4,848 research outputs found

    On Waylen's regular axisymmetric similarity solutions

    Get PDF
    We review the similarity solutions proposed by Waylen for a regular time-dependent axisymmetric vacuum space-time, and show that the key equation introduced to solve the invariant surface conditions is related by a Baecklund transform to a restriction on the similarity variables. We further show that the vacuum space-times produced via this path automatically possess a (possibly homothetic) Killing vector, which may be time-like.Comment: 8 pages, LaTeX2

    Similarity solutions for slender rivulets with thermocapillarity

    Get PDF
    We use the lubrication approximation to investigate the steady flow of slender non-uniform rivulets of a viscous fluid on an inclined plane that is either heated or cooled relative to the surrounding atmosphere. Four non-isothermal situations in which thermocapillary effects play a significant role are considered. We derive the general equations for a slender rivulet subject to gravity, surface tension, thermocapillarity and a constant surface shear stress. Similarity solutions describing a thermocapillary-driven rivulet widening or narrowing due to either gravitational or surface-tension effects on a non-uniformly heated or cooled substrate are obtained, and we present examples of these solutions when the substrate temperature gradient depends on the longitudinal coordinate according to a general power law. When gravitational effects are strong there is a unique solution representing both a narrowing pendent rivulet and a widening sessile rivulet whose transverse profile always has a single global maximum. When surface-tension effects are strong there is a one-parameter family of solutions representing both a narrowing and a widening rivulet whose transverse profile has either a single global maximum or two equal global maxima and a local minimum. Unique similarity solutions whose transverse profiles always have a single global maximum are also obtained for both a gravity-driven and a constant-surface-shear-stress-driven rivulet widening or narrowing due to thermocapillarity on a uniformly heated or cooled substrate. The solutions in both cases represent both a narrowing rivulet on a heated substrate and a widening rivulet on a cooled substrate (albeit with infinite width in the gravity-driven case)

    Nonspherical similarity solutions for dark halo formation

    Full text link
    We carry out fully 3-dimensional simulations of evolution from self-similar, spherically symmetric linear perturbations of a Cold Dark Matter dominated Einstein-de Sitter universe. As a result of the radial orbit instability, the haloes which grow from such initial conditions are triaxial with major-to-minor axis ratios of order 3:1. They nevertheless grow approximately self-similarly in time. In all cases they have power-law density profiles and near-constant velocity anisotropy in their inner regions. Both the power-law index and the value of the velocity anisotropy depend on the similarity index of the initial conditions, the former as expected from simple scaling arguments. Halo structure is thus not "universal" but remembers the initial conditions. On larger scales the density and anisotropy profiles show two characteristic scales, corresponding to particles at first pericentre and at first apocentre after infall. They are well approximated by the NFW model only for one value of the similarity index. In contrast, at all radii within the outer caustic the pseudo phase-space density can be fit by a single power law with an index which depends only very weakly on the similarity index of the initial conditions. This behaviour is very similar to that found for haloes formed from LCDM initial conditions and so can be considered approximately universal.Comment: 8 pages, 7 figures, submitted to MNRA

    Approximate symmetry reduction approach: infinite series reductions to the KdV-Burgers equation

    Full text link
    For weak dispersion and weak dissipation cases, the (1+1)-dimensional KdV-Burgers equation is investigated in terms of approximate symmetry reduction approach. The formal coherence of similarity reduction solutions and similarity reduction equations of different orders enables series reduction solutions. For weak dissipation case, zero-order similarity solutions satisfy the Painlev\'e II, Painlev\'e I and Jacobi elliptic function equations. For weak dispersion case, zero-order similarity solutions are in the form of Kummer, Airy and hyperbolic tangent functions. Higher order similarity solutions can be obtained by solving linear ordinary differential equations.Comment: 14 pages. The original model (1) in previous version is generalized to a more extensive form and the incorrect equations (35) and (36) in previous version are correcte

    Similarity solutions for slender dry patches with thermocapillarity

    Get PDF
    We use the lubrication approximation to investigate slender dry patches in an infinitely wide film of viscous fluid flowing steadily on an inclined plane that is either heated or cooled relative to the surrounding atmosphere. Four non-isothermal situations in which thermocapillary effects play a significant role are considered. Similarity solutions describing a thermocapillary-driven flow with a dry patch that is widening or narrowing due to either gravitational or surface-tension effects on a non-uniformly heated or cooled substrate are obtained, and we present examples of these solutions when the substrate temperature gradient depends on the longitudinal coordinate according to a general power law. When gravitational effects are strong the solution contains a free parameter, and for each value of this parameter there is a unique solution representing both a narrowing pendent dry patch and a widening sessile dry patch, whose transverse profile has a monotonically increasing shape. When surface tension effects are strong the solution also contains a free parameter, and for each value of this parameter there is both a unique solution representing a narrowing dry patch, whose transverse profile has a monotonically increasing shape, and a one-parameter family of solutions representing a widening dry patch, whose transverse profile has a capillary ridge near the contact line and decays in an oscillatory manner far from it. Similarity solutions are also obtained for both a gravity-driven and a constant surface- shear-stress-driven flow with a dry patch that is widening or narrowing due to thermocapillarity on a uniformly heated or cooled substrate. The solutions in both cases contain a free parameter, and for each value of this parameter there is a unique solution representing both a narrowing dry patch on a heated substrate and a widening dry patch on a cooled substrate, whose transverse profile has a monotonically increasing shape

    The spatial stability of a class of similarity solutions

    Get PDF
    The spatial stability of a class of exact similarity solutions of the Navier–Stokes equations whose longitudinal velocity is of the form xf′(y), where x is the streamwise coordinate and f′(y) is a function of the transverse, cross‐streamwise, coordinate y only, is determined. These similarity solutions correspond to the flow in an infinitely long channel or tube whose surface is either uniformly porous or moves with a velocity linear in x. Small perturbations to the streamwise velocity of the form x^λg′(y) are assumed, resulting in an eigenvalue problem for λ which is solved numerically. For the porous wall problem, it is shown that similarity solutions in which f′(y) is a monotonic function of y are spatially stable, while those that are not monotonic are spatially unstable. For the accelerating‐wall problem, the interpretation of the stability results is not unambiguous and two interpretations are offered. In one interpretation the conclusions are the same as for the porous problem—monotonic solutions are stable; the second interpretation is more restrictive in that some of the monotonic as well as the nonmonotonic solutions are unstable

    Similarity solutions of the Einstein and Einstein-Maxwell equations

    Get PDF
    Exact solutions of the equations governing vacuum cylindrical gravitational wave spacetimes and colliding plane electromagnetic and plane gravitational wave spacetimes are presented. Both solutions are found by using the geometric technique of Harrison and Estabrook (1971) to find appropriate similarity variables to reduce partial differential equations to ordinary differential equations. One of the solutions is transformed into a solution of the Ernst equations
    corecore