dc;,enden:. _tra:.,.t,.r (,t' _ir _,r_):,ert_e_, lJtu lb /:''o}_ •

Tempere, ture dependeat properties, Rel'ere:,ces .-'and ._, are lisled

in Tal) l,, Ill. l'l_ealr properties wa,teh are listed /'(,rt).Ol aLtar,sphere

pressure, art. in,lependen_, of ,,ressure t: l'o.;£Jl i tel, cl'ttl,,;r¢, of _21tJ `'1,"

It is a functt,.,n of t.!xe eletqc:,L w;tit try _,r,tt(,l',,, ['w. 'l is ;t function

of Lne _ivt. r_ige te,.*,_,rae._re oi 'lw and the Lotul tet-,.eratt,re To. *_he

expression flits bltleu dtsl, iilct Lerras; (,it,,, _he t;emt(,_rical COllSt;tr|L

(d,'.',) x _)" ;,.'0.3:)2; second, t.h. pr(.ss,_r(, ,iel),_ndet_c e l/pO'); thira,

t

the teu, i,erutt,re depead,,,,.t l erm, ,c_(: ' '(_2t_:r) 0"5 [I' )0"535k" p)Mat'I' r

The geometrical C(_tlSl, il:,t, illC],l,[ 't.:': }{ -t:,d M, }i_:> l,{'*:ll citlcult, ted

f,,r _<. t-ll,,',e,_,:; c-_aditi.ns:

d = I./,5 rams. = 0.0(,5o ,_.

x = 13.,) ,_uns. = i).5 _05 in.

\I = o.333

Ti,P ex,,ressi_,n fur g|lc time cunst._t;,t bec,,,:,es:

0 _ (!.,8953(pCi,_ .m,t'i.

"_ = d_,_ i,i_2(_)l/::yrl/3 k- (12)



where 74 0

P

C
P

P

a

time constant, sec.

- density of seamier material, lb/ft 3

= specific heat of seibaer material, Btu/lb. -°F

= pressure, atmospiJeres

= speed of sound, it/see.

= air viscosity, l|J/ft-sec.

Pr = Prandtl number el air, dimensionless

k = thermal conductivity of air, Btu/hr-ft

Equation (12) is based on tl,_ local (or point) value of the

heat trailsfer coefficient and is plotted versus teml_erature as the

solid curve in Fi_ re lO. Tile dashed curve represents the theoretical

time coaatas_t based on the average val,e of the heat transfer coef-

ficient. The average value of the heat tra_,s£er coefficient is twice

as large as the local value, and t e time couetaz]t is based on the

entire 1.091 inch element length instead of the 15.0 mm distance from

the element leading edge. The time corlsta,lts based on average values

are 0.680 times as large as those based on local values.

The theoretical time constants based on both local and average

heat transfer coefficients are plotted in Figur_ 11 and 12 for a

sensor with internal iach number of O.1 at 1.O atmosphere pressure.

Time constant remains relatively conatai_t for te_l,eratures up to 1500'_F.

The theoretical time constants are also listed in Table III.

_o2 Description of High Temperature Flow Apparatus.

The high temperature internal flow apparatus for testing eensors_

illustrated in Figure 13, consists of three major components: a tube

furnace; a water cooled heat exchanger; and a Beach-truss vacuum pump.

Photographs of the apparatus are presented in Figures 1_ and 15,

For main flow operation, room air enters the adjustable inlet valve

and is heated in the tube bundle located inside the furnace. For

room temperature air flow operation, air enters through two lines

located downstream of the furnace. Either operation mode, main flbw

or room temperature air, can be selected by a single switch which

controls two normally open solenoid valves for room temperature air

and one normally closed solenoid valve for the main flgw inlet. Three

adjustable hand valves control desired teat pressure settings for

either operation mode. The air reaches the test section and flows

}LEC Report !1652B -ll -



through the test sensor, the reference sensor, and eight 1/32 inch

diameter bleed holes located in the sensor mounting plate to jini-

mize nonuni£orm air temperatures. Heated air is cooled by the heat

exchanger before exhausting througtl the vacuum pump.

Automatic temperature control of tJ_e 340U watt tlevi-Duty elec-

tric tube furnace is provided by a West G_trdsman on-off controller

m,_nitured by an iron-constantan thermocouple on the surface of the

furnace duct assembly. A mercury relay switch activates the tube

furnace.

