269,385 research outputs found

    Inactivation of presenilins causes pre-synaptic impairment prior to post-synaptic dysfunction

    Full text link
    Synaptic dysfunction is widely thought to be a pathogenic precursor to neurodegeneration in Alzheimer’s disease (AD), and the extent of synaptic loss provides the best correlate for the severity of dementia in AD patients. Presenilins 1 and 2 are the major causative genes of early‐onset familial AD. Conditional inactivation of presenilins in the adult cerebral cortex results in synaptic dysfunction and memory impairment, followed by age‐dependent neurodegeneration. To characterize further the consequence of presenilin inactivation in the synapse, we evaluated the temporal development of pre‐synaptic and post‐synaptic deficits in the Schaeffer‐collateral pathway of presenilin conditional double knockout (PS cDKO) mice prior to onset of neurodegeneration. Following presenilin inactivation at 4 weeks, synaptic facilitation and probability of neurotransmitter release are impaired in PS cDKO mice at 5 weeks of age, whereas post‐synaptic NMDA receptor (NMDAR)‐mediated responses are normal at 5 weeks but impaired at 6 weeks of age. Long‐term potentiation induced by theta burst stimulation is also reduced in PS cDKO mice at 6 weeks of age. These results show that loss of presenilins results in pre‐synaptic deficits in short‐term plasticity and probability of neurotransmitter release prior to post‐synaptic NMDAR dysfunction, raising the possibility that presenilins may regulate post‐synaptic NMDAR function in part via a trans‐synaptic mechanism.This work was supported by the National Institute of Health NS041783 (to J.S.). We would like to thank Xiaoyan Zou and Huailong Zhao for technical assistance. (NS041783 - National Institute of Health)Published versio

    Influence of synaptic depression on memory storage capacity

    Full text link
    Synaptic efficacy between neurons is known to change within a short time scale dynamically. Neurophysiological experiments show that high-frequency presynaptic inputs decrease synaptic efficacy between neurons. This phenomenon is called synaptic depression, a short term synaptic plasticity. Many researchers have investigated how the synaptic depression affects the memory storage capacity. However, the noise has not been taken into consideration in their analysis. By introducing "temperature", which controls the level of the noise, into an update rule of neurons, we investigate the effects of synaptic depression on the memory storage capacity in the presence of the noise. We analytically compute the storage capacity by using a statistical mechanics technique called Self Consistent Signal to Noise Analysis (SCSNA). We find that the synaptic depression decreases the storage capacity in the case of finite temperature in contrast to the case of the low temperature limit, where the storage capacity does not change

    The CaMKII/NMDA receptor complex controls hippocampal synaptic transmission by kinase-dependent and independent mechanisms.

    Get PDF
    CaMKII is one of the most studied synaptic proteins, but many critical issues regarding its role in synaptic function remain unresolved. Using a CRISPR-based system to delete CaMKII and replace it with mutated forms in single neurons, we have rigorously addressed its various synaptic roles. In brief, basal AMPAR and NMDAR synaptic transmission both require CaMKIIα, but not CaMKIIÎČ, indicating that, even in the adult, synaptic transmission is determined by the ongoing action of CaMKIIα. While AMPAR transmission requires kinase activity, NMDAR transmission does not, implying a scaffolding role for the CaMKII protein instead. LTP is abolished in the absence of CaMKIIα and/or CaMKIIÎČ and with an autophosphorylation impaired CaMKIIα (T286A). With the exception of NMDAR synaptic currents, all aspects of CaMKIIα signaling examined require binding to the NMDAR, emphasizing the essential role of this receptor as a master synaptic signaling hub

    Neural network modeling of memory deterioration in Alzheimer's disease

    Get PDF
    The clinical course of Alzheimer's disease (AD) is generally characterized by progressive gradual deterioration, although large clinical variability exists. Motivated by the recent quantitative reports of synaptic changes in AD, we use a neural network model to investigate how the interplay between synaptic deletion and compensation determines the pattern of memory deterioration, a clinical hallmark of AD. Within the model we show that the deterioration of memory retrieval due to synaptic deletion can be much delayed by multiplying all the remaining synaptic weights by a common factor, which keeps the average input to each neuron at the same level. This parallels the experimental observation that the total synaptic area per unit volume (TSA) is initially preserved when synaptic deletion occurs. By using different dependencies of the compensatory factor on the amount of synaptic deletion one can define various compensation strategies, which can account for the observed variation in the severity and progression rate of AD

