
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

May 2014

Ant Build Maintenance with Formiga
Ryan Hardt
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations
by an authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Hardt, Ryan, "Ant Build Maintenance with Formiga" (2014). Theses and Dissertations. 498.
https://dc.uwm.edu/etd/498

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F498&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F498&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F498&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=dc.uwm.edu%2Fetd%2F498&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/498?utm_source=dc.uwm.edu%2Fetd%2F498&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

ANT BUILD MAINTENANCE WITH FORMIGA

by

Ryan Hardt

A Dissertation Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

in Engineering

at

The University of Wisconsin-Milwaukee

May 2014

ABSTRACT

ANT BUILD MAINTENANCE WITH FORMIGA

by

Ryan Hardt

The University of Wisconsin-Milwaukee, 2014

Under the Supervision of Professor Ethan V. Munson

A build system produces a set of deliverables from a software project’s source code

and resources. “Build maintenance” refers to the changes made to the build system

as a software project evolves over time. It has been shown to impose a significant

overhead on overall development costs, in part because changes to source code often

require parallel changes in the build system. However, little tool support exists to

assist developers with build maintenance, particularly for those changes that must

accompany changes to the source code. Formiga is a build maintenance and de-

pendency discovery tool for the Ant build system. Formiga’s primary uses are to

automate build changes as the source code is updated, to identify the build depen-

dencies within a software project, and to assist with build refactoring. Formiga is

implemented as an IDE plugin, which allows it to recognize when project resources

are updated and automatically update the build system accordingly. This implemen-

tation also allows it to leverage existing metaphors used by developers to maintain

source code, thus making it easier to use. A controlled experiment was conducted to

assess Formiga’s ability to assist developers with build maintenance. Formiga was

shown to signficantly reduce the time required to perform build maintenance while

increasing the correctness with which it can be performed.

ii

Table of Contents

List of Figures vi

List of Tables vii

1 Introduction 1

2 Background 6

2.1 Build tools . 6

2.1.1 Make . 7

2.1.2 Ant . 8

2.1.3 Maven . 9

2.1.4 Gradle . 11

2.1.5 SCM systems . 12

2.2 Build analysis . 12

2.2.1 Static build analysis . 13

2.2.2 Dynamic build analysis . 13

3 Related Work 15

3.1 Build development and evolution . 15

3.1.1 Build practices . 16

3.1.2 Build evolution . 16

3.1.3 Build maintenance overhead 19

3.2 SCM systems . 22

3.2.1 DSEE . 23

3.2.2 Vesta . 24

3.2.3 Shape . 26

3.2.4 Stellation . 28

3.2.5 Survey of SCM . 29

3.3 Build maintenance tools . 31

3.3.1 MAKAO . 31

iii

3.3.2 SYMake . 32

3.3.3 Amake . 34

3.4 Ant build tools . 35

3.4.1 Virtual Ant . 35

3.4.2 Vizant . 36

3.4.3 Apache Ivy . 36

4 Implementation 37

4.1 Introduction . 37

4.2 Build maintenance due to external changes 38

4.2.1 Adding a file . 40

4.2.2 Moving or renaming a file . 40

4.2.3 Deleting a file . 42

4.3 Identification of build dependencies 42

4.3.1 Finding build dependencies 44

4.3.2 Presenting build dependencies 51

4.4 Build maintenance due to internal changes 58

4.4.1 Target removal . 58

4.4.2 Target renaming . 60

4.4.3 Property removal . 60

4.4.4 Property renaming . 61

5 Controlled Experiment 62

5.1 Organization . 62

5.1.1 Subjects . 64

5.1.2 Experimental Procedure . 64

5.2 Experiment results . 70

5.3 Survey results . 73

5.3.1 Formiga’s usefulness . 73

5.3.2 Subject levels of experience 74

5.3.3 Formiga likes/dislikes . 75

6 Constraints 78

6.1 Implementation . 78

iv

6.2 Task support . 78

6.3 Configuration support . 79

6.4 Dependency identificaiton . 80

7 Contributions 81

8 Future Research 83

8.1 Repository integration . 83

8.2 Integration with other build tools . 84

9 Conclusion 86

A Controlled Experiment Files 88

Bibliography 122

v

List of Figures
4.1 Property Reuse Example . 39

4.2 Added File Alert . 40

4.3 Renamed File Confirmation . 42

4.4 Deleted File Confirmation . 43

4.5 CSP Example . 50

4.6 Project Deliverable Dependencies . 54

4.7 Deliverable Dependency Graph . 55

4.8 Project File Dependencies . 56

4.9 Project File Forward Dependency Graph 57

4.10 Build Refactoring Context Menu . 59

4.11 Target Removal Confirmation . 60

4.12 Property Rename Alert . 61

vi

List of Tables
5.1 Task completion time . 71

5.2 Task correctness . 73

5.3 Survey responses on Formiga’s usefulness 74

vii

1

Chapter 1

Introduction

Build systems are a necessary component of software engineering, responsible for

producing a set of deliverables from a project’s source code and resources. These

deliverables include artifacts like executables, reusable libraries, and archives of

source code or documentation. Many software projects (particularly large projects)

have a build system that is used to produce multiple deliverables, thus increasing

the size and complexity of the build system. Additionally, configurations may be

used to control which deliverables are produced, or for which system a deliverable

is to be built. These configurations often dictate which files are involved in the

build process or which build targets are executed. Configuration values may be

determined at runtime (based on the environment used to build the deliverable, for

instance) or by specifying a pre-determined set of values. This results in different

build execution paths for each of the configuration sets, thus further complicating

the build.

2

Various stakeholders in the software development process require information

about the dependencies between artifacts in a software project [1]. Much of this

information is stored in the build system. Software developers require knowledge

of the build system so that they can make updates to it as project resources are

modified. Software maintainers require an understanding of the build system to

ensure that any maintenance tasks are reflected in the appropriate deliverables.

Project managers and those responsible for application deployment may need to

know which deliverables or applications will be affected by changes to one or more

files in a software project. All of these tasks require knowledge of the dependencies

represented in a build system.

Due to the size and complexity of many build files, modifications can be time

consuming, challenging, and error-prone. When project files are created, removed,

or updated, the build system may require or benefit from updating. Tasks may

reference the modified files directly, directly reference the directories containing

those files, use patterns to reference those files or directories, or reference a property

whose value refers to those files. This makes it more complicated to identify where

those files are being used in the build system, which makes the maintenance process

more challenging.

