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Abstract

The information processing abilities of neural circuits arise from their synaptic connection patterns. Understanding the laws
governing these connectivity patterns is essential for understanding brain function. The overall distribution of synaptic
strengths of local excitatory connections in cortex and hippocampus is long-tailed, exhibiting a small number of synaptic
connections of very large efficacy. At the same time, new synaptic connections are constantly being created and individual
synaptic connection strengths show substantial fluctuations across time. It remains unclear through what mechanisms
these properties of neural circuits arise and how they contribute to learning and memory. In this study we show that
fundamental characteristics of excitatory synaptic connections in cortex and hippocampus can be explained as a
consequence of self-organization in a recurrent network combining spike-timing-dependent plasticity (STDP), structural
plasticity and different forms of homeostatic plasticity. In the network, associative synaptic plasticity in the form of STDP
induces a rich-get-richer dynamics among synapses, while homeostatic mechanisms induce competition. Under distinctly
different initial conditions, the ensuing self-organization produces long-tailed synaptic strength distributions matching
experimental findings. We show that this self-organization can take place with a purely additive STDP mechanism and that
multiplicative weight dynamics emerge as a consequence of network interactions. The observed patterns of fluctuation of
synaptic strengths, including elimination and generation of synaptic connections and long-term persistence of strong
connections, are consistent with the dynamics of dendritic spines found in rat hippocampus. Beyond this, the model
predicts an approximately power-law scaling of the lifetimes of newly established synaptic connection strengths during
development. Our results suggest that the combined action of multiple forms of neuronal plasticity plays an essential role in
the formation and maintenance of cortical circuits.
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Introduction

The computations performed by cortical circuits depend on

their detailed patterns of synaptic connection strengths. While the

gross patterning of connections across different cortical layers has

been well described in some cases [1,2], the detailed connectivity

structure between groups of cells and its relation to information

processing have been notoriously difficult to investigate [3]. This

detailed structure could either be largely random – the product of

somewhat arbitrary growth processes, or it could be highly

organized. On the one hand, randomly structured networks have

been shown to possess powerful computational properties [4–6]

and they are easy to generate. On the other hand, a precise non-

random organization could be the product of network self-

organization, where network structure determines neural activity

patterns and activity patterns in turn shape network structure

through plasticity mechanisms. At the macroscopic and meso-

scopic scales, models based on self-organization have already

explained fundamental features of brain networks. Examples are

the formation of topographic mappings [7] or properties of

orientation preference maps in primary visual cortex [8,9]. Here

we show that fundamental aspects of the microscopic structure of

cortical networks can also be understood as the product of self-

organization.

Self-organization typically relies on a combination of self-

reinforcing (positive feedback) processes that are combined with a

competition for limited resources. In the context of Neuroscience,

an example of a self-reinforcing process may be that correlated

firing of two groups of neurons may strengthen synaptic connections

between them according to Hebb’s postulate of synaptic plasticity,

while the strengthened connections will in turn amplify the

correlated firing of the neurons. An example for competition for a

limited resource may be a synaptic scaling mechanism that limits the

sum of a neuron’s synaptic efficacies such that one synapse can only

grow at the expense of others. The combination of self-reinforcing

mechanisms with limited resources often gives rise to the formation

of structural patterns, which may or may not have specific

functional advantages. Here, we will offer an explanation for

fundamental aspects of the fluctuations of synaptic strength and the

distribution of synaptic efficacies based on self-organization.

Specifically, recent evidence shows that the distribution of

synaptic efficacies is highly skewed [10,11], having an approximately
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lognormal distribution [12–14]. Only around 20% of synapses are

responsible for 50% of total synaptic weight. Importantly, synaptic

contacts are constantly being created and destroyed and sizes of

dendritic spines are fluctuating over time scales of hours and days

[14,15]. In the face of this highly dynamic network structure, stable

long-term memories are thought to be based on subsets of synapses

with long life times [16,17], which may also be comparatively strong

[16]. In line with this, the daily fluctuations of dendritic spine sizes,

which are closely related to synaptic efficacies, are such that weak

synapses can change their size by as much as a factor of 6, while

strong synapses are much more stable [15].

