3,755 research outputs found

    Systematic redundant residue number system codes: analytical upper bound and iterative decoding performance over AWGN and Rayleigh channels

    No full text
    The novel family of redundant residue number system (RRNS) codes is studied. RRNS codes constitute maximum–minimum distance block codes, exhibiting identical distance properties to Reed–Solomon codes. Binary to RRNS symbol-mapping methods are proposed, in order to implement both systematic and nonsystematic RRNS codes. Furthermore, the upper-bound performance of systematic RRNS codes is investigated, when maximum-likelihood (ML) soft decoding is invoked. The classic Chase algorithm achieving near-ML soft decoding is introduced for the first time for RRNS codes, in order to decrease the complexity of the ML soft decoding. Furthermore, the modified Chase algorithm is employed to accept soft inputs, as well as to provide soft outputs, assisting in the turbo decoding of RRNS codes by using the soft-input/soft-output Chase algorithm. Index Terms—Redundant residue number system (RRNS), residue number system (RNS), turbo detection

    Minimum-Distance Decoding of Redundant Residue Number System Codes

    No full text
    In this contribution the conventional error-detection and error-correction algorithms used for RRNS codes are improved and unified in the context of a so-called projection-based 'minimum-distance decoding' algorithm, which can efficiently detect or correct multiple residue digit errors

    Thermal-Hydraulic System Codes in Nulcear Reactor Safety and Qualification Procedures

    Get PDF
    In the last four decades, large efforts have been undertaken to provide reliable thermal-hydraulic system codes for the analyses of transients and accidents in nuclear power plants. Whereas the first system codes, developed at the beginning of the 1970s, utilized the homogenous equilibrium model with three balance equations to describe the two-phase flow, nowadays the more advanced system codes are based on the so-called "two-fluid model" with separation of the water and vapor phases, resulting in systems with at least six balance equations. The wide experimental campaign, constituted by the integral and separate effect tests, conducted under the umbrella of the OECD/CSNI was at the basis of the development and validation of the thermal-hydraulic system codes by which they have reached the present high degree of maturity. However, notwithstanding the huge amounts of financial and human resources invested, the results predicted by the code are still affected by errors whose origins can be attributed to several reasons as model deficiencies, approximations in the numerical solution, nodalization effects, and imperfect knowledge of boundary and initial conditions. In this context, the existence of qualified procedures for a consistent application of qualified thermal-hydraulic system code is necessary and implies the drawing up of specific criteria through which the code-user, the nodalization, and finally the transient results are qualified

    Bayesian inference and non-linear extensions of the CIRCE method for quantifying the uncertainty of closure relationships integrated into thermal-hydraulic system codes

    Full text link
    Uncertainty Quantification of closure relationships integrated into thermal-hydraulic system codes is a critical prerequisite in applying the Best-Estimate Plus Uncertainty (BEPU) methodology for nuclear safety and licensing processes.The purpose of the CIRCE method is to estimate the (log)-Gaussian probability distribution of a multiplicative factor applied to a reference closure relationship in order to assess its uncertainty. Even though this method has been implemented with success in numerous physical scenarios, it can still suffer from substantial limitations such as the linearity assumption and the difficulty of properly taking into account the inherent statistical uncertainty. In the paper, we will extend the CIRCE method in two aspects. On the one hand, we adopt the Bayesian setting putting prior probability distributions on the parameters of the (log)-Gaussian distribution. The posterior distribution of the parameters is then computed with respect to an experimental database by means of Markov Chain Monte Carlo (MCMC) algorithms. On the other hand, we tackle the more general setting where the simulations do not move linearly against the multiplicative factor(s). MCMC algorithms then become time-prohibitive when the thermal-hydraulic simulations exceed a few minutes. This handicap is overcome by using Gaussian process (GP) emulators which can yield both reliable and fast predictions of the simulations. The GP-based MCMC algorithms will be applied to quantify the uncertainty of two condensation closure relationships at a safety injection with respect to a database of experimental tests. The thermal-hydraulic simulations will be run with the CATHARE 2 computer code.Comment: 37 pages, 5 figure