The Perfex single pass heat exchanger contains 1//4 inch diameter

brass tubing. Water coolarlt enters tile hi_her te_,i_eraturs upstream

end of the heat exchanger and discharges through the downstream end.

An 18 inch long tube bundle consisting of about )12 I/8 inch

0.D., 0.105 inch I.D., tubes provides a heat sink for heating air

durin_ main flow oper_tivn. The tube can supply constant high temp-

erature air during a test run for the length of time required te

reduce the heat sink capacity by about one-half. The tube bundle,

ductingm and flanges are constructed of )21 SST.

The test unit and the reference sensor (i_.!_C tiodel 10)T sensor)

are supported by a sensor mountin_ plate, Figure 1). A phttograph

of the sensors alld mounting plate is shown in Figure 16. The sensor

leads are brought out through the plate to exter_al instrumentatior, t

_.) Experimental Resultl in High Temperature Flow Apparatus;

Instrumentation for experimental determination of time constants

in the high temperature internal flow apparatus is pictured in Figure

1_ and includes a Sanborn paper strip pen recorder to measure sensed

temperatures and a U-tube mercury manometer to measure pressures.

absolute pressure reading Merriam manometer, (specific gravity,

1.0_) in conjtt_ction with a direct reading llastings Vacuum gage and

a small vacuum pump for evacuating the absolute boardp was used for

low pressure measurements. An ice bath provided the 32°F reference

junction temperatures for the test thermocouple leads.

i"
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The test runs in the flow apparatus normally involved the fal-

lowing procedure. The furnace was operated at the desired controller

temperature until heat saturation in the tube bundle was reached°

Valve pesitions were preset to the desired test pressure in both

main flow and room air tem_perature flow lines. The strip recorder

was turned on and checks were made on established scale factors.

The rapid switch frem room air flow te heated main air flow provided

the stepped temperature change from law to high temperature. Down-

stream pressure was monitored to assure a downstream to upstream

pressure ratio of 0.528 or lessj reluired for sonic flow to exist

at the sensor exit ports. The test run was continued until recovery

temperature was reached. A typical censor temperature trace i8 shown
in Figure 17.

Sensor time constant was determined from the temperature trace

by the Initial slaps method, Figure 17, in which the time constant

is the elapsed time for the initial slope to intersect the sensor

recovery temperature. Conditions before the stepped temperature

change are stable end the time constant determined at the beginning

of the temperature transient is the most reliable value. As the test

_n progresses, secondary heat transfer effects may introduce:errors

which are not measurable.

Experimental time constants for various combinations ef three

sensor housings and three element assemblies were determined from

tests in the high temperature flew apparatus. The experimental results

are presented on legarithmic plots, Figures 18 through 23, in which

data agrees with the theoretical slope of -1/2. Temperature variation

in time constant data was neglected for high temperature flow tests.

The housings and elements were previously described in detail, para-
graph 3.

Experimental time constants for types A, B, and C elements_

housed in a type B housing defined a8 shield no. 1, are shown in

Figures 1_, 19, and 20. Types A and B element configurations are

similar except for the means of attaching the element to the stem:

type A is wire supported and type B Incorporates a tapered section.

Results for both are similar, indicating negligible conduction dif-

ferences due to means of element support. Subsequent testing was

limited to type B element because of its more rugged construction.
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Experimental results for type B element (or type A element) can be

cempared to theeretical values given in Figure 12 for which the ele-

ment cenfigurations are similar. The experimental time censtant of

9.15 sac. at 1.0 atmosphere pressure, Figure 19 is _8 and 23 percent

less than the theoretical values based on the local and average heat

transfer coeffiaient, respectively. Figure 20 shows results for

type C element_ which has a diameter ef about double that of ty_e

B element, housed in shield number I (type B housing). The time

constant is 15.8 eec. at 1.0 atmosphere pressure.

A second type B housing, defined as shield number 2 was fabri-

cated for type C element. Figure 21 shows a comparison of type C

element In similar shields number 1 and number 2 at relatively low

test temperatures, resulting in slightly faster responses for the

alement in shield number 2 (1_.3 see. at 1.0 atmosphere pressure).