Like source code files, build files are also subject to refactoring. For example,

deliverables could be added, removed, or have their contents changed. This re-

quires adding, removing, or modifying build targets, which some developers may be

hesitant to do in fear of “breaking the build”. Because some development teams

3

disperse build updates among the developers working on the project rather than

using a dedicated team of developers for build development [2, 3], this hesitance

may be a significant impediment to appropriate build updates. Incomplete build

refactorings may indeed break the build or result in unused (“dead”) build code,

which may be subject to further refactoring that is, in-fact, unnecessary.

“Build maintenance” refers to changes that are made to a software project’s

build system as it evolves. Prior research has shown that the build system needs to

evolve in parallel with the source code, and that it grows in size and complexity as

the source code does [4, 5, 6]. Build system maintenance alone imposes a 12%-36%

overhead on the development of a software project [7]. Additionally, up to 27% of

work items involving production source code changes require accompanying build

maintenance [2, 3].

A project’s build system may require updates in response to both internal and

external changes. More precisely, build maintenance may occur for two reasons:

1. refactored source code requires build changes (external), or

2. the build system itself needs refactoring or fine-tuning (internal).

“Build maintenance recommendation” was identified as a potential means to

reduce the overhead imposed by build maintenance caused by external changes [3].

Because source and build code co-evolve, it is easy to imagine situations in which

a developer is unaware that changes made to the source code require build code

changes. Build maintenance recommendation is intended to inform developers of

4

these source code changes that require build maintenance. Moving a file from one

directory to another or simply renaming a file are two such operations. Without

updating the build system, these operations may cause unexpected build results

or break the build process altogether. If developers are not notified immediately

after making such changes to the source files, it may be difficult to determine the

cause of an erroneous build process, particularly if the build system is complex or

contains multiple configurations. While recent research has greatly improved the

state of build maintenance tools [8, 9], support for automatic build maintenance

due to external changes is lacking. This is the primary motivation for our build

maintenance tool, Formiga.

To make Formiga a useful build maintenance tool, it must also address build

maintenance caused by internal changes, which it does by automating various build

refactoring tasks, such as target renaming, target removal, variable renaming, and

variable removal. These tasks may be error-prone if performed manually due to

multiple build files in a project, variable assignments made at runtime, or general

unfamiliarity with the build system. Furthermore, Adams et al. [8] identified the

following five requirements that a reasonable build maintenance system should pro-

vide: visualization, querying, filtering, refactoring, and validation. Formiga aims to

meet these requirements by facilitating dependency discovery and assistance with

both types of build maintenance for the Ant build system.

The remainder of this dissertation is organized as follows. Chapter 2 presents

relevant background information. Chapter 3 discusses related research that focuses

5

on build system evolution, overhead, and maintenance. Chapter 4 presents the

implementation of our build maintenance tool “Formiga”. Chapter 5 describes a

controlled experiment used to assess Formiga’s ability to assist developers with build

maintenance. Formiga’s constraints are presented in Chapter 6, and its contributions

are outlined in Chapter 7. Chapter 8 outlines future research involving Formiga,

and Chapter 9 concludes this paper.

6

Chapter 2

Background

This section describes terminology and concepts that will be used throughout this

paper. Section 2.1 describes build tools, including Ant, Make, Maven, Gradle,

and those implemented within software configuration management (SCM) systems.

Section 2.2 discusses ways in which a build system can be analyzed to discover

information about the deliverables it produces.

2.1 Build tools

Build tools are capable of executing and automating a variety of tasks, including:

• Compiling source code to create executables

• Packaging files into binary files for distribution

• Deploying executables or binary files for release

7

• Running software tests

• Creating documentation files

Proper use and understanding of build tools and processes is important, partic-

ularly for large software projects [10]. Two widely used build tools are Make [11]

and Ant [12]. Both of these build tools allow one to specify how to construct de-

rived artifacts using a set of tools and project files. We chose Ant as the build tool

analyzed by Formiga due to familiarity with Ant as well as its benefits described by

Serrano and Ciordia [13]. Two more recently introduced build tools are Maven [14]

and Gradle [15].

2.1.1 Make

Make [11] performs tasks based on the contents of a makefile. Makefiles are written

in a “tabbed text” format, where tab characters and other whitespace are used to

indicate relationships between the components present in the makefile. Makefile

components consists of rules, targets, dependencies, and commands. A rule is a

named collection of commands, identified by a target. A target is often the name

of a file to produce, or simply a name associated with a collection of commands. A

target may have an associated list of dependencies. A dependency is a file that is

used as an input to a command in the rule for the associated target. A makefile

may reference components specified in another makefile.

Make is run by executing a specified target. When a target is executed in Make, if

8

any of the rule’s dependencies are missing or have a more recent timestamp than the

target, then (and only then) will make first update those dependencies by executing

the rules used to produce those dependencies. After all of its dependencies have

been updated, a rule’s target is built by executing its associated commands. This

methodolgy avoids unnecessary exeuction when a target’s dependencies have not

changed.

Make can build projects written in any language. It was designed to run on a

Unix operating system but has been ported by various third parties to run on other

operating systems as well. All of the commands present within a makefile refer to

arbitrary Unix programs, some of which may need to be obtained separately from

Make. Because the programs associated with these commands may not be packaged

with Make, documentation for them may be difficult to find.

2.1.2 Ant

Ant [12] performs tasks based on the contents of a build file written in XML, typically

named “build.xml”. This build file primarily consists of targets, properties, and tasks.

Each build file consists of a single project, which is a named collection of targets

and specifies a base directory by which all relative paths will be related. A target

is a named collection of executable tasks that may depend on other targets. A task

refers to an executable piece of code. A task may contain other tasks. A property

is an immutable name-value pair that may be defined at the project level or at the

9

target level. An Ant build file may reference components written in another Ant

build file.

When invoking Ant, one specifies a target to execute. When a target is executed,

all dependencies of the target must be executed first, regardless of the presence

or timestamps of any dependent files. A specified target or target dependency is

always executed in Ant unless the target contains either an if or unless attribute

whose value indicates that the target does not need be executed. When executed,

however, some Ant tasks can internally determine that their work is already done.

This determination varies by task.

Ant can build projects written in any language but is most often used to build

software projects written in Java. It can be run on any operating system with a

Java virtual machine (JVM) installed. Most of the tools executed during an Ant

build are written in Java and packaged with the Ant distribution. Their behaviors

and invocation syntax are well documented. Additional Ant tasks can be written in

Java and referenced in a build.xml file.

