3,204 research outputs found

    Summation-By-Parts Operators and High-Order Quadrature

    Get PDF
    Summation-by-parts (SBP) operators are finite-difference operators that mimic integration by parts. This property can be useful in constructing energy-stable discretizations of partial differential vequations. SBP operators are defined by a weight matrix and a difference operator, with the latter designed to approximate d/dxd/dx to a specified order of accuracy. The accuracy of the weight matrix as a quadrature rule is not explicitly part of the SBP definition. We show that SBP weight matrices are related to trapezoid rules with end corrections whose accuracy matches the corresponding difference operator at internal nodes. The accuracy of SBP quadrature extends to curvilinear domains provided the Jacobian is approximated with the same SBP operator used for the quadrature. This quadrature has significant implications for SBP-based discretizations; for example, the discrete norm accurately approximates the L2L^{2} norm for functions, and multi-dimensional SBP discretizations accurately mimic the divergence theorem.Comment: 18 pages, 3 figure

    Review of Summation-by-parts schemes for initial-boundary-value problems

    Full text link
    High-order finite difference methods are efficient, easy to program, scales well in multiple dimensions and can be modified locally for various reasons (such as shock treatment for example). The main drawback have been the complicated and sometimes even mysterious stability treatment at boundaries and interfaces required for a stable scheme. The research on summation-by-parts operators and weak boundary conditions during the last 20 years have removed this drawback and now reached a mature state. It is now possible to construct stable and high order accurate multi-block finite difference schemes in a systematic building-block-like manner. In this paper we will review this development, point out the main contributions and speculate about the next lines of research in this area

    Summation by parts, projections, and stability

    Get PDF
    We have derived stability results for high-order finite difference approximations of mixed hyperbolic-parabolic initial-boundary value problems (IBVP). The results are obtained using summation by parts and a new way of representing general linear boundary conditions as an orthogonal projection. By slightly rearranging the analytic equations, we can prove strict stability for hyperbolic-parabolic IBVP. Furthermore, we generalize our technique so as to yield strict stability on curvilinear non-smooth domains in two space dimensions. Finally, we show how to incorporate inhomogeneous boundary data while retaining strict stability. Using the same procedure one can prove strict stability in higher dimensions as well

    Convergence of summation-by-parts finite difference methods for the wave equation

    Full text link
    In this paper, we consider finite difference approximations of the second order wave equation. We use finite difference operators satisfying the summation-by-parts property to discretize the equation in space. Boundary conditions and grid interface conditions are imposed by the simultaneous-approximation-term technique. Typically, the truncation error is larger at the grid points near a boundary or grid interface than that in the interior. Normal mode analysis can be used to analyze how the large truncation error affects the convergence rate of the underlying stable numerical scheme. If the semi-discretized equation satisfies a determinant condition, two orders are gained from the large truncation error. However, many interesting second order equations do not satisfy the determinant condition. We then carefully analyze the solution of the boundary system to derive a sharp estimate for the error in the solution and acquire the gain in convergence rate. The result shows that stability does not automatically yield a gain of two orders in convergence rate. The accuracy analysis is verified by numerical experiments.Comment: In version 2, we have added a new section on the convergence analysis of the Neumann problem, and have improved formulations in many place
    corecore