A pair of sensors was tested in a supersonic tunnel_ for which

data is presented in a later section (paragraph 0.2). The time constants

involved in the data reduction included those from Figures 19 and

21, for element B in shield number 1, and element C in shield number

2, respectively, resulting in a time constant ratio of 1.6. It

appeared necessary to rerun tests at a later date in the same super-

sonic tunnelp incorporating a different means of providing the stepped

temperature change. (Data is presented in paragraph 6.3). Another

housing designated as type C housing, shield number 3, was designed

to match the dynamic temperature response of element C. Element C

time constants of 16.3 and 1_.3 eec. at 1.0 atmosphere pressure, in

matched and unmatched shields (shield nnmber 3 and shield number 2)

are compared in Figure 22. The matched shield produced slower time

constants as expected. The time constants involved in the data

reduction of the second set of supersonic test runs included those

from Figures 19 and 22, for element B in shield number 1, and element

C in the matched shield number 3, respectively, resulting in a time

censtant ratio of 1.8.

Figure 23 shows three repeat curves, all of which are involved

in supersonic data reduction. The data points are the results of

four temperature step conditions consisting of two high temperature
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steps (stepped temperature change from low to high temperature) and

two low temperature steps. The high temperature step data_rees with

previous corresponding data D curves of which are shown in the figure.

The low temperkture step time constants for element B, Figure 2_,

are significantly faster t_Lan the high temperature step data. Since

a different flew path was involved (room air flow through the two

cooling lines), additional tests were run after a temporary modifi-

cation to the flow apparatus. In these tests the furnace was not

used. £ wire heater wrap was applied to one of the two cooling lines

and the other cooling line was closed off. Low temperature steps

provided by room air d_rected through the unheated tube bundle pro-

duced slower time constants (not shown) which agreed with the high

temperature step data. The results indicate that air flew through

the cooling ll_es produces turbulent flow at the sensor resulting

in much faster time constants than those obtained using main flow

air through the tube bundle.

5. THEORY OF T_I'EItATURE AND PRESS L_E PREDICTIONS.

5.1 Theor 7 of Tot&_ _gmperature Predictions.

The theoretical time constant equation (equation (12), para.

0.1) can be rewritten as follows:

1/2

wherep - e - time constant, hr.

(im)

C - geometrical constant by definition

- (D/1.32S)(_/M) 1/2, ft2/OF 1/2

H- (¢CP)Mat,l, Btn/ft_-eF

Q - (a/_d T) 1/2 Frl/3k, Btu/lbl/2-eFl'5-hr.

p - pressure, lb/ft 2

An expression for total temperature, T o, can be written by solving

the above equation for two sensors, B and C. Assume element recovery

temperature, Tw, equals To. Substitute _ - (To-Tw)/_T/dt), o_

e - T -T , and y - dT/dt.• w o

./

REC t_eport 11652B -15-



T
0

T -T (_ cc %/HB
,WC "B 7B CB q¢--_C )

Cc %/%I- ( c. Qc-_)

(l_)

The ratio Cc/C B is an experimental constant determined from sensor

calibration data in the high temperature flow apparatus. The solution

of equation (1) for two sensors is:

Cc " _ (%/"c) (15)
% % (%-'B7_)

When sensors B and C are calibrated at the same test conditions,

the temperature dependent parameters cancel, leaving the required

constant ratio equal to the ratio of the time constants. The fol-

lowing equation can be written by substituting _'= (To-T _ in the

above equation.

\To wB- Cc (QI")B (16)

If the temperatures were varied while holding the ratio (To-Tw)/(To-T w

constant, yB/T C will vary with the temperature dependent ratio _

tnyolving q and H. Therefore, it is reasonable to assume that the

slope ratio TB/7 C in equation (16) cannot be experimentally determined

without including temperature effects, and:

. cQ/.).
B/Test YB

(17)

Substituting in equation(l_)results in the total temperature pre-

- TWc-TWBL\_,B/Test\%)J
_-_ , ,

(18)

)
C
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The ratio Cc/C B is normally determined experimentally.

it is possible to calculate the ratio from the geometry of the

sensors. The constant "C" by definition (equation 13) is:

d
c = _(o.332) \ M/

The ratio for two sensors is:

%/%- (%/%) ("B/Me)1/2

where : d - diameter of the element

M -Mach number of flow inside the shield

3.2

However,

(18n)

Theory of Predicting Total pressure _ Total Temperature with

a Single Senso_

Total pressures can be predicted from a single sensor provided

total temperature is known, and co,versely, total temperature can

be predicted provided total pressure is known. The required equations

are obtained from equation (13)

T O = T + yC(H/_)p -1/2
W

C 2

where constant C is.'