2.1.3 Maven

Maven [14] uses a “pom.xml” configuration file to define a single artifact to build

for a software project. Rather than identifying the procedures used to build this

artifact (as done in a makefile or build.xml file), a pom.xml file consists of declara-

tions that identify the artifact to produce, where its contents are located, and what

10

external dependencies it has. To facilitate this, Maven imposes restrictions on the

organization of a software project as well as the tools that it uses to produce that

project’s artifacts. A pom.xml file can refer to other pom.xml files to allow multiple

artifacts to be produced.

Maven provides a uniform build system as its builds are based on the concept of

a “build lifecycle”. When executing a build, the desired lifecycle phase is specified.

These phases are predefined and depend on other phases. Most projects can be built

by issuing the “install” command (or phase), which builds the desired artifact and

installs it at the specified repository. Other commands can be used to separately

compile, test, or package the project’s source code. Maven can also deploy an

executable artifact produced for a software project. Because an artifact’s external

dependencies are specified with their repository locations, Maven can automatically

obtain an artifact’s external dependencies when that artifact is built.

Maven is implemented in Java and only builds Java software projects. Plugins

can be written to extend the functionality of Maven. If multiple artifacts are desired

for single Java project, multiple pom.xml files should be used. The contents of

the pom.xml files for complex projects can become larger than their equivalent

implementations in Ant. While Maven provides consistency across projects, the

constraints it imposes are not suitable for all projects.

11

2.1.4 Gradle

Gradle’s [15] build scripts are written in a Groovy-based domain-specific language

(DSL). Groovy [16] is a dynamic, object-oriented programming language. Gradle

build files are typically named “build.gradle”. A Gradle build is made up of one

or more “projects”. Projects can be used to build a deliverable or perform a series

of operations. Projects can reference other projects. Each project is made up of

one or more “tasks”. A task is an atomic unit of work. Gradle tasks can depend

on other tasks. Tasks can be created dynamically or modified at runtime. Gradle

has properties that can be referenced and methods that can be called throughout

a build. In addition to executing its own task implementations, Gradle can also

execute Ant tasks and import Ant build files.

A Gradle build is often executed by issuing the “gradle” command with the

name of a task to execute. Much like Ant, Gradle has a configuration phase and

an execution phase. During the configuration phase, a directed-acyclic graph is

produced that identifies the tasks to execute. Gradle provides hooks into this graph,

allowing developers to modify it before the execution phase occurs. Gradle supports

incremental builds, allowing tasks to indicate whether or not their work has already

been done during a build execution.

While Gradle can be used to build projects written in any language, its main

focus is to build Java projects. It aims to “[provide] the power and flexibility of Ant

with the dependency management and conventions of Maven”. Like Maven, Gradle

12

also allows a project to specify the locations of its external dependencies, which can

be automatically downloaded during a build. Gradle can also be used to publish

artifacts to a repository.

2.1.5 SCM systems

Software configuration management (SCM) systems are responsible for storing and

managing collections of files that constitute various software projects. According to

Dart [17], SCM systems should include the ability to:

• represent relationships between components

• build binary files from versioned source files

• describe the impacts of a change and provide control over those changes

While the full scope of SCM system functionalities is much larger, this subset

of functionalities is related to build tools. As a result, many SCM systems include

custom build systems, many of which are variants of Make [18, 19, 20, 21, 22, 23, 24,

25]. Due to their scope, SCM systems are often monolithic in nature with significant

learning curves.

2.2 Build analysis

To analyze the effects of a build, a model may be generated of the build system

either statically or dynamically. This section discusses both approaches to build

13

analysis.

2.2.1 Static build analysis

A static analysis of the build system evaluates it without actually executing a build.

Only the contents of the build files themselves are analyzed. This requires knowledge

of the syntax and semantics of the build system as well as information about the

tools that are referenced by the build files.

Static analysis has the advantage of having access to build-related data for all

deliverables and configurations, not just data for the system on which the analysis

occurs. This data can be difficult to obtain, however, partially due to the dynamic

behavior of tools that may be executed during the build process.

2.2.2 Dynamic build analysis

A dynamic analysis of the build system evaluates it by executing and examining

a run of the build. This form of analysis may either observe the build and the

environment in which it is executed or evaluate artifacts produced by the build

during its execution. Some build tools can produce descriptions of the operations

that they perform during an execution, which may be read by a dynamic analysis

tool.

Dynamic analysis is likely an easier approach to obtaining a build model than

using static analysis, but its data is typically relevant only for a single deliverable

14

using a particular configuration. If data regarding multiple deliverables is desired,

the build may need to be executed multiple times. Additionally, data for multi-

ple configurations may require executing the build multiple times or in multiple

environments.

15

Chapter 3

Related Work

This chapter addresses related research and development tools. Section 3.1 presents

research on the development and evolution of build systems. Section 3.2 focuses

on SCM systems with custom build systems. Section 3.3 presents research on tools

that are focused on build maintenance. Section 3.4 discusses existing commercial

tools to assist in the development of Ant build systems.

3.1 Build development and evolution

This section presents research on general build practices and development. It in-

cludes a discussion on the importance of build systems, research on how the build

system evolves over time along with the software it is intended to manage, and data

regarding the costs associated with maintaining a build system.

16

3.1.1 Build practices

Spinellis [10] studied build practices and stresses the growing importance of build

systems due to larger code bodies and sophisticated tool chains. He emphasizes

the importance of using build systems to automate, optimize, and polish the build

processes.

The author states that automating all build tasks is software building’s golden

rule. He specifies three purposes served by automation: documenting the processes,

speeding up the corresponding tasks, and eliminating mistakes and forgotten steps.

Additionally, he recommends optimizing the build, which involves correctly handling

the dependencies so that unnecessary steps are not executed. Spinellis states that

makefiles and Ant build files are also source code and should be treated as such by

storing them in version control repositories and refactoring them when appropriate.

Spinellis warns against using IDE specific build tools (like those addressed in

3.2), as the build specifications become dependent on the IDE and platform they

run on. He addresses strengths and weaknesses of various build tools, including

Make and Ant, and states that debugging is more difficult in Ant because analyzing

tasks involves adding print statements or examining Java source code.

3.1.2 Build evolution

Adams et al. presented a case-study of the evolution of the Linux kernel build

system [4], which is implemented in Make. They analyzed its growth by measuring

17

the number of source lines of code (SLOC) as well as the number of targets and

dependencies (both explicit and implicit) in its makefiles. This growth was measured

for all major releases of the Linux kernel build system from 1991 through 2007.