To investigate whether and how these properties can arise

from self-organization induced by neuronal plasticity mecha-

nisms, we have developed a self-organizing recurrent network

(SORN) model. It extends a previous model [18], and consists

of noisy binary threshold spiking neurons (80% excitatory and

20% inhibitory) and uses five different forms of plasticity (see

Materials and Methods for details). Connections between

excitatory neurons are subject to an additive spike-timing

dependent plasticity (STDP) rule that changes synaptic strength

in a temporally asymmetric causal fashion as reported experi-

mentally [19,20]. A synaptic normalization mechanism keeps the

sum of all excitatory weights to a neuron constant and models

classic findings on multiplicative synaptic scaling of synaptic

efficacies [21,22]. An intrinsic plasticity mechanism adjusts the

firing thresholds of excitatory neurons to maintain a low average

firing rate. This mechanism models homeostatic changes in

neuronal excitability through modification of voltage gated

ion channels observed experimentally [23,24]. Connections from

inhibitory neurons onto excitatory neurons are subject to an

inhibitory spike-timing dependent plasticity (iSTDP) rule that

balances the amount of excitatory and inhibitory drive that the

excitatory neurons receive as reported in recent studies [25–27].

Finally, a structural plasticity rule generates new synaptic

connections between excitatory cells at a small rate. This models

the constant generation of new synaptic contacts observed in

cortex and hippocampus [15,28].

Results

SORN produces lognormal-like weight distributions
We simulated networks of 200 excitatory and 40 inhibitory

neurons for 10,000 time steps and observed the resulting activity

patterns (Fig. 1) and distributions of synaptic strength (Fig. 2). The

network shows irregular activity patterns reminiscent of cortical

recordings (Fig. 1A). Inter-spike interval (ISI) distributions are well

fitted by an exponential function (Fig. 1B) and coefficient of

variation (CV) values are close to one (Fig. 1C) as would be expected

from a Poisson process. Neurons show only very weak correlations

of their firing during this phase of network development (Fig. 1D).

To estimate the probability distribution governing excitatory-to-

excitatory synaptic strengths we bin connection strengths and

divide the number of occurrences in each bin by the bin size. The

bin sizes are uniform on the log scale. To mimic experimental

procedures [15], very small synapses (v0:01) are excluded.

Fig. 2A–D shows the distribution of synaptic connection strengths

after 10,000 time steps and compares it to EPSP data from rat

visual cortex [12]. With distinctly different initial conditions

(Fig. 2E), the network faithfully develops a long-tailed distribution

of connection strengths that is similar to the biological data (see

Text S1 for details). Experimental data and model results are both

well fit by lognormal distributions.

As the network evolves it goes through different phases (Fig. 3).

The initial phase is characterized by a decay of connectivity, where

a substantial fraction of the excitatory-to-excitatory synaptic

weights get eliminated (Fig. 3A). In the subsequent growth phase,

the network connectivity recovers through the integration of newly

created synapses produced by the structural plasticity. Eventually,

the degree of connectivity stabilizes and the network enters into a

stable regime. Here, connectivity fluctuates very little (Fig. 3A

inset). Newly created synapses tend to quickly disappear and there

is a large stable backbone of connections with extremely long life

times (as long as we simulated). The distribution of excitatory-to-

excitatory connection strengths is lognormal-like throughout most

of the network’s evolution (Fig. 3B–D). (see Fig. S2 in Text S2 for

more results with different parameters). An exception is the

transition from the decay to the growth phase, where large

deviations from the lognormal shape are observed (not shown).

However, the distribution of synaptic weights maintains a long

tail and a positive skewness throughout its development. The

thresholds of the excitatory units in the network develop an

approximately Gaussian distribution. In the stable regime of the

network, this distribution is exhibiting only small fluctuations.