(19)

(2o)

c 1/2

An additional consideration must be introduced to the subject pre-

dictions involving a si,gle sensor that was unnecessary for T
O

predictions where tie constant WC" appeared in ratio form for the

required pair of sensors. A correction factor for air turbulence

is necessary to relate calibration results in the flow apparatus

to test results in the wind tunnel. Turbulence factor corrects a

calculated Reynolds number to an effective Reynolds number. Since

time constant varies inversely with the square root of Reynolds

number in T O predictions (equation 9) and directly with constant "C"

the required correction factor is as follows:

F = T (wind tunel, )
_" _flow apparatus)
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The corrected constant wCW is then the constant wCm from equation

(21) multiplied by the factor "F n. It Is this corrected constant

"C _ which is required in equations (19) and (20) for pressure and

temperature predictions.

6. RESULTS OF WIND TUNNEL TEATS.

6._ Test Facility and S---_ry of Test Conditioq,. i

Two series of supersonic wind tunnel tests were performed in

the Gas Dynamic Wind Tunnel, |_personic (E) of the yon Karmas Gas

Dynamics Facility (V_), Arnold Engineering Development Center (A_DC),

Air Force Systems Command (AFSC). Dynamic temperature responses

were measured at nominal Math 8, nominal stagnation pressures of

_00, 500 _nd 600 (first and second series of tests), and 900 psia,

at nominal stagnation temperatures of 900OF for both series of tuner

"rlze difference between the two series of tests involved the method

of cooling the sensors (between 50 and 150°F) before they were sub-

jected to the stepped temperature change° Summaries of the first

and second series of supersonic wind tunnel test conditions are

presented in Tables IV and V. Test details are available in AE1)C

letter reports, References _ and 5.

b.2 First Series of Wind Tunnel Test-.

The first series sf supersonic tests at AEI)C involved cooling

the sensors by supplying nitrogen gas through two pairs of 1/_ inch

O.D. lines through the sting and sensor mount, directing two cooling

jets through the base of each sensor. The cooling gas was shut off

when stable tunnel conditions were established. The sensing elements

were then subjected to the heated air flow which provided the stepped

temperature change. The sting supported dual sensor mount ie shown

in Figure 24.

Results of the first series ef sup_rsonic tents are shown in

Figures 25 through 36o Predicted total temperatures, shown in Figures

25 through _0, are based on equation (18), using Cc/C B - 1.6 (para-

graph _.3). Predicted temperatures based on Cc/C B - 1o7 are also

shown for comparison. Predicted temperatures are within IO0OF of

measured stagnation temperature at 20 aec. into the run for the _00

and 500 psia runs, Figures 25 through 28. Predictions to within 100°F
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for the 900 psia runs occur about 7 see. earlier, Figures 29 and 30.

Temperature predictions are erratic during the first six seconds of

the test rune.

All test rune exhibit the t)pical trends of parameters plotted

in Figures 31 through 36 for the 400 pela run. Time history of measured

sensor temperatures and tunnel stagnation temperatures are shown in

Figure 31. The time rates of temperature change for each sensor are

shown in Figure 32. Time constants for the selected run are shown

in Figure 33 and the three repeat runs in Figure 34 indicate that

the selected run is representative of all four 400 pole rune. Time

constants remain at a fairly constant value throughout the time hls-

tories. Constant "C e in Figure 35 was calculated from equation _1)

for the test datap and the trends are similar to time constant data.

The ratio Cc/C B for the selected run, si_own in Figure 56, decreases to

a constant value of ab,,ut 1.6p in _0 see. The variation in ratio

Cc/C B can be attributed to unrealistic initial conditions during the

stropped temperature change.

b.5 Second _eriee of Wind T_nel Tests.