Their data was obtained using a reverse engineering framework for build systems,

MAKAO, which will be discussed later in 3.3.1. For each release, they used their

tool to generate the build dependency graph of the default build configuration.

Using these graphs, they measured metrics like the number of nodes and edges

in the graph to determine the number of targets and dependencies in the build.

They also obtained additional information from other resources like the project’s

documentation and mailing list.

Their study showed that the build system of the Linux kernel evolved, that it

grew in complexity as it evolved, and that it required considerable maintenance

effort in order to deal with the growing complexity. They found that the size of the

Linux kernel build system grows exponentially. Their findings also suggested that

not only do build systems evolve, but that they co-evolve with the project’s source

code. Adams later provided four hypothesis for the co-evolution of source code and

the build system in [5].

McIntosh et al. [6] showed that not only do Ant build systems evolve over time,

but they also need to react in an agile manner to changes in the source code. Their

study consisted of analyzing build system specifications from a static perspective,

where source code software metrics were applied to Ant files, and from a dynamic

perspective, where output logs from a representative sample of build runs were

18

analyzed.

McIntosh et al. set out to address the following two research questions: (1) Do

the static size and complexity of source code and build system evolve similarly? and

(2) Does the perceived build-time complexity evolve? Build-time complexity is a

measure of the perceived complexity observed by the build system user. It measures

how much build code is routinely exercised and how long a typical build takes.

Their research analyzed official releases of four open source projects ranging in

size from small to large. The static metrics used were static build lines of code

(SBLOC), build target/task/file count, and Halstead complexity. The Halstead

complexity metrics were adapted from source code to build systems. They measure

(1) how much information a reader has to absorb in order to understand a program’s

meaning, (2) how much mental effort a reader must expend to create a program

or understand its meaning, and (3) how much mental effort would be required to

recreate a program. McIntosh et al. believe that their use of a relatively objective

measure of build system complexity (the modified Halstead metric) is novel. The

dynamic metrics used were dynamic build lines of code (DBLOC), length and depth

of build graph, and target coverage percentage. DBLOC measures the percentage

of code in the build system that is exercised by the default or clean targets. Source

code for each software release was measured in source lines of code (SLOC) as well.

McIntosh et al. found that build systems follow either linear or exponential evo-

lution patterns in terms of size and complexity, depending upon the corresponding

changes in the source code. These patterns are highly correlated with the evolution

19

of source code, as SBLOC and SLOC were found to be highly correlated. Major

changes in the build systems studied were caused by major changes in the corre-

sponding source code. They also found that the perceived build-time complexity

does evolve, but no common pattern was found. SBLOC was found to be a good

approximation of the complexity of a build system, as the Halstead metrics were

highly correlated with the size of the build system. Target coverage was consistent

for each project, with larger fluctuations caused by project restructuring or major

releases.

3.1.3 Build maintenance overhead

Kumfert and Epperly [7] studied the percentage of resources devoted to build is-

sues instead of core development for various software projects. “Build issues” here

refers to “the development, debugging, maintenance and extension of the support-

ing infrastructure that converts source code into its end-use form”. The objects

examined included makefiles, various helper scripts, and the tools used to produce

and maintain them. They conducted and analyzed a survey that examined the per-

ceived overhead of a build and analyzed the CVS repository for the software project

that was the focus of the survey. The perceived “build overhead” is an estimated

percentage of time devoted to the build system compared to the total time spent on

software development.

Their survey covered 39 responses from 36 people covering at least 28 different

20

projects. It indicated that the average build overhead was 11.91% and the median

build overhead was 10%. The minimum time spent maintaining the build system

was reported as 0% and the maximum was 35.71%.

Additionally, Kumfert and Epperly obtained an objective measure of the build

overhead by mining data in CVS for a single project. According to the survey

results, the build overhead for this project was estimated to be at least 20%. The

project consisted of 1,187 files, 409,858 lines, and 7,984 commits. Each file change

in CVS was considered as one unit of work. Build related files constituted 27.5%

of the overall number of file changes, and build related line changes accounted for

13.7% of the of the overall line count changes. Kumfert and Epperly indicated that

these findings were consistent with the perceived overhead for this project reported

in the survey.

McIntosh et al. [2, 3] followed their study on the evolution of Ant build systems

with an empirical study of build maintenance effort. In their evaluation, they mined

the version histories of ten software projects (one proprietary and nine open source)

of various sizes to measure the overhead of build maintenance on developers. Their

analysis focused on (1) how frequently code changes require build changes and (2)

the proportion of developers responsible for build maintenance.

Their study revealed that build maintenance yields up to 27% overhead on source

code development and a 44% overhead on test development. These percentages can

be interpreted as the percentage of “work items” that require an accompanying

change to the build system, where a “work item” is an enhancement or bug fix.

21

They suggest that project managers should account for this in their project plans.

They also found that the build system churn rate is comparable to that of the source

code, and build changes induce more relative churn on the build system than source

code changes induce on the source code. As a result, the build system may be

susceptible to defects.

Additionally, their study showed that up to 79% of source code developers and

89% of test code developers are significantly impacted by build maintenance. For

the projects examined, build maintenance was performed either by a small team of

build experts or dispersed among most developers working on the project.

Hochstein and Jiao [26] performed a case study of two software projects, FACETS

and FLASH, to determine the amount of effort devoted to maintaining their build

scripts. They refer to this effort as the “build tax”. Their goal was to provide initial

estimates on this build tax, to generate a starting point for future studies, and to

motivate the development of better build tools.

Their study recorded three metrics: (1) the percentage of total lines of code in

the software project belonging to build-related files, (2) the percentage of regression

test failures caused by the build system, and (3) the percentage of build-related

commits to the repository. The data related to regression test failures was gathered

during a one year period for both projects. The data related to repository commits

was gathered over a 6.5 year timeframe for the FLASH project and an 11.5 year

timeframe for the FACETS project.

Hochstein and Jiao found that build-related code represented 5% of the total

22

number of lines of code in the FLASH repository and about 6% for FACETS.

FACETS failed regression tests were caused by the build system between 11% and

38% of the time and between 13% and 47% of the time for FLASH. The low end

of the range indicates the percentage of failures that occurred in all testing envi-

ronments, and the high end of the range indicates the percentage of failures that

occurred in at least one testing environment. The percentage of build-related com-

mits for the FLASH project was between 19% and 37% and between 58% and 65%

for FACETS. The low end of the range indicates commits where all files in the

commit were build-related, and the high end of the range indicates commits where

at least one file in the commit was build-related. Their results suggest that build

scripts are modified far more often than one would expect given the small fraction

of overall code that they represent.

