4 research outputs found

    Ant Build Maintenance with Formiga

    Get PDF
    A build system produces a set of deliverables from a software project\u27s source code and resources. Build maintenance refers to the changes made to the build system as a software project evolves over time. It has been shown to impose a significant overhead on overall development costs, in part because changes to source code often require parallel changes in the build system. However, little tool support exists to assist developers with build maintenance, particularly for those changes that must accompany changes to the source code. Formiga is a build maintenance and dependency discovery tool for the Ant build system. Formiga\u27s primary uses are to automate build changes as the source code is updated, to identify the build dependencies within a software project, and to assist with build refactoring. Formiga is implemented as an IDE plugin, which allows it to recognize when project resources are updated and automatically update the build system accordingly. This implementation also allows it to leverage existing metaphors used by developers to maintain source code, thus making it easier to use. A controlled experiment was conducted to assess Formiga\u27s ability to assist developers with build maintenance. Formiga was shown to signficantly reduce the time required to perform build maintenance while increasing the correctness with which it can be performed

    Purely top-down software rebuilding

    Get PDF
    Software rebuilding is the process of deriving a deployable software system from its primitive source objects. A build tool helps maintain consistency between the derived objects and source objects by ensuring that all necessary build steps are re-executed in the correct order after a set of changes is made to the source objects. It is imperative that derived objects accurately represent the source objects from which they were supposedly constructed; otherwise, subsequent testing and quality assurance is invalidated. This thesis aims to advance the state-of-the-art in tool support for automated software rebuilding. It surveys the body of background work, lays out a set of design considerations for build tools, and examines areas where current tools are limited. It examines the properties of a next-generation tool concept, redo, conceived by D. J. Bernstein; redo is novel because it employs a purely top-down approach to software rebuilding that promises to be simpler, more flexible, and more reliable than current approaches. The details of a redo prototype written by the author of this thesis are explained including the central algorithms and data structures. Lastly, the redo prototype is evaluated on some sample software systems with respect to migration effort between build tools as well as size, complexity, and performances aspects of the resulting build systems

    Inverse software configuration management

    Get PDF
    Software systems are playing an increasingly important role in almost every aspect of today’s society such that they impact on our businesses, industry, leisure, health and safety. Many of these systems are extremely large and complex and depend upon the correct interaction of many hundreds or even thousands of heterogeneous components. Commensurate with this increased reliance on software is the need for high quality products that meet customer expectations, perform reliably and which can be cost-effectively and safely maintained. Techniques such as software configuration management have proved to be invaluable during the development process to ensure that this is the case. However, there are a very large number of legacy systems which were not developed under controlled conditions, but which still, need to be maintained due to the heavy investment incorporated within them. Such systems are characterised by extremely high program comprehension overheads and the probability that new errors will be introduced during the maintenance process often with serious consequences. To address the issues concerning maintenance of legacy systems this thesis has defined and developed a new process and associated maintenance model, Inverse Software Configuration Management (ISCM). This model centres on a layered approach to the program comprehension process through the definition of a number of software configuration abstractions. This information together with the set of rules for reclaiming the information is stored within an Extensible System Information Base (ESIB) via, die definition of a Programming-in-the- Environment (PITE) language, the Inverse Configuration Description Language (ICDL). In order to assist the application of the ISCM process across a wide range of software applications and system architectures, die PISCES (Proforma Identification Scheme for Configurations of Existing Systems) method has been developed as a series of defined procedures and guidelines. To underpin the method and to offer a user-friendly interface to the process a series of templates, the Proforma Increasing Complexity Series (PICS) has been developed. To enable the useful employment of these techniques on large-scale systems, the subject of automation has been addressed through the development of a flexible meta-CASE environment, the PISCES M4 (MultiMedia Maintenance Manager) system. Of particular interest within this environment is the provision of a multimedia user interface (MUI) to die maintenance process. As a means of evaluating the PISCES method and to provide feedback into die ISCM process a number of practical applications have been modelled. In summary, this research has considered a number of concepts some of which are innovative in themselves, others of which are used in an innovative manner. In combination these concepts may be considered to considerably advance the knowledge and understanding of die comprehension process during the maintenance of legacy software systems. A number of publications have already resulted from the research and several more are in preparation. Additionally a number of areas for further study have been identified some of which are already underway as funded research and development projects

    shape - A Software Configuration Management Tool

    No full text
    This paper describes the design of a configuration management toolkit, which integrates a dedicated version control system and shape, a significantly enhanced Make [7] program. Enhancements include full access to the version control system and support of configuration rules which control the selection process for component versions during identification, build or rebuild of system configurations. Since integration of version control was a major objective for our system, we had to face the need for a document identification scheme that goes beyond the usual way of specifying name and type of a document. As a consequence, we began to design an attributed filesystem (AFS) that introduces a much more generalized scheme for document identification. The AFS comprises concepts for version control, support for variants or status models for example. Furthermore, it helps to abstract from the particular underlying data storage system in such a way that it makes no difference whether it is an or..
    corecore