The second series of supersonic tests involved an improved means

ef providing the initial condition. The model was fully retracted

from the airstream and cooled to a uniform temperature by several jets

of gaseous nitrogen. The model was then injected into the airatream

in about 1 second by a pneumatically operated inject mechanism. Fig-

ure 57 shows the m_del mount which was attached to the inject mechan-

ism. The inject method provided a more realistic means of initiating

the test runs than was provided in the first series of supersonic runs

during which the sensing element and the inside of the housing were

cooled by jets of nitrogen directed through the aft end of the sensors.

Although radiation heat transfer effects between the sensing element and

shield were not expected to be significant, the first series runs

appeared to result in unrealistic performance. The tmmatched shield

for element C was replaced by a housing with a matched shield for

the second series tests.

7
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Results of the second series of supersonic tests are shown

in Figures 58 through 48. Predicted total temperatures, shown in

Figures 38 through 40, are based on Cc/C B - 1.8 (para. _.3) and

exhibit the same trends with earlier temperature predictions. In

general, repeat data agrees for the three time intervals calculated.

A thermoeouple was attached to the outside surface of sensor

C housing at AEDC. Available shield surface temperature data are

shown in Figure 41 for _00 and 600 psia pressure rune. The con-

stant difference between element and shield surface temperatures

throughout the run is indieative of close dynamic temperature

matching between the element and inner radiation shield.

Comparisons of predicted temperatures and various parameters

for first and second aeries of supersonic teat rune are shown in

Figures 42 through 47. Predicted temperatures, shawn in Figures

42 and 43 for 400 and 900 psia pressure runs, are based on CC/CB-I.6

for comparison purposes. The second series of test runs involvin_

tile mere realistic initial condition (m,_del inject method), result

• in a 5 second earlier predicted temperature than the first iseries

rune. Predicted temperature based on CC/C B . 1.s, also shown in

Figures _2 and _3, illustrate the best justified predictions of f

the current study., Comparisons of sensor B time rates of tempera-

ture change, Figures _4 and 4_, show the effect of different initial

conditions; tile heated outer surface of the sensor B housing in

the first series of test (dashed curves) results in steeper (increased)

temperature slopes for about 1_ nee. into each run. Sensor C time

rates of temperature change are essentially the same for both

series of test rune. Time constant uniformity is increased for

the second series test runs at 400 psia preseure, Figure 46. In

general, Figures _6 and 47 indicate that the time constants for

first and second series runs have mush the same trends and magnitudes.

Predicted pressures, calculated for sue 600 psia test run in

the second series of tents, _re based on equation (20) using pre-

dicted temperature variation, Figure _8. The constant NCM was

calculated from equation _21) using calibration data, _igure 23p

for each sensor. The wCH value must be corrected for tile difference

in air turbulence between the flow apparatus and the supersonic

tunnel by the factor described in para. 5.2. The measured pressure,

shown as the dashed curve in Figure 4_, is the total pressure
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behind the shock wave which was calculated from stagnation pressure

data. Predicted pressures from a single sensor appear to be imprac-

tical at this stage of development due to excessive scatter of cal-

culated results.

7. F_NAL TOTAL TEMPE_TURE SENSOR.

7.1 Final DeelEn of Total Temperature Sensor•

Two pairs of high temperature, high altitude total temperature

sensors_ fabricated for the subject contract, were each designated

as REC Models 107C-1 and 107C-2 (corresponding to prototype sensors

B and C sensors, respectively). The sensors were designed for an

internal flow of Mach 0.3. (Prototype sensors had internal flow

of Mach 0.1.) Basic information on the Model 107C Is presented

in the REC Specification Drawing, Appendix B.

Model 107C incorporates changes and improvements over the

prototype sensors, consisting of enlarging flow exit ports to ae©o-

modate the internal flow Mach number increase, increasing maximum

operating temperature by redesign of the element stem, and improving

the strength of the thermocouple lead wire junction at the base

of the model by adding a wire support tube. The diameters of alumina

insulators in the element stem were increased to eliminate the gold

used for anchoring platinum wire spacers to the insulators. Thus

the maximum operating temperature was increased from llOOeC to I_O0oC j

The increase of internal Mach number will provide imprt,ved perfor/-

ance for the intended flight applications.

