447 research outputs found

    InterlACE Sound Coding for Unilateral and Bilateral Cochlear Implants

    Full text link
    Objective: Cochlear implant signal processing strategies define the rules of how acoustic signals are converted into electrical stimulation patterns. Technological and anatomical limitations, however, impose constraints on the signal transmission and the accurate excitation of the auditory nerve. Acoustic signals are degraded throughout cochlear implant processing, and electrical signal interactions at the electrode-neuron interface constrain spectral and temporal precision. In this work, we propose a novel InterlACE signal processing strategy to counteract the occurring limitations. Methods: By replacing the maxima selection of the Advanced Combination Encoder strategy with a method that defines spatially and temporally alternating channels, InterlACE can compensate for discarded signal content of the conventional processing. The strategy can be extended bilaterally by introducing synchronized timing and channel selection. InterlACE was explored unilaterally and bilaterally by assessing speech intelligibility and spectral resolution. Five experienced bilaterally implanted cochlear implant recipients participated in the Oldenburg Sentence Recognition Test in background noise and the spectral ripple discrimination task. Results: The introduced alternating channel selection methodology shows promising outcomes for speech intelligibility but could not indicate better spectral ripple discrimination. Conclusion: InterlACE processing positively affects speech intelligibility, increases available unilateral and bilateral signal content, and may potentially counteract signal interactions at the electrode-neuron interface. Significance: This work shows how cochlear implant channel selection can be modified and extended bilaterally. The clinical impact of the modifications needs to be explored with a larger sample size

    A Binaural Cochlear Implant Sound Coding Strategy Inspired by the Contralateral Medial Olivocochlear Reflex

    Get PDF
    [EN] Objectives: In natural hearing, cochlear mechanical compression is dynamically adjusted via the efferent medial olivocochlear reflex (MOCR). These adjustments probably help understanding speech in noisy environments and are not available to the users of current cochlear implants (CIs). The aims of the present study are to: (1) present a binaural CI sound processing strategy inspired by the control of cochlear compression provided by the contralateral MOCR in natural hearing; and (2) assess the benefits of the new strategy for understanding speech presented in competition with steady noise with a speech-like spectrum in various spatial configurations of the speech and noise sources. Design: Pairs of CI sound processors (one per ear) were constructed to mimic or not mimic the effects of the contralateral MOCR on compression. For the nonmimicking condition (standard strategy or STD), the two processors in a pair functioned similarly to standard clinical processors (i.e., with fixed back-end compression and independently of each other). When configured to mimic the effects of the MOCR (MOC strategy), the two processors communicated with each other and the amount of backend compression in a given frequency channel of each processor in the pair decreased/increased dynamically (so that output levels dropped/ increased) with increases/decreases in the output energy from the corresponding frequency channel in the contralateral processor. Speech reception thresholds in speech-shaped noise were measured for 3 bilateral CI users and 2 single-sided deaf unilateral CI users. Thresholds were compared for the STD and MOC strategies in unilateral and bilateral listening conditions and for three spatial configurations of the speech and noise sources in simulated free-field conditions: speech and noise sources colocated in front of the listener, speech on the left ear with noise in front of the listener, and speech on the left ear with noise on the right ear. In both bilateral and unilateral listening, the electrical stimulus delivered to the test ear(s) was always calculated as if the listeners were wearing bilateral processors. Results: In both unilateral and bilateral listening conditions, mean speech reception thresholds were comparable with the two strategies for colocated speech and noise sources, but were at least 2 dB lower (better) with the MOC than with the STD strategy for spatially separated speech and noise sources. In unilateral listening conditions, mean thresholds improved with increasing the spatial separation between the speech and noise sources regardless of the strategy but the improvement was significantly greater with the MOC strategy. In bilateral listening conditions, thresholds improved significantly with increasing the speech-noise spatial separation only with the MOC strategy. Conclusions: The MOC strategy (1) significantly improved the intelligibility of speech presented in competition with a spatially separated noise source, both in unilateral and bilateral listening conditions; (2) produced significant spatial release from masking in bilateral listening conditions, something that did not occur with fixed compression; and (3) enhanced spatial release from masking in unilateral listening conditions. The MOC strategy as implemented here, or a modified version of it, may be usefully applied in CIs and in hearing aids

    Presbycusis-Related Tinnitus and Cognitive Impairment: Gender Differences and Common Mechanisms

    Get PDF
    Presbycusis-related tinnitus and cognitive impairment are common in the elderly and generate a massive burden on family and society. Except for age, the study explored the gender differences in the prevalence of the three diseases. We found that women have an advantage in maintaining better cognitive and auditory functions. Recent studies suggest the complex links among the three diseases. Peripheral hearing loss can affect sound coding and neural plasticity, which will lead to cognitive impairment and tinnitus. The deficits of the central nervous system, especially central auditory structures, can, in turn, cause the presbycusis. The interaction among three diseases indicated that comprehensive assessment, intervention and treatment in consideration of hearing loss, tinnitus and cognitive impairment are important to decay aging

    Novel Ideas for Lossless Audio Coding

    Get PDF
    Novel ideas for lossless audio coding analyzed in the paper are linked with forward predictor adaptation, and concern optimization of predictors on the basis of zero-orderentropy and MMAE criterions, and context sound coding. Direct use of the former criterion is linked with exponential growth of optimization procedure, hence, a suboptimal algorithm having polynomial complexity is proposed. It is shown that on average the new types of predictors are better than those obtained by MMSE technique, while two- and three context systems are on average better than a single predictor one. It also appears that 7-bit PARCOR coefficients in the MPEG-4 ALS standard have insufficient precision for some predictor length, and that for very long frames coding results improve with the predictor rank practically in unlimited way

    MISRA C, for Security's Sake!

