62,633 research outputs found
Titanium versus absorbable tacks comparative study (TACS): a multicenter, non-inferiority prospective evaluation during laparoscopic repair of ventral and incisional hernia: study protocol for randomized controlled trial
BACKGROUND:
Laparoscopic repair of ventral and incisional hernias has gained popularity since many studies have reported encouraging results in terms of outcomee and recurrence. Choice of mesh and fixation methods are considered crucial issues in preventing recurrences and complications. Lightweight meshes are considered the first choice due to their biomechanical properties and the ability to integrate into the abdominal wall. Titanium helicoidal tacks still represent the "gold standard" for mesh fixation, even if they have been suggested to be involved in the genesis of post-operative pain and complications. Recently, absorbable tacks have been introduced, under the hypothesis that there will be no need to maintain a permanent fixation device after mesh integration. Nevertheless, there is no evidence that absorbable tacks may guarantee the same results as titanium tacks in terms of strength of fixation and recurrence rates. The primary end point of the present trial is to test the hypothesis that absorbable tacks are non-inferior to titanium tacks in laparoscopic incisional and ventral hernia repair (LIVHR) by lightweight polypropylene mesh, in terms of recurrence rates at 3-year follow-up. Surgical complications, post-operative stay, comfort and pain are secondary end points to be assessed.
METHODS/DESIGN:
Two hundred and twenty patients with ventral hernia will be randomized into 2 groups: Group A (110) patients will be submitted to LIVHR by lightweight polypropylene mesh fixed by titanium tacks; Group B (110) patients will be submitted to LIVHR by lightweight polypropylene mesh fixed by absorbable tacks.
DISCUSSION:
A few retrospective studies have reported similar results when comparing absorbable versus non-absorbable tacks in terms of intraoperative and early post-operative outcomes. These studies have the pitfalls to be retrospective evaluation of small series of patients, and the reported results still need to be validated by larger series and prospective studies. The aim of the present trial is to investigate and test the non-inferiority of absorbable versus non-absorbable tacks in terms of hernia recurrence rates, in order to assess whether the use of absorbable tacks may achieve the same results as non-absorbable tacks in mid-term and long-term settings
On the calculation of the stress tensor in real-space Kohn-Sham Density Functional Theory
We present an accurate and efficient formulation of the stress tensor for
real-space Kohn-Sham Density Functional Theory (DFT) calculations.
Specifically, while employing a local formulation of the electrostatics, we
derive a linear-scaling expression for the stress tensor that is applicable to
simulations with unit cells of arbitrary symmetry, semilocal
exchange-correlation functionals, and Brillouin zone integration. In
particular, we rewrite the contributions arising from the self energy and the
nonlocal pseudopotential energy to make them amenable to the real-space
finite-difference discretization, achieving up to three orders of magnitude
improvement in the accuracy of the computed stresses. Using examples
representative of static and dynamic calculations, we verify the accuracy and
efficiency of the proposed formulation. In particular, we demonstrate high
rates of convergence with spatial discretization, consistency between the
computed energy and stress tensor, and very good agreement with reference
planewave results.Comment: 16 pages, 5 figures, 2 table
Effect of Membrane Exposure on Guided Bone Regeneration: A Systematic Review and Meta‐Analysis
Aims: This review aimed at investigating the effect of membrane exposure on guided bone regeneration (GBR) outcomes at peri-implant sites and edentulous ridges.
Material and Methods: Electronic and manual literature searches were conducted by two independent reviewers using four databases, including MEDLINE, EMBASE, Web of Science, and Cochrane Central Register of Controlled Trials, for articles up to February 2017. Articles were included if they were human clinical trials or case series reporting outcomes of GBR procedures with and without membrane exposure. A random-effects meta-analysis was conducted, and the weighted mean difference (WMD) between the two groups and 95% confidence interval (CI) were reported.
Results: Overall, eight articles were included in the quantitative analysis. The WMD of the horizontal bone gain at edentulous ridges was −76.24% (95% CI = −137.52% to −14.97%, p = .01) between sites with membrane exposure and without exposure. In addition, the WMD of the dehiscence reduction at peri- implant sites was −27.27% (95% CI of −45.87% to −8.68%, p = .004). Both analyses showed significantly favorable outcomes at the sites without membrane exposure.
Conclusion: Based on the findings of this study, membrane exposure after GBR procedures has a significant detrimental influence on the outcome of bone augmentation. For the edentulous ridges, the sites without membrane exposure achieved 74% more horizontal bone gain than the sites with exposure. For peri-implant dehiscence defects, the sites without membrane exposure had 27% more defect reduction than the sites with exposure
Biomechanical analysis of a cranial Patient Specific Implant on the interface with the bone using the Finite Element Method
- New advance technologies based on reverse engineering , design and additive
manufacturing, have expanded design capabilities for biomedical applications to
include Patient Specific Implants (PSI). This change in design paradigms needs
advanced tools to assess the mechanical performance of the product, and
simulate the impact on the patient. In this work, we perform a structural
analysis on the interface of a cranial PSI under static loading conditions.
