88,627 research outputs found

    The case for dynamic subsidence of the U.S. east coast since the Eocene

    Get PDF
    The dynamic subsidence of the United States east coast is addressed using the discrepancy between regional and global estimates of sea level, elevation of paleoshorelines, and adjoint models of mantle convection that assimilate plate motions and seismic tomography. The positions of Eocene and Miocene paleoshorelines are lower than predicted by global sea levels, suggesting at least 50 m, and possibly as much as 200 m of subsidence since the end of the Eocene. Dynamic models predict subsidence of the east coast since the end of Eocene, although the exact magnitude is uncertain. This subsidence has been occurring during an overall global sea-level fall, with the eustatic change being larger than the dynamic subsidence; this results in a regional sea-level fall in the absence of land subsidence. Dynamic subsidence is consistent with the difference between eustasy and regional sea level at the New Jersey coastal plain

    Dependence of the maximum surface subsidence from setup entry distance

    Get PDF
    Based on the subsidence data collected through a comprehensive subsidence monitoring program conducted over longwall in the Western Donbas coal mines, graphical model has been proposed to predict dynamic maximal subsidence in the Western Donbas coal basin

    The model of surface subsidence process at subsidence through formation

    Get PDF
    The character of surface subsidence is different and has its peculiarities at different stages of mining operations. The process of surface subsidence is especially different in the initial period of mining lava comparing with other stages of mining development. The simple graphical model of subsidence is created. This model allows determining the value of subsidence at any point of the earth's surface at any given time. The model is implemented on the basis of contour lines. To construct the trough model the data of instrumental measurements on core lines are used. This “chrono-isoline” model of subsidence trough allows predicting the trough profile and subsidence of individual points on the surface. There is no need to perform complex mathematical calculations. The solution of the problem requires a minimum of input data: the depth of the excavation of a long pillar and its size of a specific date

    The model of surface subsidence process at subsidence through formation

    Get PDF
    The character of surface subsidence is different and has its peculiarities at different stages of mining operations. The process of surface subsidence is especially different in the initial period of mining lava comparing with other stages of mining development. The simple graphical model of subsidence is created. This model allows determining the value of subsidence at any point of the earth's surface at any given time. The model is implemented on the basis of contour lines. To construct the trough model the data of instrumental measurements on core lines are used. This “chrono-isoline” model of subsidence trough allows predicting the trough profile and subsidence of individual points on the surface. There is no need to perform complex mathematical calculations. The solution of the problem requires a minimum of input data: the depth of the excavation of a long pillar and its size of a specific date

    Land subsidence over oilfields in the Yellow River Delta

    Get PDF
    Subsidence in river deltas is a complex process that has both natural and human causes. Increasing human activities like aquaculture and petroleum extraction are affecting the Yellow River delta, and one consequence is subsidence. The purpose of this study is to measure the surface displacements in the Yellow River delta region and to investigate the corresponding subsidence source. In this paper, the Stanford Method for Persistent Scatterers (StaMPS) package was employed to process Envisat ASAR images collected between 2007 and 2010. Consistent results between two descending tracks show subsidence with a mean rate up to 30 mm/yr in the radar line of sight direction in Gudao Town (oilfield), Gudong oilfield and Xianhe Town of the delta, each of which is within the delta, and also show that subsidence is not uniform across the delta. Field investigation shows a connection between areas of non-uniform subsidence and of petroleum extraction. In a 9 km2 area of the Gudao Oilfield, a poroelastic disk reservoir model is used to model the InSAR derived displacements. In general, good fits between InSAR observations and modeled displacements are seen. The subsidence observed in the vicinity of the oilfield is thus suggested to be caused by fluid extraction

    Short-Term Radiographic Evaluation of a Tri-Tapered Femoral Stem in Direct Anterior Total Hip Arthroplasty

    Get PDF
    Introduction. Direct anterior approach (DAA) total hip arthroplasty (THA) has become increasingly popular, largely due to utilization of a true internervous and intermuscular plane. However, recent literature has demonstrated an increased rate of femoral implant subsidence with this approach. Hence, different femoral implants, such as the tri-tapered femoral stem, have been developed to facilitate proper component insertion and positioning to prevent this femoral subsidence. The purpose of this study was to evaluate the subsidence rate of a tri-tapered femoral stem implanted utilizing a DAA, and to determine if the proximal femoral bone quality affects the rate of subsidence. Methods. A retrospective analysis of 155 consecutive primary THAs performed by a single surgeon was conducted. Age, gender, primary diagnosis, and radiographic measurements of each subject were recorded. Radiological evaluations, such as bone quality, femoral canal fill, and implant subsidence, were measured on standardized anteroposterior (AP) and frog-leg lateral radiographs of the hip at 6-week and 6-month postoperative follow-up evaluations. Results. The average subsidence of femoral stems was 1.18 ± 0.8 mm. There was no statistical difference in the amount of subsidence based on diagnosis or proximal femora quality. The tri-tapered stem design consistently filled the proximal canal with an average of 91.9 ± 4.9% fill. Subsidence was not significantly associated with age, canal flare index (CFI), or experience of the surgeon. Conclusion. THA utilizing the DAA with a tri-tapered femoral stem can achieve consistent and reliable fit regardless of proximal femoral bone quality