3.2 SCM systems

This section presents research on various SCM systems that emphasize the impor-

tance of maintaining build-related data. While the scope of SCM systems typically

extends beyond that of build maintenance, many SCM systems include functionality

to assist developers in producing and maintaining software artifacts. These SCM

systems often use custom build tools to accomplish this.

23

3.2.1 DSEE

In 1984, Leblang and Chase [18] described an SCM system with user-defined depen-

dency tracking named the DOMAIN Software Engineering Environment (DSEE).

It consists of a history manager used to provide complete version histories, a con-

figuration manager used to build systems from their components, a task manager

that relates source code changes to higher-level activities, a monitor manager that

watches user-defined dependencies and alerts users when such dependencies are trig-

gered, and an advice manager that provides templates for redoing common tasks.

DSEE works with any language and allows users to use a text editor of their choos-

ing.

The configuration manager of DSEE maintains a system model in which descrip-

tions of the components that comprise an application, the build dependencies for

each component, and the build rules applied to these components are maintained.

A component’s build dependencies include any objects that are relevant to the re-

derivation of that component. The system model is source oriented but does not

specify which source versions to use in a build. A configuration thread (CT) states

which version of each component in the system model should be used for a build.

At build time, the CT is used to bind the components in the system model to par-

ticular versions. This bound configuration thread (BCT) and keywords describing

the system built are stored in a database.

According to Leblang and Chase, “Users should be able to define dependencies

24

on elements such that other users will be informed of those dependencies before

modifying the elements, and such that the user defining the dependency will be

informed when the elements are modified.” DSEE accomplishes this through its

monitor manager which allows users to create monitors that define the dependencies

present for elements on which they are assigned. A monitor is activated when a new

version of any target element is created. The users who monitor the dependency are

then notified of the change, and any commands associated with that monitor are

executed.

3.2.2 Vesta

Heydon et al. [23] developed an SCM system named Vesta that allows (1) repeatable

builds by storing configurations that refer to immutable component sources and

build tools, (2) incremental builds by reusing cached versions of previous builds,

and (3) consistent builds by using automatically captured build dependencies to

indicate whether reuse of cached results of previous builds is possible. Vesta was

specifically designed to work with very large software projects. Other goals were to

work with standard development tools and to be easy to use.

Heydon et al. identified a number of problems with using Make to build software

deliverables. One problem identified is that inconsistent results can be produced by

Make if incorrect dependency information is specified or if timestamps are recorded

incorrectly. Another problem is that some dependencies, such as those involving

25

environment variables, are inexpressible, and others, such as those on the makefile

itself, are too costly to express. Heydon et al. also say that Make’s use of timestamps

is problematic in situations where a system is built from older sources. Make may

incorrectly determine that the system is up-to-date when in fact it is not.

Heydon et al. also identified problems with ClearCASE [25], an SCM system

based on the DSEE system discussed previously. ClearCASE uses its own version

of Make that does automatic (but somewhat incomplete) dependency detection by

monitoring and recording the files accessed during a build. It also manages derived

files for later reuse. Reusing derived files produced by others is referred to within

ClearCASE as “winking in”, and Heydon et al. say it is based on heuristics that

can miss opportunities for reuse. Because it is based on Make, Heydon et al. say

that the build system of ClearCASE suffers the same scalability problems as Make.

They identify another problem with ClearCASE by saying that it may produce

inconsistent builds due to the fact that its dependency detection is incomplete.

Lastly, they state that the overhead introduced by using ClearCASE’s build system

may be large enough to cause users to use Make instead.

Vesta uses complete, source-based configuration descriptions. Every element

contributing to a build is described in the system model. These elements include

all environment components, such as tools, libraries, header files, and environment

variables. The Vesta builder reads user-written system models and a set of system-

supplied models that constitute the standard construction environment. When the

builder needs to run an external tool, such as a compiler, it consults a tool server

26

that allows for tool execution on various platforms. All tools are executed in an

encapsulated environment where all file references are detected and recorded auto-

matically as dependencies for the tool. If any tool is to construct an object already

present in the cache, the derived object from the cache is used instead. Vesta’s

builder performs as well as Make’s on scratch builds and significantly faster than

Make on incremental builds due to its caching ability.

When provided for use to an engineering group at Compaq, the construction of

“wrapper scripts”, a domain-specific control panel to construct high level models,

and additional system models were necessary to incorporate Vesta into their de-

velopment environment. Users indicated that these system models became rather

complicated and questioned Vesta’s usability. It was also stated that for Vesta to be

adopted by an organization, there would be a “need to overcome the psychological

barrier created by Vesta’s radically different approach to SCM”.

3.2.3 Shape

Mahler and Lampen [20] developed an SCM system named Shape with a significantly

enhanced Make program that has access to the version control system and uses

configuration rules to identify component versions for build purposes. An attributed

file system (AFS) was developed as well to support this functionality. The AFS

maintains document attributes that are both inherited from the underlying storage

system (like file name, size and owner) and AFS specific (like revision number and

27

state). Documents are retrieved from the AFS by specifying an attribute pattern.

Shape uses a system description document that consists of four main compo-

nents: transformation rules, selection rules, variant definitions, and system descrip-

tion. Transformation rules consist of a transformation specification that describes

the input and output for the transformation and a transformation script that is

passed to a shell process when a transformation is executed. The syntax for these

transformation rules is an extension of Make’s rule specifications. The selection

rules are named sequences of comma separated predicates used to bind concrete

document instances to the component names specified in the system description

document. The system description component is the same as that for traditional

makefiles.

Mahler and Lampen emphasize various incarnations of variants (different ver-

sions of the same deliverable) and the difficulty with which they are handled by

traditional SCM systems. While the version control system allows for variant identi-

fication through use of attributes, their use is not required. These variant attributes

can be used in selection rules and passed to transformation tools. Variant classes

can be used to define mutually exclusive variant names. Shape can produce a com-

position list for a given variant, which includes all components contributing to that

variant, including tools and environment information involved in its production.

28

3.2.4 Stellation

Chu-Carrol et al. [24] described a general aggregation mechanism that makes use

of fine-grained SCM to (1) support multiple overlapping organizations of program

source to create virtual source files, (2) allow developers to precisely mark the set

of artifacts affected by a change, and (3) associate products from different phases of

the development process. They describe aggregation in terms of SCM as “a facility

to allow the creation of versioned objects formed from collections of other objects”.