Dynamics of synaptic efficacies in SORN matches
experimental data

As a next step, we assessed the dynamics of synaptic connection

strengths in SORN. Fig. 4A shows traces of 6 synaptic connection

weights as a function of time. The distribution of life times of

newly created synapses is well described by a power law with an

exponent close to 23/2 during this phase as expected for random

walk behavior (Fig. 4B). We next compared the weight changes

occurring in SORN over 3000 time steps with experimental data

from time lapse imaging of dendritic spine sizes in rat hippocam-

pus [15]. In both SORN and the experimental data, strong

synapses are found to have comparatively small fluctuations

(Fig. 4C–F). This is not a simple ceiling effect, since synaptic

weights could, in principle, grow much larger than the typical

values for very strong synapses we observe in the model, which lie

between 0.2 and 0.3. There exists a small population of synaptic

connections in both model and experimental data which decays

completely (horizontal lines in Fig. 4C,D and oblique lines in

Author Summary

The computations that brain circuits can perform depend
on their wiring. While a wiring diagram is still out of reach
for major brain structures such as the neocortex and
hippocampus, data on the overall distribution of synaptic
connection strengths and the temporal fluctuations of
individual synapses have recently become available.
Specifically, there exists a small population of very strong
and stable synaptic connections, which may form the
physiological substrate of life-long memories. This popu-
lation coexists with a big and ever changing population of
much smaller and strongly fluctuating synaptic connec-
tions. So far it has remained unclear how these properties
of networks in neocortex and hippocampus arise. Here we
present a computational model that explains these
fundamental properties of neural circuits as a consequence
of network self-organization resulting from the combined
action of different forms of neuronal plasticity. This self-
organization is driven by a rich-get-richer effect induced by
an associative synaptic learning mechanism which is kept
in check by several homeostatic plasticity mechanisms
stabilizing the network. The model highlights the role of
self-organization in the formation of brain circuits and
parsimoniously explains a range of recent findings about
their fundamental properties.

Network Self-Organization in Cortex
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Fig. 4E,F). The population of synapses clustered on the Y-axis in

Fig. 4E,F represents newly established synaptic connections. The

big fluctuations are mostly seen in decay phase and imply that the

network is far from stability in this regime (see Fig. S6 in Text S2

for additional results with different parameters showing weight

fluctuations during different phases of network evolution).

Figure 1. Irregular firing activity in the network around 10000 time step. A: spike trains of six randomly selected excitatory neurons during
200 time steps. B: example of an ISI distribution and exponential fit of a typical excitatory neuron. C: histogram of CV values of a network’s excitatory
units. D: correlations between all neurons. Neurons 201–240 are inhibitory. Network activities within the first 3000 steps are discarded to
accommodate for a washout of the arbitrary initial state.
doi:10.1371/journal.pcbi.1002848.g001

Figure 2. Distribution of synaptic weight strengths matches lognormal-like distribution of EPSPs in rat visual cortex. A: histogram of
EPSP sizes from [12] and lognormal fit (p½w�~388:8exp ½{(ln ½w�z0:669)2=(2|0:9652)�=w). B: histogram of weight strengths in SORN at 10000th time

step and lognormal fit (p½w�~1347exp ½{(ln ½w�z2:502)2=(2|0:8722)�=w). C, D: same as A, B but plotted with logarithmic scale on X-axis. E: examples
of initial weight histograms drawn from different probability distributions that all lead to lognormal-like weight distributions. From left to right:
uniform, Gaussian, exponential, all weights identical.
doi:10.1371/journal.pcbi.1002848.g002