7.2 Calibration of _'*in_l Total Temper_ttlre Sensors•

The four IOFC total t_mi_er_iture s_n_rs were c_ilibrated in the

internal flow apparatus _t nomin,_l test pressures of :, 8 and I{_
t $

inches mercury, and at an average stepped tt,_,.eratare ch:taje from

77°F to 212°F. Figure _,} sh,,ws similar ti;ae C,,_,stallt results f_r

units with the sami_ configl_rat,uu, withi_l experLmeiltal acc_rac),.

Th_ experimental collstants alld their rat£,, are as _'ol_o_s:

REC Report I16_2B
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Modt:l t!_7C--1, _eri,,l numi_ers 1 and 2;

'_ . 1 '/2
C 1 = O.tJU,'l ft._,'olt

Model 107C-2, serial numbers 1 an,l 2:

C o = 0ot)125 ft2/o_ 1/2

Ratio of experimental cousta,_ts:

c1/c 2 - o.57

Cl/G 2 is used in the equation for total temperature predictions shown

or? the 107C specification drawing, Appendix II. The experimental

constant "C n is used for predicting total temi,era_ure or pressure

using _ sxngle sensor as described in paragraph _.a._a. (Note that

"C" may require a correction factor to account for different levels

of air turbulence between calibration and intended flight applications,

as explained in paragraph 5_2. The ratio C1/C 2 does not require

a correction since turbulence effects cancel.)

Insuff,cient capacity of the Internal flow apparatus necessi-

tated reducing the sensor Internal Math number to assure sonic flow

at the sensor exit ports. (fhe required downstream to upstream

pressure ratio must be less than o.52t_.) The sensors were calibrated

with three of the four sensor exit flow ports covered with a metal

sleeve. Galibratton results at the low internal Uach number were

correctea to the nominal internal Hath number of _).) as follows.

[M (1 ei_it p_,rt open_ ! 1/2"lW(sen'Or)'_ (/_ e_it port, oj,e,jI _(calibration)

Math numbers were determined from area ratios calcuiated from

measured sensor UImensions.

7._ _t Performance of Final Total Tem_
Sensor.

Predicted In-flight performance of REC Models I07C-I and I07C-2,

based on the expected high Math number operational trajsctory and

corresponding altitude variation (Figure _ of Ref. l)j is shown in

Figure 50. At subsonic Math numbers no shock occurs ahead of the

sensor and the design velocity cannot be maintained inside the shield.

The Math number inside the shield was then determined by using fic-

titious throats when the external flow was subsonic.
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The in-flight performance results, Figure 50, are based on time

constant calibrations of prototype sensors B and C. The calibrations

for prototype seasors with internal flow of Mach 0.1 were corrected

analytically for Internal flow of Mach 0.3 for the final sensors

by the method of fictitious throats (time constant varies inversely

with the square root of internal Mach number).

The dynamic characteristics of a 2.0 mm. diameter (0.079 in.)

sensing element, 0.333 internal Mach number, 0.5 nun. (0.020 in.)

thick shield, and 25.0 am (0.98_ in.) distance of thermocouple from

the sensor leading edge, is shown in Figure 3 (reproduced Figure

16, Ref. 1). In-fligiLt performance, Figure 50, is based on the recovery

temperature from Figure 3. The recovery temperature and the dynamic

temperature response of the 2.0 mm diameter sensing element, curves

A1 and A2, are reproduced in Figure 50 for comparison with predicted

dynamic characteristics of Models lO?C-1 and 107C-2° Numerical

iterations for selected time increments were employed to evaluate

the element temperatures.

8. COnCLUSIoNS AND RECOMMENDATIONS.

Two prototype total temperature sensors, designated as sensors

B and C, were designed and fabricated according to the criteria de-

veloped under the first phase investigation, Reference 1. Experiments

were conducted in the REC internal flow apparatus and in a supersonic

tunnel. Two pairs of total temperature sensors were fabricated and

delivered to NASA under terms of the subject contract. The two sensor

configurations are designated as REC Models 107C-1 and 107C-2 (ace

specification drawing, Appendix B).

Recommendations based on the subject study are as follows:

(1) The supplied Model 10_C units should be tested for in-flight

performance, perhaps on a flight vehicle such as the X-15.

(2) No further supersonic wind tunnel tests are necessary.