    Nuclear thermal hydraulic analysis using coupled CFD and system codes

    Get PDF
    The thermal hydraulic analysis of nuclear reactors is largely performed by what are known as system codes. These codes predict the flows in the complex network of pipes, pumps, vessels and heat exchangers that together form the thermal hydraulic systems of a nuclear reactor. These codes have been used for many decades and are now very well established. Given this long process of refinement, they are able to produce remarkably accurate predictions of plant behaviour under both steady and transient conditions. Modern CFD is able to produce high quality predictions of flows in complex geometries, but only with the use of large computing resources. It would be impractical to build a CFD model of, for example, the entire primary circuit of a PWR. However, it is possible to model with adequate fidelity much of the primary circuit using a cheaper one-dimensional system code, and it may only be in a limited part of the circuit that full three-dimensional effects are important. A coupling scheme was developed to couple the CFD software STAR-CCM+ and the system code RELAP5-3D. The structure of the scheme is presented, together with validations for single phase flow in smooth pipes in both transient and steady state cases. Attention was also given to the problem of reconstructing the flow profile at the inlet of the CFD model under the hypothesis of fully developed flow. This problem arises when flow data has to be passed from the one-dimensional system code to the three-dimensional CFD software. The coupling scheme was then modified to be able to perform multiphase simulations. The PWR subchannel and bundle test (PSBT) benchmark was used to validate the multiphase coupling methodology.Open Acces

    Automatic imitation of biomechanically possible and impossible actions: effects of priming movements versus goals

    Get PDF
    Recent behavioral, neuroimaging, and neurophysiological research suggests a common representational code mediating the observation and execution of actions; yet, the nature of this representational code is not well understood. The authors address this question by investigating (a) whether this observation execution matching system (or mirror system) codes both the constituent movements of an action as well as its goal and (b) how such sensitivity is influenced by top-down effects of instructions. The authors tested the automatic imitation of observed finger actions while manipulating whether the movements were biomechanically possible or impossible, but holding the goal constant. When no mention was made of this difference (Experiment 1), comparable automatic imitation was elicited from possible and impossible actions, suggesting that the actions had been coded at the level of the goal. When attention was drawn to this difference (Experiment 2), however, only possible movements elicited automatic imitation. This sensitivity was specific to imitation, not affecting spatial stimulus–response compatibility (Experiment 3). These results suggest that automatic imitation is modulated by top-down influences, coding actions in terms of both movements and goals depending on the focus of attention

    Automated drafting system uses computer techniques

    Get PDF
    Automated drafting system produces schematic and block diagrams from the design engineers freehand sketches. This system codes conventional drafting symbols and their coordinate locations on standard size drawings for entry on tapes that are used to drive a high speed photocomposition machine

    Performance Analysis of Coded MM-ary Orthogonal Signaling Using Errors-and Erasures Decoding Over Frequency-Selective Fading Channels

    No full text
    The performance of MM-ary orthogonal signaling schemes employing Reed–Solomon (RS) codes and redundant residue number system (RRNS) codes is investigated over frequency-selective Rayleigh fading channels. “Errors-and-erasures” decoding is considered, where erasures are judged based on two low-complexity, low-delay erasure insertion schemes—Viterbi’s ratio threshold test (RTT) and the proposed output threshold test (OTT). The probability density functions (PDF) of the ratio associated with the RTT and that of the demodulation output in the OTT conditioned on both the correct detection and erroneous detection of MM-ary signals are derived, and the characteristics of the RTT and OTT are investigated. Furthermore, expressions are derived for computing the codeword decoding error probability of RS codes or RRNS codes based on the above PDFs. The OTT technique is compared to Viterbi’s RTT, and both of these are compared to receivers using “error-correction only” decoding over frequency-selective Rayleigh-fading channels. The numerical results show that by using “errors-and-erasures” decoding, RS or RRNS codes of a given code rate can achieve higher coding gain than that without erasure information, and that the OTT technique outperforms the RTT, provided that both schemes are operated at the optimum decision thresholds. Index Terms—“Errors-and-erasures” decoding, MM-ary orthogonal signaling, Rayleigh fading, redundant residue number system codes, Reed–Solomon codes

    Numerical analysis of temperature stratification in the CIRCE pool facility

    Get PDF
    In the framework of Heavy Liquid Metal (HLM) GEN IV Nuclear reactor development, the focus is in the combination of security and performance. Numerical simulations with Computational Fluid Dynamics (CFD) or system codes are useful tools to predict the main steady-state phenomena and how transitional accidents could unfold in GEN IV reactors. In this paper, to support the validation of CFD as a valid tool for the design, the capability of ANSYS CFX v15.0 to simulate and reproduce mixed natural convection and thermal stratification phenomena inside a pool is investigated. The 3D numerical model is based on the CIRCE facility, located in C.R. ENEA Brasimone. It is a pool facility, structured with all the components necessary to simulate the behavior of an HLM reactor, where LBE flows into the primary circuit. For the analysis, the LBE physical properties are implemented in CFX by using recent NEA equations [2]. Previously published RELAP5-3D© results [1] are employed to derive accurate boundary conditions for the simulation of the steady-state conditions in the pool and for CFX validation. The analysis focuses on the pool natural circulation with the presence of thermal structures in contact with LBE, considered as constant temperature sources. The development of thermal stratification in the pool is observed and evaluated with a mesh sensitivity analysis
    corecore