Network Self-Organization in Cortex
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Multiplicative dynamics despite additive STDP
To better understand the mechanism through which the

network self-organizes its connectivity and dynamics, we examined

how the strength of a synaptic connection influences its probability

of undergoing further growth or decline. Among all the plasticity

mechanisms, only STDP and synaptic normalization adjust the

weights of EE connections. While synaptic normalization will only

scale all incoming excitatory-to-excitatory connections linearly,

Figure 3. Long-term dynamics of the network. A: fraction of existing excitatory-to-excitatory connections recorded over 5 million time steps.
The inset shows an enlargement of the last 1,000 steps. B: synaptic weight distribution recorded at 20,000th time step. C: synaptic weight distribution
recorded at 500,000th time step. D: synaptic weights distributions recorded at 3,000,000th (blue dot) and 4,000,000th (red dot) time step. Blue and
red curves in B–D are lognormal fits.
doi:10.1371/journal.pcbi.1002848.g003

Figure 4. Distribution of synaptic weight changes matches distribution of spine volume changes in rat hippocampus. A: example
traces of different synaptic weights. B: distribution of life times of newly created synapses matches a power law with exponent close to 23/2. C:
distribution of relative spine volume changes across one day from [15]. D: distribution of synaptic weight changes in SORN over 3000 time steps. E, F:
same as C, D but for absolute rather than relative changes in spine volume and synaptic weight, respectively.
doi:10.1371/journal.pcbi.1002848.g004

Network Self-Organization in Cortex
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STDP has the power to change the shape of the distribution of

synaptic weights impinging onto a neuron. When we recorded the

isolated effect of STDP, i.e. independently of the synaptic

normalization, we found that over a large range of synaptic

weight strengths, the expected increase in strength of a connection

due to STDP grows approximately linearly with the strength of the

synapse (Fig. 5A). The fraction of connections undergoing

depression depends much less on connection weight (Fig. 5B).

Thus, the net effect is that stronger synaptic connections have a

higher chance to be potentiated by STDP establishing a rich-get-

richer behavior (Fig. 5C). This mechanism is kept in check by the

synaptic normalization mechanism, which scales weights in a

multiplicative fashion. We estimated the mean absolute change

of synaptic connection strengths due to STDP and synaptic

normalization over 200 time step intervals during the initial

10,000 time steps. The mean absolute sizes of fluctuations grow

roughly linearly with weight (Fig. 5D) as observed experimentally

[14]. Note that this approximately linear dependence on weight

strength occurs despite the additive STDP rule we are using and

does not require a multiplicative STDP rule [12].

Homeostatic plasticity mechanisms are essential for
proper self-organization

With all forms of plasticity present, the network will show

irregular firing activity and develop a lognormal-like weight

distribution. These results are stable over a large range of

parameter values (see Text S2 for details). To investigate the

extent to which the different forms of plasticity contribute to these

results, we performed simulations where we switched off individual

plasticity mechanisms. When synaptic normalization is switched

off, the network will show bursts of high activity separated by long

periods of inactivity. As shown in Fig. 4, the network keeps

eliminating synapses as a result of STDP. The structural plasticity

counteracts this process. If we switch off the structural plasticity, a

large number of neurons eventually lose all their postsynaptic

targets. No lognormal-like weight distribution will emerge if one or

both forms of plasticity are missing.

Intrinsic plasticity and inhibitory STDP both try to maintain a

low average firing rate of excitatory cells and both are important to

keep healthy network dynamics. If both are switched off, some

units will exhibit very high firing rates while others remain

essentially silent and all the phenomena shown in Fig. 1–5 will

disappear. To study the individual effects of intrinsic plasticity and

iSTDP, Fig. 6 shows a scatter plot of the fraction of active

excitatory units FX (t)~ 1
NE

P
i xi(t) in subsequent time steps.

With all plasticity mechanisms active, the network activity is

confined within a small area. Activity never dies out or becomes

very big. When either intrinsic plasticity or inhibitory STDP is

switched off, the network activity exhibits big fluctuations and can

temporarily die out completely. In certain parameter regimes the

network may function without one or the other, but with both

mechanisms being present, we obtain robust results over a large

range of parameter values. We conclude that all five plasticity

mechanisms are important for proper self-organization.