Based on those simulations, we have identified the regions with high stress and
strain and checked the failure criteria both in the implant and the skull. We
evaluate the quality of the design of the implant and determine their response
given different materials, in order to ensure optimality of the final product
to be manufactured
Instrumented Lumbar Corpectomy and Spinal Reconstruction Comparing rhBMP-2/Compression-Resistant Matrix, rhBMP-2/Absorbable Collagen Sponge/Ceramic Granules Mixture, and Autograft in Two Different Devices: A Study in Sheep
Study Design. Fusion success with rhBMP-2 and autograft in titanium or PEEK corpectomy devices was evaluated in a sheep lumbar corpectomy model. The 6 treatment groups included titanium mesh or PEEK corpectomy devices filled with rhBMP-2 on a compression-resistant matrix (CRM) carrier; rhBMP-2 in a morselized absorbable collagen sponge (ACS) carrier combined with resorbable ceramic granules; and autograft.
Objective. The aim of this study was to determine fusion rates associated with 2 different preparations of rhBMP-2 as well as autograft in an instrumented ovine lumbar corpectomy model 6 months postoperatively.
Summary of Background Data. Vertebral reconstruction with corpectomy devices requires bone graft. Bone graft substitutes have the potential to avoid a second operation, donor site pain, and attendant morbidity associated with autograft.
Methods. Twenty-four sheep in 6 treatment groups underwent lumbar corpectomy via a retroperitoneal trans-psoas approach. Spines were reconstructed with autograft, rhBMP-2 on a CRM, or rhBMP-2 on an ACS mixed with ceramic granules. Grafting materials were placed in either a titanium mesh or PEEK conduit in spines with internal fixation. Computed tomographic (CT) scans were evaluated for fusion. Undecalcified histology was used to evaluate for fusion as well as the amount and extent of graft incorporation and graft resorption.
Results. Regardless of corpectomy device used, rhBMP-2/CRM or rhBMP-2/ACS with MASTERGRAFT resulted in a 100% fusion rate. The autograft group had a lower (75%) radiographic fusion rate. Using either preparation of rhBMP-2 resulted in the length of the defect filling with solid bone. Autograft fragments and ceramic granules were incorporated into the fusion masses with much of the ceramic granules being resorbed by 6 months.
Conclusion. Both of the rhBMP-2 formulations have the potential to effect bony fusion and vertebral reconstruction within the corpectomy devices
3D modelling of Ti–6Al–4V linear friction welds
Linear friction welding (LFW) is a solid-state joining process that significantly reduces manufacturing costs when fabricating Ti–6Al–4V aircraft components. This article describes the development of a novel 3D LFW process model for joining Ti–6Al–4V. Displacement histories were taken from experiments and used as modelling inputs; herein is the novelty of the approach, which resulted in decreased computational time and memory storage requirements. In general, the models captured the experimental weld phenomena and showed that the thermo-mechanically affected zone and interface temperature are reduced when the workpieces are oscillated along the shorter of the two interface contact dimensions. Moreover, the models showed that unbonded regions occur at the corners of the weld interface, which are eliminated by increasing the burn-off
Rapidly solidified titanium alloys by melt overflow
A pilot plant scale furnace was designed and constructed for casting titanium alloy strips. The furnace combines plasma arc skull melting techniques with melt overflow rapid solidification technology. A mathematical model of the melting and casting process was developed. The furnace cast strip of a suitable length and width for use with honeycomb structures. Titanium alloys Ti-6Al-4V and Ti-14Al-21 Nb were successfully cast into strips. The strips were evaluated by optical metallography, microhardness measurements, chemical analysis, and cold rolling
Direct diffusion through interpenetrating networks: Oxygen in titanium
How impurity atoms move through a crystal is a fundamental and recurrent
question in materials. The previous understanding of oxygen diffusion in
titanium relied on interstitial lattice sites that were recently found to be
unstable, making the diffusion pathways for oxygen unknown. Using
first-principles quantum-mechanical methods, we find three oxygen interstitial
sites in titanium, and quantify the multiple interpenetrating networks for
oxygen diffusion. Surprisingly, no single transition dominates, but all
contribute to diffusion.Comment: 10 pages, 3 figures; additional supporting materia
Crack path selection at the interface of wrought and wire+arc additive manufactured Ti–6Al–4V
Crack propagation deviation tendency in specimens containing an interface between wrought alloy substrate and Wire + Arc Additive Manufacture (WAAM) built Ti–6Al–4V is investigated from the viewpoints of microstructure, residual stress and bi-material system. It is found that a crack initiated at the interface tends to grow into the substrate that has equiaxed microstructure and lower resistance to fatigue crack propagation. Experimental observations are interpreted by finite element modelling of the effects of residual stress and mechanical property mismatch between the WAAM and wrought alloy. Residual stresses retained in the compact tension specimens are evaluated based on measured residual stress in the initial WAAM built wall. Cracks perpendicular to the interface kept a straight path owing to the symmetrical residual stress distribution. In this case the tangential stress in bi-material model is also symmetric and has the maximum value at the initial crack plane. In contrast, cracks parallel to the interface are inclined to grow towards the substrate due to the mode II (or sliding mode) stress intensity factor caused by the asymmetric residual stress field. Asymmetric tangential stress in the bi-material model also contributes to the observed crack deviation trend according to the maximum tangential stress criterion
- …