Temperature step transients and turbulence associated with wind tun-

nel testing do not occur in actual flight operation. Sensor temper-

ature stabilization before the temperature step is questionable and

may influence test results. Baaed on available date, a minimum

of about 10 seconds after the temperature step is necessary for

obtaining an acceptable temperature predicti,_n.
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(3) Over the range investigated, test results of prototype

sensors calibrated in the RI_C internal flow apparatus indicate

uniform calibration resultslfor sensor operation at total pressures

down to 1/'_ inch mercury (occurs at an altitude of about 60 km and

flight Uach pumber 6). Calibration techniques at very low pressures

and ttle associated rarefied gas effects c,_uld be investigated.

(_) Turbulence level influence on time constant and its effect

on single sensor performance could be investigated. Reliable

operation of sensors in pairs is expected, regardless of turbulence
level.
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I0. NOMENCLATURE°

A

a

C -

Cp -

D -

e

Exp -

F -

H -

h w

k -

L -

l_ -

Nu -

p -

Pr -

-

qC s

qR "

R -

Re -

St -

T -

t -

T -
a

T -
O

Tr -

Tw -

V -

W

X

Z -

Area of surface of the element, ft 2

Velocity of soun& ft/hr or ft/sec

Experimental or geometric constant for senso_ ft2/OR 1/2

Specific heat of sensing element material, Btu/lb - OR

Diameter of sensing element, ft

Napiorian base for natural logarithms, 2.718

Exponent

Radiation configuration factor; aleoj angle factor

Temperature dependent parameter of sensing element

material properties, pCp - f(Tw), Btu/ft 3 - eF

Convective heat transfer coefficient of tl_e £1uid, Btu/hr-ft2-OR

Thermal conductivity of air, Btu/hr.-ft-OF
P

Length of sensing element, ft.

Mach number of flow inside shield

Nueselt number, dimensionless

Pressure, lb/ft 2 or atmospheres

Prandtl number of air, dimensionless

Temperature dependent parameter of air properties,

(a//_t T) 1/2 iprl/3 k . f _(To + TWO/, 3 , Btu/lb 1/2 _ oRl'5_hr .

Convective _heat lo_o, Btu/hr -fl 2

Radiation lees, Btu/hr. - ft 2

Gaslconsta_t of air, ft/°F

Reynolds number, dimensionless

Stanton number, dimensionless

Temperature, °R

Time, hr

Ambient temperature, eR

Total temperature, °R

Recovery temperature of sensing element, °R

Temperature of sensing element (wall temperature), OR

Velocity, ft/hr

Masw of sensing element, Ibs.

Distance from the element leading edge, ft.

Modified Reynolds number, (Re pr)I/2/2.63M
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i

o

p -

Time rate of change in sensing element temi_erature, dT/dt,

°_t/hr

Emissivity of tile surface_ . 0.68

Temperature excess, or difference between element and ambient

tsmleraturee, T-T , °F
a

Temperature excess at time zero, °F

Viscosity of air, lb/ft-hr or lb/ft-sec

Density of sensing element material, lb//ft )

Stefan-Boltzmann constant -.1713 x 10 -8 Btu/hr -ft2-OR

Time constantj hr. or sec.

Subscripts

()o -

()_ -

(¥ -
(),i-

()2 -

Total condition, or initial condition

Applies to sensor B

Applies to sensor C
J

Applies to Model 107C-1

Applies to Model 107C-2
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T

TABLE I_I_Continued)

O (Average Values)

(se,:) for p .. 1.0
_a = 0.333 _t = o.1

68 ....6.62 11.73

100 6.42 11.72

200 6.44 11.75

300 6.40 11.6_

400 6.35 11.59

5oo 6.39 11.66

60o 6.36 11.61

700 6.33 11.53

8o0 6.32 11.54

900 6.31 ll.S1

1000 6.31 11.53

1100 6.33 11.55

1200 6.29 11.61

1300 b.41 11.70

1400 b.46 11.79

1600 6.76 12.33

1800 7.28 13.28

2000 7.18 13.12

22OO 7.2O 13.15

2400 7.38 13.47

2600 7._7 13.b3

2800 7.37 13.45

3000 6.95 12.69

3200 5.40 9.85

3gO0 3.81 6.95

36OO 3.0g 5.55
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SUM,_b_ RY uF hlND 'fUNN;k. 'f!:Sl' IaUNS

Nominal

pt(p i, ) TO (or)

1-1 7._9 9o0 880

2-2 7.79 500 8P{o

3-5 7.77 4oo 835

•'_-"_ 7.77 4.0 900

o-5 7.77 :-_" ')_,

• I' ! K .