Discussion

Understanding the structure and dynamics of neural circuits

and reproducing them in neural network models remains a major

challenge. Classic models of STDP have been shown to lead to

physiologically unrealistic bimodal weight distributions under

certain conditions [29]. This has lead to the proposal of a number

of modifications to STDP rules to remedy the problem.

Specifically, multiplicative STDP rules have received much

interest recently [30,31]. Here we have shown that an additive

STDP rule when operating together with other plasticity

mechanisms in a recurrent network is sufficient to explain both

the statistics and fluctuations of synaptic connection strengths

Figure 5. Rich-get-richer dynamics and linear growth of fluctuations. A: the average fraction of synaptic connections that increase due to
STDP in one time step as a function of connection weight. B: same as A but for weight decreases due to STDP. C: average number of increased
weights minus average number of decreased weights divided by total number of weights of this size. D: mean absolute change of synaptic weight
due to STDP and synaptic scaling over 200 time steps.
doi:10.1371/journal.pcbi.1002848.g005
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observed in cortex. Associative synaptic plasticity induces a rich-

get-richer dynamics of synaptic weights, while homeostatic

mechanisms induce competition. With distinctly different initial

conditions, the ensuing self-organization faithfully develops

Poisson-like irregular firing patterns, lognormal-like weight distri-

butions and the characteristic pattern of fluctuations of synaptic

strengths reminiscent of cortical recordings. Beyond this, our

model predicts a power-law scaling of the lifetimes of newly

established synaptic connections during development. Our results

suggest that the statistics and dynamics of neural circuits are the

product of network self-organization, and that the combined

action of multiple forms of neuronal plasticity plays an essential

role in the formation and maintenance of cortical circuits.

It is important, however, to also consider alternative explana-

tions. One of the simplest ways to obtain lognormal distributions is

by virtue of Gibrat’s law, which was originally developed in

Economics. It describes the growth of companies by random

annual growth rates which are independent of the companies’

sizes. This process by itself, when applied to the growth of synaptic

connections, would predict that the variance of the synaptic weight

distribution would grow without bounds, which is clearly at odds

with biological reality. Adding a multiplicative normalization

mechanism such as our synaptic normalization rule to Gibrat’s

proportionate growth process retains the development of a

lognormal-like distribution while avoiding the problem of

unbounded growth. However, this model does not reproduce the

pattern of weight fluctuations observed experimentally. Further-

more, such a model is purely phenomenological and does not

describe the mechanism that causes the synaptic fluctuations in the

first place.

Similarly, the models proposed in [15] and [14] describe the

fluctuations of synaptic weights as independent random walk

processes, but do not explain what causes the synaptic fluctuations.

In contrast, our model offers a mechanistic account that explains the

patterns of weight fluctuations and the distribution of synaptic

strength in terms of fundamental processes of neuronal plasticity in

a recurrent network. This approach is consistent with the finding

in [15] that the fluctuations of dendritic spine sizes seem to

strongly depend on activity-driven synaptic plasticity. Specifically,

they found strongly reduced fluctuations of spine sizes and fewer

spine eliminations when inhibiting NMDA receptors with APV or

MK-801. Interestingly, the generation of new spines was

unaffected by this manipulations. This is consistent with our

model’s assumption that the generation of new spines occurs via a

process of structural plasticity that is independent of activity-driven

synaptic changes. A further advantage of our model is that it can

also be used to derive predictions regarding the emerging network

topology in terms of clustering, network motifs, etc. This topic is

left for future work.

If our model is essentially correct, despite its very abstract

formulation, then one should be able to replicate the present

results in more realistic network models of spiking neurons. As a

first step in this direction, we have constructed a version of the

model using leaky-integrate-and-fire neurons with realistic param-

eter values. We have also adapted the plasticity mechanisms for

this network. Initial explorations show that major features such as

the lognormal-like weight distribution and the pattern of synaptic

fluctuations can also be found in this less abstract network model.

Future work will elaborate on these preliminary results.