    Full text link
    A third of United States new cellular subscriptions in Q1 2016 were for cars. There are now more than 112 million vehicles connected around the world. The percentage of new cars shipped with Internet connectivity is expected to rise from 13% in 2015 to 75% in 2020, and 98% of all vehicles will likely be connected by 2025. Moreover, the news continuously report about "white hat" hackers intruding on car software. For these reasons, security concerns in automotive and other industries have skyrocketed. MISRA C, which is widely respected as a safety-related coding standard, is equally applicable as a security-related coding standard. In this presentation, we will show that security-critical and safety-critical software have the same requirements. We will then introduce the new documents MISRA C:2012 Amendment 1 (Additional security guidelines for MISRA C:2012) and MISRA C:2012 Addendum 2 (Coverage of MISRA C:2012 against ISO/IEC TS 17961:2013 "C Secure Coding Rules"). We will illustrate the relationship between MISRA C, CERT C and ISO/IEC TS 17961, with a particular focus on the objective of preventing security vulnerabilities (and of course safety hazards) as opposed to trying to eradicate them once they have been inserted in the code.Comment: 4 pages, 2 tables, presented at the "14th Workshop on Automotive Software & Systems", Milan, November 10, 201

    Structure and Function of the Hair Cell Ribbon Synapse

    Get PDF
    Faithful information transfer at the hair cell afferent synapse requires synaptic transmission to be both reliable and temporally precise. The release of neurotransmitter must exhibit both rapid on and off kinetics to accurately follow acoustic stimuli with a periodicity of 1 ms or less. To ensure such remarkable temporal fidelity, the cochlear hair cell afferent synapse undoubtedly relies on unique cellular and molecular specializations. While the electron microscopy hallmark of the hair cell afferent synapse — the electron-dense synaptic ribbon or synaptic body — has been recognized for decades, dissection of the synapse’s molecular make-up has only just begun. Recent cell physiology studies have added important insights into the synaptic mechanisms underlying fidelity and reliability of sound coding. The presence of the synaptic ribbon links afferent synapses of cochlear and vestibular hair cells to photoreceptors and bipolar neurons of the retina. This review focuses on major advances in understanding the hair cell afferent synapse molecular anatomy and function that have been achieved during the past years

    EF-hand protein Ca²⁺ buffers regulate Ca²⁺ influx and exocytosis in sensory hair cells

    Get PDF
    EF-hand Ca²⁺-binding proteins are thought to shape the spatiotemporal properties of cellular Ca²⁺ signaling and are prominently expressed in sensory hair cells in the ear. Here, we combined genetic disruption of parvalbumin-α, calbindin-D28k, and calretinin in mice with patch-clamp recording, in vivo physiology, and mathematical modeling to study their role in Ca²⁺ signaling, exocytosis, and sound encoding at the synapses of inner hair cells (IHCs). IHCs lacking all three proteins showed excessive exocytosis during prolonged depolarizations, despite enhanced Ca²⁺-dependent inactivation of their Ca²⁺ current. Exocytosis of readily releasable vesicles remained unchanged, in accordance with the estimated tight spatial coupling of Ca²⁺ channels and release sites (effective “coupling distance” of 17 nm). Substitution experiments with synthetic Ca²⁺ chelators indicated the presence of endogenous Ca²⁺ buffers equivalent to 1 mM synthetic Ca²⁺-binding sites, approximately half of them with kinetics as fast as 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA). Synaptic sound encoding was largely unaltered, suggesting that excess exocytosis occurs extrasynaptically. We conclude that EF-hand Ca²⁺ buffers regulate presynaptic IHC function for metabolically efficient sound coding

    Multifaceted evaluation of a binaural cochlear‐ implant sound‐processing strategy inspired by the medial olivocochlear reflex

    Get PDF
    [ES]El objetivo de esta tesis es evaluar experimentalmente la audición de los usuarios de implantes cocleares con una estrategia de procesamiento binaural de sonidos inspirada en el reflejo olivococlear medial, denominada "estrategia MOC". La tesis describe cuatro estudios dirigidos a comparar la inteligibilidad del habla en ruido, la localización de fuentes sonoras y el esfuerzo auditivo con procesadores de sonido estándar y con diversos procesadores MOC diseñados para reflejar de forma más o menos realista el tiempo de activación del reflejo olivococlear medial natural y sus efectos sobre la comprensión coclear humana
    corecore