;J-(" f • 79 ;,' ':, '.!OO

':-7 " _,9 _;)' 0 ;(

1 ,J-7 7, _9 ,)c, :,;o

Ave rage

Pt(psia) T
o

( °R_

b91. &

&99.8

4o0.7

405.6

4ol..3

599.8

5()(>. 8

5()I,. '.:

8'_h. (,

897.',

1516. ':

1297.3

1282.5

1358.,'

135-.;. _,

135"J. 0

] i')7, u

i 35i. 5

I _3_J.o

16.39

9.73

7.8:;

7.9!)

_. 7,;

Re/f_6
x 10

&.12

2.&8

2.U1

i .87

I.86

1.86

2.3'_

2.31

3. %

3.97 t



Run NOo

15

16

17

18

19

20

21

22

TABLE V :

SUMMARY OF MAY 20, 21 MACH 8 WIND
TUNNEL RUNS AT AEDC

M Average Re/_t

(paia) (o_)

7.89 898 1351 4.O2

7.82 604 1350 2.78

7.89 900 1345 4.06

7.82 6Ol 1547 2.77

7°77 _03 1343 1.89

7077 _03 1340 1_90

7.82 605 1350 2080

7.77 403 135o 1.88

p

16.32

ll .36

16o33

11.50

7.9g

II .58

II .58

7.94
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Figure lb: Photograph of Test Sensor and Reference
Sensor Installed in Mounting Flange
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Figure 37: Photograph of Sensors B and C in Dual Sensor

Wind Tunnel Mount
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APi'ENDI X A

CA].CUt.ATIt)N OF lmAT TRANSFER TO THE SP_N_ING EL_t4ENT

The configuration factor between the sensiilg element and the

open end of ttte s,,ield, sh,,utd first be calculated to evaluate the

heat transfer. Tile configuration considered is shown in Figure IA.

It is assumed that the diameter of the sensilJg elemeut is much smaller

than the diameter of the sl_ield.

The aifferential angle factor between tile sensing element and

dA 2 can be wrttten as:

dFl_ 2 -
T_S 2

2

But

c°s_l c°e_2

dA,2

Expressing cos
_l and cos_2 in terms of distances, we get:

- 11 La_A_ r
dF1-2 = _rS_ S T rdrde

a Vr2dr_

" %- L s J de

I r2dr 1= _ a2+r 2

S 2 2 2where - a + r

de

To obtain the angle factor between the one half of the sensing

element and half the open end we integrate _FI_ 2 as follows:

FI_ 2 = a

J r2dr ,
m a

(a2÷r2) 2



-1/2 _tan -1 _ - 1//2 Sin ( 2 tan-1_)_a

By symmetry the other face of the sensing element has the same

_tngle factor with tile other half of the sensing element° Therefore,

the total angle factor F can be written as:

F = tan -1 R- 1,f2 Sin (2 tan -I R)

a a

Now tile radiation heat loss from the sensing element c(,n be

written as:

where

T _ Btu/hr. ft 2
qR=_ F (_-_)

2

qR " Radiation loss, Btu/hr. ft.

E - Emissivity of tile surface, - 0.08

O_ . Stefan-Boltzman constant

= 0.1713 x 10 -8 Btu/hr. ft. 2 (°R)

T - Absolute temperature of the sensing element, °it

The value of F for values of a, in this range 5 to 50 ma, s. were

calculated and thus 'lR evaluated at each value of a.

Convective Heat Transfer: The convective heat transfer to the sensing

element qc is given by:

where

qc " h(tr- tw)
2

qc " convective heat lose, Btu/hr. ft.

t - Recovery Temperature inside the shield, °F
r

t - Wall temperature, °F
W •

h - heat transfer coefficient, Btu/hr. ft 2 °F

The value of h for various values of the distances from the

leading edge, in the range 5-50 mms, were calculated and hence qe

evaluated.

Finally, the ratio qc/q R was calculated for each value of a.

The results are shown graphically in Figure 1.

Tile values of t and t correspond to an actual flight condition
r w

at an altitude of 70 ](ms. These wilues were taken from Figure 3.
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