Since the structure of cortical circuits determines the dynamics

of neuronal activity, it also determines how information is encoded

and propagated. The existence of a small number of very strong

synaptic connections may greatly facilitate the highly reliable

propagation of signals along pools of neurons [32]. In fact, SORN

networks have previously been shown to spontaneously develop

encoding strategies based on trajectories through their high-

dimensional state space of unit activations [18]. In this work, the

networks were fed with structured time series of input letters and

were shown to learn internal representations of these input

sequences that allowed large performance increases in prediction

tasks. This was found to be due to the ongoing self-organization in

the network driven by the network’s plasticity mechanisms. They

were shown to effectively increase the separation of network states

belonging to different input conditions. More recently, we have

found evidence that such networks may naturally self-organize to

perform computations resembling Bayesian inference processes

[33]. Further work is needed to better understand how the

network’s self-organization enables it to behave this way.

Many computational models of local cortical circuits assume

random network structure [4–6], sometimes with distance-

dependent or layer-dependent connection probabilities [34]. Such

random network structure is at odds with recent evidence that

changes to the connectivity structure such as the generation of

stable new spines are associated with the formation of new

memories [35]. Hence, we believe that the study of random

networks where only connection statistics are matched to those

in the brain, may be quite misleading when the goal is to

understand processing in cortical circuits. Instead, self-organizing

networks, which can faithfully develop brain-like activity and

connectivity patterns, seem a much more promising subject of

study.

Figure 6. Different network activities observed with all plasticities and turning off intrinsic plasticity or iSTDP. FX (t) denotes the
fraction of excitatory neurons firing at time step t. Red line is the identity line with FX (t)~FX (tz1). Network activities within the first 3000 steps are
dismissed to accommodate for a washout of the arbitrary initial state.
doi:10.1371/journal.pcbi.1002848.g006
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Materials and Methods

We use a SORN (self-organizing recurrent neural network)

model [18] that uses noisy units, incorporates additional plasticity

mechanisms, and receives no external input. The network is

composed of NE excitatory and NI~0:2|NE inhibitory

threshold neurons connected through weighted synaptic connec-

tions. Wij is the connection strength from neuron j to neuron i. We

distinguish connections from excitatory to excitatory neurons

(W EE ), excitatory to inhibitory connections (W IE ) and inhibitory

to excitatory connections (W EI ). Connections between inhibitory

neurons and self-connections of excitatory neurons are forbidden.

The connections onto excitatory cells (W EE and W EI ) are subject

to synaptic plasticity mechanisms described below. W EE and W EI

connections have sparse random initial connectivity with connec-

tion probabilities of 0.1 and 0.2, respectively. The W IE remain

fixed at their random initial values. They have all-to-all topology

and are drawn from the interval ½0,1� and subsequently

normalized such that the incoming connections to an inhibitory

neuron sum up to one:
P

j W IE
ij ~1.

The network’s activity state, at a discrete time t, is given by the

binary vectors x(t)[f0,1gNE

and y(t)[f0,1gNI

corresponding to

the activity of the excitatory and inhibitory neurons, respectively.

The evolution of the network state is described by:

xi(tz1)~H
XNE

j~1

W EE
ij (t)xj(t){

XNI

k~1

W EI
ik (t)yk(t){TE

i (t)zjE(t)

0
@

1
A,ð1Þ

yi(tz1)~H
XNE

j~1

W IE
ij xj(t){TI

i zjI (t)

0
@

1
A: ð2Þ

The TE and TI are threshold values for the excitatory and

inhibitory neurons, respectively. They are initially drawn from a

uniform distribution in the interval ½0,TE
max� and ½0,TI

max�. The

Heaviside step function H(:) constrains the activation of the

network at time t to a binary representation: a neuron fires if the

total drive it receives is greater then its threshold, otherwise it stays

silent. jE and jI represent white Gaussian noise with mj~0 and

s2
j[½0:01, 0:05�.
The time scale of a single iteration step in the model

corresponds to typical membrane time constants and widths of

spike-timing dependent plasticity (STDP) windows — lying

roughly in the range of 10 to 20 ms. Note that in order to save

computation time the homeostatic plasticity mechanisms described

below are simulated to be much faster than in reality.