    Interseismic deformation above the Sunda Megathrust recorded in coral microatolls of the Mentawai islands, West Sumatra

    Get PDF
    The geomorphology and internal stratigraphy of modern coral microatolls show that all the outer arc Mentawai islands of West Sumatra have been subsiding over the past several decades. These same islands rose as much as 3 m during the giant megathrust earthquakes of 1797 and 1833, and the current subsidence probably reflects strain accumulation that will lead to future large earthquakes. Average subsidence rates over the past half century vary from 2 to 14 mm yr^(−1) and increase southwestward, toward the subduction trench. The pattern is consistent with rates of subsidence measured by a sparse network of continuously recording Global Positioning System (cGPS) stations and with locking of a 400-km-long section of the underlying subduction megathrust, between about 1°S and 4°S. This record of subsidence and tilting, extending nearly a century into the past, implies that the region is advancing toward the occurrence of another giant earthquake. However, evidence of episodic rather than steady subsidence reflects a behavior that is more complex than simple elastic strain accumulation and relief. Most prominent of these episodes is an extensive emergence/subsidence couplet in about 1962, which may be the result of rapid, aseismic slip on the megathrust, between the islands and the trench. Lower subsidence rates recorded by the corals since about 1985 may reflect failure on many small patches within the locked section of the megathrust

    Prediction of subsidence due to underground mining by artificial neural networks

    Get PDF
    Alternatively to empirical prediction methods, methods based on influential functions and on mechanical model, artificial neural networks (ANNs) can be used for the surface subsidence prediction. In our case, the multi-layer feed-forward neural network was used. The training and testing of neural network is based on the available data. Input variables represent extraction parameters and coordinates of the points of interest, while the output variable represents surface subsidence data. After the neural network has been successfully trained, its performance is tested on a separate testing set. Finally, the surface subsidence trough above the projected excavation is predicted by the trained neural network. The applicability of ANN for the prediction of surface subsidence was verified in different subsidence models and proved on actual excavated levels and in levelled data on surface profile points in the Velenje Coal Mine. (C) 2003 Elsevier Science Ltd. All rights reserved

    Probabilistic soil moisture projections to assess Great Britain's future clay-related subsidence hazard

    Get PDF
    Clay-related subsidence is Great Britain’s (GB) most damaging soil-related geohazard, costing the economy up to £500 million per annum. Soil-related geohazard models based on mineralogy and potential soil moisture deficit (PSMD) derived from historic weather data have been used in risk management since the 1990s. United Kingdom Climate Projections (UKCP09) suggest that regions of GB will experience hotter, drier summers and warmer, wetter winters through to 2050. As a result, PSMD fluctuations are expected to increase, exacerbating the shrinkage and swelling of clay soils. A forward-looking approach is now required to mitigate the impacts of future climate on GB’s built environment. We present a framework for incorporating probabilistic projections of PSMD, derived from a version of the UKCP09 stochastic weather generator, into a clay subsidence model. This provides a novel, national-scale thematic model of the likelihood of clay-related subsidence, related to the top 1-1.5m soil layer, for three time periods; baseline (1961-1990), 2030 (2020-2049) and 2050 (2040-2069). Results indicate that much of GB, with the exception of upland areas, will witness significantly higher PSMDs through to the 2050’s. As a result, areas with swelling clay soils will be subject to proportionately increased subsidence hazard. South-east England will likely incur the highest hazard exposure to clay-related subsidence through to 2050. Potential impacts include increased incidence of property foundation subsidence, alongside deterioration and increased failure rates of GB’s infrastructure networks. Future clay-subsidence hazard scenarios provide benefit to many sectors, including: finance, central and local government, residential property markets, utilities and infrastructure operators.EPSR

    Formation of offshore tidal sandbanks triggered by a gasmined bed subsidence

    Get PDF
    Offshore gasmining is an example of a human intervention with a morphological impact. On land, it is usually attended with a dish-like bed depression. We show that, if located at sea, such a bed depression can become morphodynamically active by triggering mechanisms related to tidal sand bank formation. To that end, a simple morphological model is considered which describes an erodible bed subject to a tidal wave in a shallow sea. The continuous subsidence is modelled by a sink term in the sediment balance. Then, a linear approximation is carried out to describe the bed evolution after the onset of subsidence. The results, presented in physical space, show that the subsidence triggers the formation of a sand bank pattern that gradually spreads around the centre of subsidence, at a rate that may go up to 160 m year¿1, depending on the tidal transport rate and the tidal eccentricity. The dimension of the depression does not affect the spreading rate nor the orientation of the sand banks, but it does influence their spacing. The main conclusion is that the horizontal extent of the area influenced by the bed depression by far exceeds that of the direct subsidence, thus showing that bed depressions on land and at sea indeed behave in fundamentally different ways. The results suggest that nonlinear effects are worthwhile to be investigated in order to describe finite amplitude development of sand banks as well as the interaction between subsidence and bed forms
    corecore