Chu-Carrol et al. stated that in the aggregate system, relationships between ar-

tifacts must themselves be first class artifacts. This requires definitions for various

types of relationships in which applicable endpoint types may be specified. The

interactions between these aggregate types and the versioning system must be spec-

ified as well, particularly in cases where overlapping changes occur. Chu-Carrol et

al. claimed that the SCM system must provide some mechanism for users to easily

search the repository for fragments and use those search results to create version-

able aggregate types. Additionally, to take full advantage of the aggregate system,

Chu-Carrol et al. stated that the SCM system must have some knowledge of the

semantics of the artifact types.

An SCM system named Stellation was developed that uses an aggregate sys-

tem like that described and offers method-level storage granularity. Their aggregate

types consist of collections of named fields, each of which has a type. Semantic types

29

are language-dependent and are used to model constructs present in a given lan-

guage, such as package declarations and class members in Java. Aggregate creation

and discovery is possible though queries written in the Stellation Query Language.

These queries evaluate annotations written by users either within the artifacts they

describe or in separate documents describing those artifacts.

3.2.5 Survey of SCM

Estublier et al. [27] wrote about the impact of software engineering research on the

practice of SCM. They wrote, “This change from small, simple tools to entire SCM

environments can be largely attributed to a steady flow of research, undertaken in

both academic and industrial settings, that identified and incrementally improved

many ideas, approaches, tools, features, and so on.” Estublier et al. stated that

virtually all major projects use SCM systems, that SCM is essential to the success

of any software development project, and that SCM software is now a billion dollar

commercial industry. Some of their findings are discussed in this section.

Two of the high-level pieces of functionality provided by SCM systems address

the needs of controlling and components. The controlling functionality provided by

SCM is partially described as supporting users in understanding the impact of a

change and allowing them to specify to which products a change should apply. The

components functionality of SCM is described as supporting users in identifying,

storing, and accessing the parts that make up a software system. This functionality

30

is later related to data models and system models. Data models and system mod-

els aggregate multiple artifacts and the relationships among them into higher-level

artifacts which can themselves be versioned.

Research has attempted to define specific data models dedicated to SCM. Many

of these data models represent the artifacts and entity relationships of the software

system using object-oriented approaches. System models consist of a collection of

modules and processes and the relationships between them. As an implementation

evolves, the system model must be kept in sync, and vice versa. Additionally, old

versions of the models must be maintained so that old versions of the software may

be rebuilt.

While much research has been performed on developing more powerful data and

system models, it has not had much impact on industrial practice and tools. Es-

tublier et al. explained this lack of adoption by saying, “A substantial amount of

additional effort is required to define and maintain the system model description.

Unless the system model can be automatically updated, the additional effort easily

outweighs the expected benefits, especially since compilers catch most interface mis-

matches. This is why... the use of architecture description languages has not caught

on much in industry.” Later, they identified three factors that allow the successful

impact of an SCM feature. These factors are customer need, ability for developers

to provide the needed feature, and ease of use. Additionally, they state, “despite

significant potential benefits, most customers will not use a system model if the

dependencies among artifacts must be manually specified and maintained”. Some

31

approaches have developed their own build system in which the system model was

the central entity responsible for the build process. Many of these systems, however,

have since abandoned their approaches in favor of Make.

3.3 Build maintenance tools

This section presents recent research on tools to help users maintain build systems.

They include tools that gather their data by observing a Make build, by analyzing

a project’s makefiles, and by using a custom Make implementation.

3.3.1 MAKAO

Adams et al. [8] developed MAKAO, a reverse-engineering framework for build sys-

tems. They defined the following functional requirements for MAKAO:

• Visualisation - Provide a visual representation of the entire build system

• Querying - Support querying for specific information about targets and files

involved in the build

• Filtering - Allow build data to be filtered from the visual representation

• Refactoring - Provide build refactoring operations and update simulations

• Validation - Detect and identify bugs in the build system

32

MAKAO displays a Make build script’s dependency graph using color coding,

configurable layouts, and zooming. It allows dependency information in the graph

to be queried and filtered by writing and executing Gython scripts. It supports

refactoring using aspect-oriented techniques, allowing advice to be woven into an

existing build script. This advice is implemented using Gython statements that

include the text to add to the build script and a description of the locations in the

build script to weave it. This refactoring is implemented in memory and can be

propagated to the actual build scripts using a Perl script. MAKAO also uses Prolog

to validate changes made to refactored build scripts.

MAKAO constructs the build dependency graph using either a modified Make

program or by parsing trace output produced by Make. It uses a hybrid of the static

and dynamic build analysis approaches. MAKAO begins by analyzing an executed

build for a particular configuration and augments this information with static data

such as build rules and unevaluated targets.

3.3.2 SYMake

Tamrawi et al. [9] developed SYMake, an infrastructure and tool for the analysis of

build code in Make. SYMake includes a symbolic evaluation algorithm that produces

a symbolic dependency graph (SDG) from a makefile. The SDG represents the build

dependencies among files via commands. It differs from a concrete dependency

graph of Make in that file names and commands in an SDG may not be completely

33

resolved into strings. Instead, the SDG’s node for a file refers to a V-model, which

is a graph-based representation for symbolic string values used to identify a file’s

name. These symbolic string values may refer to input values or environment data.

For each resulting string value in an SDG that represents a part of a file name or a

command in a rule, SYMake provides a T-model to represent its symbolic evaluation

trace. This T-model shows how those string values are initialized and manipulated

via the build process. The SDG generated by SYMake uses static build analysis to

provide dependency graphs for various configurations.

SYMake has been used in a tool that can detect several types of code smells and

errors in makefiles, as well as to support build code refactoring. Code smells include

cyclic dependencies, duplicate prerequisites, and rule inclusion. A cyclic dependency

occurs when a target is listed as a prerequisite for one of its prerequisites. Duplicate

prerequisites are present when a single prerequisite is listed more than once in a

target’s prerequisite list. Rule inclusion occurs when a makefile contains a rule for

a specific target that is also included elsewhere in a more general rule. Examples

of refactoring capabilities include rule extraction and removal, target and variable

renaming, and prerequisite extraction.

An empirical evaluation showed that SYMake can achieve high accuracy in entity

renaming. This evaluation was conducted using makefiles for seven different software

projects. Six Ph.D. students identified the locations in the makefiles that required

updating when a given set of variables were to be renamed. SYMake was able to

correctly rename 100% of the chosen variables. In contrast, a simple text search

34

reported a large number of incorrect locations requiring updates.