The network relies on several forms of plasticity: STDP of EE

and EI connections, synaptic scaling and structural plasticity of EE

connections, and intrinsic plasticity regulating the thresholds of

excitatory neurons.

The set of W EE synapses adapts via a causal STDP rule that

strengthens the synaptic weight W EE
ij by a fixed amount gSTDP

whenever neuron i is active in the time step following activation of

neuron j. When neuron i is active in the time step preceding

activation of unit j, W EE
ij is weakened by the same amount (or set

to zero if necessary to prevent it from becoming negative, which

triggers synapse elimination):

DW EE
ij (t)~gSTDP xi(t)xj(t{1){xi(t{1)xj(t)

� �
: ð3Þ

Synaptic normalization proportionally adjusts the values of

incoming connections to an excitatory neuron at each time step

so that they sum up to one:

W EE
ij (t)/W EE

ij (t)=
X

j

W EE
ij (t): ð4Þ

This rule does not change the relative strengths of synapses

established by STDP but regulates the total incoming drive a

neuron receives and limits weight growth. It leads to a competition

among excitatory-to-excitatory connections impinging onto the

same neuron such that growth of some connections is compen-

sated by the decay of others.

An intrinsic plasticity rule maintains a constant average firing rate

in every neuron. To this end, a neuron that has just been active

increases its threshold while an inactive neuron lowers its threshold

by a small amount:

TE
i (tz1)~TE

i (t)zgIP xi(t){HIPið Þ: ð5Þ

where HIP*N (mIP, s2
IP) sets the target firing rate. For simplicity,

one can also set the same target firing rate for all the excitatory

neurons.

Note that the synaptic normalization and intrinsic plasticity

mechanism operate faster in the model than they would in

biological brains. This choice is warranted because of a separation

of time scales and speeds up the simulations.

Compared to the original SORN model, we introduce two

additional forms of plasticity. Structural plasticity adds new synaptic

connections between excitatory cells to the network at a small rate,

which balances the synapse elimination induced by STDP. With

probability pc~0:1 a new connection is added between a random

pair of excitatory cells that are unconnected. The strength of this

weight is set to 0.001.

Inhibitory spike-timing dependent plasticity (iSTDP) adjusts the weights

from inhibitory to excitatory neurons to balance the amount of

excitatory and inhibitory drive a neuron is receiving. If the

inhibitory neuron spikes and the excitatory neuron remains silent

in the subsequent time step (the inhibitory spike was ‘‘successful’’

in preventing the excitatory cell from spiking), the inhibitory

weight is reduced by an amount ginhib (or set to a small positive

value of 0.001 if necessary to prevent it from being eliminated). If,

however, the inhibitory neuron spikes and the excitatory neuron

also spikes in the subsequent time step (the inhibitory spike was

‘‘unsuccessful’’ in preventing the excitatory cell from spiking), the

inhibitory weight is increased by the larger amount ginhib=mIP. In

all other cases the weight remains unchanged:

DW EI
ij (t)~

{ginhib : yj(t{1)~1 ^ xi(t)~0

ginhib=mIP : yj(t{1)~1 ^ xi(t)~1

0 : else

8><
>:

: ð6Þ

Equivalently, we can write:

DW EI
ij (t)~{ginhibyj(t{1) 1{xi(t)(1z1=mIP)ð Þ: ð7Þ

Unless otherwise specified, the initial weights of W EE , W EI and

W IE are drawn from a uniform distribution as shown in Fig. 2E,

and the simulations are conducted using the following parameters.
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NE~200, gSTDP~0:004, gIP~0:01, TE
max~1, TI

max~0:5,

mIP~0:1, s2
IP~0, ginhib~0:001, s2

j~0:04.

Supporting Information

Text S1 Comparison of SORN weight distribution to experi-

mental data.

(PDF)

Text S2 Parameter robustness analysis and long-term dynamics.

(PDF)
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