    Synaptic actions of amyotrophic-lateral-sclerosis-associated G85R-SOD1 in the squid giant synapse

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Song, Y. Synaptic actions of amyotrophic-lateral-sclerosis-associated G85R-SOD1 in the squid giant synapse. Eneuro, (2020): ENEURO.0369-19.2020, doi: 10.1523/ENEURO.0369-19.2020.Altered synaptic function is thought to play a role in many neurodegenerative diseases, but little is known about the underlying mechanisms for synaptic dysfunction. The squid giant synapse (SGS) is a classical model for studying synaptic electrophysiology and ultrastructure, as well as molecular mechanisms of neurotransmission. Here, we conduct a multidisciplinary study of synaptic actions of misfolded human G85R-SOD1 causing familial Amyotrophic Lateral Sclerosis (fALS). G85R-SOD1, but not WT-SOD1, inhibited synaptic transmission, altered presynaptic ultrastructure, and reduced both the size of the Readily Releasable Pool (RRP) of synaptic vesicles and mobility from the Reserved Pool (RP) to the RRP. Unexpectedly, intermittent high frequency stimulation (iHFS) blocked inhibitory effects of G85R-SOD1 on synaptic transmission, suggesting aberrant Ca2+ signaling may underlie G85R-SOD1 toxicity. Ratiometric Ca2+ imaging showed significantly increased presynaptic Ca2+ induced by G85R-SOD1 that preceded synaptic dysfunction. Chelating Ca2+ using EGTA prevented synaptic inhibition by G85R-SOD1, confirming the role of aberrant Ca2+ in mediating G85R-SOD1 toxicity. These results extended earlier findings in mammalian motor neurons and advanced our understanding by providing possible molecular mechanisms and therapeutic targets for synaptic dysfunctions in ALS as well as a unique model for further studies.Grass Foundation, HHMI, MGH Jack Satter Foundation, Harvard University ALS and Alzheimer's Endowed Research Fund, Harvard Brain Science Initiative

    Network self-organization explains the statistics and dynamics of synaptic connection strengths in cortex

    Get PDF
    The information processing abilities of neural circuits arise from their synaptic connection patterns. Understanding the laws governing these connectivity patterns is essential for understanding brain function. The overall distribution of synaptic strengths of local excitatory connections in cortex and hippocampus is long-tailed, exhibiting a small number of synaptic connections of very large efficacy. At the same time, new synaptic connections are constantly being created and individual synaptic connection strengths show substantial fluctuations across time. It remains unclear through what mechanisms these properties of neural circuits arise and how they contribute to learning and memory. In this study we show that fundamental characteristics of excitatory synaptic connections in cortex and hippocampus can be explained as a consequence of self-organization in a recurrent network combining spike-timing-dependent plasticity (STDP), structural plasticity and different forms of homeostatic plasticity. In the network, associative synaptic plasticity in the form of STDP induces a rich-get-richer dynamics among synapses, while homeostatic mechanisms induce competition. Under distinctly different initial conditions, the ensuing self-organization produces long-tailed synaptic strength distributions matching experimental findings. We show that this self-organization can take place with a purely additive STDP mechanism and that multiplicative weight dynamics emerge as a consequence of network interactions. The observed patterns of fluctuation of synaptic strengths, including elimination and generation of synaptic connections and long-term persistence of strong connections, are consistent with the dynamics of dendritic spines found in rat hippocampus. Beyond this, the model predicts an approximately power-law scaling of the lifetimes of newly established synaptic connection strengths during development. Our results suggest that the combined action of multiple forms of neuronal plasticity plays an essential role in the formation and maintenance of cortical circuits
    • 

    corecore