A controlled experiment showed that SYMake allowed better understanding of

makefiles, better code smell detection, and quicker, more accurate refactoring. In

this experiment, the makefiles from the empirical evaluation were updated to include

code smells detectable by SYMake. Two sets of tasks that involved detecting code

smells and refactoring the build were produced. Eight Ph.D. students were divided

into two groups. One group completed one set of tasks with SYMake and the other

set of tasks without it. The other group completed the opposite set of tasks with

and without SYMake. SYMake was shown to achieve significant improvements in

both accuracy and effort required (measured in time) to complete the requested

tasks.

3.3.3 Amake

Buffenbarger [28] developed a new variant of Make named Amake. File dependencies

in Amake are detected, recorded, and monitored automatically. While Make requires

a target file’s dependencies to be stated explicitly, Amake instead monitors and

records the files accessed and programs executed when building a target. It stores

this information for all targets in all workspaces on all hosts in a development

environment. Additionally, Amake does not rely on operating system timestamps,

but rather computes, records, and compares file checksums.

Amake’s explicit dependency identification and storage avoids situations in which

35

a file is referenced in a target’s rules but is mistakenly omitted from the target’s

dependency list. It also tracks dependencies that are not maintained in a traditional

Make implementation, such as a target’s dependencies on shell-commands, executed

programs, shared libraries, and environment variables. These additional dependen-

cies can provide a more accurate indication as to whether or not a target needs to

be rebuilt.

3.4 Ant build tools

This section addresses commercial tools to assist in the development of an Ant

build system. These tools can be used to simulate the effects of an Ant build, to

clarify the high-level behavior of an Ant build, and to manage a project’s external

dependencies.

3.4.1 Virtual Ant

Virtual Ant [29] is an Ant file creation and maintenance tool that uses a virtual file

system to simulate the execution of Ant tasks. It consists of a Windows Explorer-

like environment that allows users to create and modify Ant files without directly

writing XML. Ant targets and tasks can be created, modified, and rearranged in the

build file. The results of executing each task can be seen in the virtual file system

displayed by Visual Ant.

36

3.4.2 Vizant

Vizant [30] is an Ant task that allows users to create an image displaying a build

file’s target dependency graph. Nodes in the graph represent build targets and edges

in the graph represent dependencies between those build targets. If a dependency

exists between two targets, then one of those targets must be executed before the

other target can be executed. This graph does not, however, reflect the files accessed

or generated throughout the build process.

3.4.3 Apache Ivy

Apachy Ivy [31] is a dependency manager that integrates with Ant. With Ivy,

dependencies are declared in an ivy.xml file. It is most commonly used to identify

external library dependencies, fetch them from a Maven [9] repository, and copy

them to a project’s lib folder. Ivy can be configured to use other repositories as

well. It has corresponding Ant tasks that can be used to retrieve a component’s

dependencies from a repository as specified in an ivy.xml file. It also produces

dependency reports which can be used to generate a graph of a deliverable’s external

library dependencies, including transitive external library dependencies.

37

Chapter 4

Implementation

4.1 Introduction

Formiga is a build maintenance and dependency discovery tool for software projects

using the Ant build system. It is implemented as an Eclipse plugin, which allows it

to recognize when changes have been made to a project and determine if build main-

tenance is necessary. The remainder of this chapter addresses Formiga’s primary

features, which are to assist developers with:

• build maintenance due to external changes,

• identification of build dependencies in a software project, and

• build maintenance due to internal changes

38

4.2 Build maintenance due to external changes

When files in a software project are added, renamed, moved, or deleted, correspond-

ing changes to the project’s build files are often required [2, 3]. However, knowing

when and where these corresponding changes are needed is not obvious, particularly

for developers who don’t interact with the project’s build system often, or when

changes are necessary to a portion of the build system not typically addressed by a

developer. This becomes an even bigger problem for projects with large build files

or multiple build files.

Formiga is able to recognize when files that have been added, renamed, moved,

or deleted affect the behavior of a project’s build system. Because Formiga is im-

plemented as an IDE plugin, developers can use the standard Eclipse refactoring

operations to add, rename, move, or delete files, which Formiga will recognize au-

tomatically using an Eclipse workspace listener. These operations can also be per-

formed directly on the filesystem, and they will be recognized by Formiga as soon

as the Eclipse workspace is refreshed. Formiga determines if updates to the build

files are necessary to account for the file modifications. It can either make these up-

dates automatically or do so after each update has been confirmed by the user. The

confirmation displays the affected target, task, attribute, and old and new attribute

values in a confirmation box like those seen when performing typical refactoring

tasks.

Formiga aims to make updates to build files that are as “intelligent” as those

39

Figure 4.1: Property Reuse Example

that would have been made by a good developer. One means of accomplishing this

is to reuse property references when updating attributes in the build file. Given an

Ant property and target seen in Figure 4.1, suppose a developer uses the IDE to

move the “javadoc” directory under the “documentation” directory. Formiga will

replace the “destdir” attribute value in the “javadoc” task with “${docs}/javadoc”.

By maximizing reuse of property values, Formiga retains the high-level logic of the

build system.

Formiga’s behavior depends on the type of refactoring operation (move, rename,

delete, or add), the behavior of the task referring to the refactored file(s), and

whether the related references to the refactored file(s) are direct or indirect. A

direct reference is one that resolves solely to a single file or directory. An indirect

reference is one that may resolve to multiple files or directories. Indirect references

include one or more of the following wildcards:

• * - matches zero or more characters

• ? - matches a single character

40

Figure 4.2: Added File Alert

• ** - matches multiple directory levels in a path

4.2.1 Adding a file

If a file is added, Formiga responds by reporting the targets and tasks that will be

directly affected by the new file. An example of this alert can be seen in Figure 4.2.

A task will be directly affected by the added file if it either operates on all files in

the directory to which the file was added, or if it includes an indirect reference that

matches the added file. For these cases, updates to the build system are unnecessary,

but users are alerted to the effects that the newly added file has on the build system.

Although unlikely, if a direct reference to the newly added file was already present

in a build file, an alert would be included for the corresponding task as well.

4.2.2 Moving or renaming a file

If a file is moved or renamed, and that file is directly referenced by a task, then that

reference will be updated to reflect the new path. This reference must be updated

41

since it is invalid after the file is moved/renamed. If that file is referenced indirectly

by a task and that reference still refers to that file, then no changes will be made to

the reference nor will the developer be alerted of any change in the build’s behavior.

In this case, because the existing indirect reference resolves to both the file’s old

name/location and its new name/location, the corresponding task operates the same

way before and after the file modification. If an indirect reference no longer refers

to that file, then either a new reference will be appended to the existing reference (if

the original reference was not specified as a nested task), or a new reference will be

included as a nested task (if the original reference was specified as a nested task).

This will ensure that the modified file is still referenced by the task. Additionally,

a moved or renamed file may match an indirect reference that it did not previously

match. Like it does for added files, Formiga will alert such cases to the user, so that

the user is aware of the tasks that will now use that file as input.

Moving a file from one directory to another may imply that it should no longer

be treated the same way by the build system as the files in its previous directory.

If this is the case, the user can reject the update and only the existing indirect

reference will remain. An example of Formiga’s update request due to a renamed

file can be seen in Figure 4.3.

42

Figure 4.3: Renamed File Confirmation

4.2.3 Deleting a file

If a file is deleted, and the file is directly referenced by a task, then that reference

will be removed altogether. If that file was the only file referenced by that task, then

that task will be removed altogether, since it no longer has any effect on the build.

If that file is referenced indirectly by a task, then no changes will be made to the

build system, as the indirect reference may still refer to existing files or directories

that may later be populated by files relevant to the task. Again, like it does for

added files, Formiga will alert such cases to the user. An example of Formiga’s

update request due to a deleted file can be seen in Figure 4.4.

4.3 Identification of build dependencies

An Ant build file does not contain (and cannot produce) an explicit identification

of the file dependencies for the deliverables it produces. In order to identify the

files that a deliverable depends on, one must have a firm understanding of how Ant

43

Figure 4.4: Deleted File Confirmation

operates, including the syntax and behavior of all Ant targets, tasks, and proper-

ties. For large software projects, these build files can become very complex, thus

complicating the task of identifying these dependencies.

We use the term “build dependency” to refer to a dependency between two files

that is created by executing a task in a build file. For example, the javac task

reads java source files and generates corresponding binary class files. The javac

task creates a build dependency between each source file and its corresponding class

file. Each class file depends on the source file that is used to produce it. Similarly,

the zip task creates a zip archive of a specified collection of files. The zip task

creates dependecies between the zip file it produces and the files it contains. For

our purposes, the zip file depends on the files that it contains.

Formiga identifies these build dependencies for a software project in an IDE and

records them in a local Apache Derby database [32], which is automatically installed

with the plugin. The process by which these build dependencies are identified is

discussed in section 4.3.1. Formiga presents these dependencies using interactive,

44

directed graphs, which is discussed in section 4.3.2.

4.3.1 Finding build dependencies

This section discusses Formiga’s discovery and recording of build dependencies. It

describes how and when these dependencies are discovered and recorded as well as

how Formiga addresses build configurations.

How build dependencies are discovered

Formiga begins its build dependency discovery by finding the set of targets in a

project’s build system that no other targets depend on. If each of the targets in this

set were executed (which would first execute all of their target dependencies), all

targets in the build system would be executed. Essentially, this is producing a set of

target chains that span the entire build system. Processing the build dependencies

produced during the execution of these target chains ensures that Formiga addresses

all possible target chains within the build.

Formiga discovers build dependencies using a modified version of Ant. For each

of the targets in the previously mentioned set (or, for all possible target execution

paths within the build), Formiga’s Ant implementation allows Ant to behave as if

it were executing the target, but instead of executing tasks that read and write

files to the filesystem, it keeps track of the files accessed by those tasks using a

virtual filesystem in memory which we refer to as the “filespace”. The filespace

maps filesystem locations (both actual and those created during the build) to files

45

contained at those locations during the build.

The decision to use a virtual fileystem was made for two reasons:

1. Executing tasks that modify the actual filesystem can be time consuming

2. If a task is written incorrectly, it may mistakenly move or delete files

In practice, this means that the files that are read, created, renamed, moved, or

deleted by a task are represented in the filespace with an instance of a file model.

The file models keep track of various information about a given file, including its

location, any files used to generate it (i.e. a java source file is used to generate a

binary class file), and any files it may include (i.e. files archived within a zip file).

Currently, Formiga models files according to the following file types:

• Source files

• Class files, which can depend on a source file

• External libraries

• Build files

• Deliverables, which can contain instances of all file types

• “Other” files

Additionally, any file model instance can be more generally associated as a de-

pendency of another file model instance. Each file model instance also refers to the

46

build files that reference them. Support is in place for additional, user-defined file

types.

For each task that modifies the filesystem, Formiga must do the following:

1. Identify any files in the filespace used by the task as input

2. Identify any files on the filesystem used by the task as input that have not

been “deleted” by a previously “executed” task

3. Add, rename, or delete any files in the filespace that the task would add,

rename, or delete

4. Record any dependencies between the task’s input and output files

Any tasks that do not modify the filesystem are allowed to execute as they would

normally. This is particularly helpful for managing properties used throughout the

build.

Each target chain uses its own filespace. However, some target chains may have

overlapping subsets of targets. Formiga identifies these and reuses build dependen-

cies identified during the processing of a previous target chain whenever possible.

After all target chains have been processed by Formiga, the filespaces are combined

to remove redundancies, and the dependencies are recorded to the database. This

is discussed in section 4.3.1.

As a result of this implementation, Formiga uses a hybrid of the static and

dynamic approaches to build analysis. It is primarily dynamic in nature because

47

it “executes” an Ant build (albeit without running many of the tools called upon

during the build process). However, it uses static data to address the behaviors

of the tasks that would otherwise read from and write to the filesystem and to

determine which target chains to analyze.

Formiga’s build dependency identification was tested using the open source

project “Batik” [33], a Java-based SVG toolkit and component of the Apache XML

Graphics Project. Its build file contains 2,233 lines of code. Batik was chosen be-

cause it is a real software project with a substantial build file, without being so large

as to be difficult to work with. Formiga was able to correctly identify and store the

build dependencies for each of the six Batik deliverables tested. These deliverables

depend on as many as 2,835 other files. These six devlierables were chosen for test-

ing due to the range of tasks involved in their production. The identification of their

dependencies includes parsing the following filesystem-modifying Ant tasks: copy,

delete, jar, javac, javadoc, mkdir, move, tar, and zip. This set of tasks

is enough to support a wide range of build capabilities. Verification was performed

by a tool that compared a correct build of each deliverable with builds performed

after removing each project resource.

When build dependencies are identified

Build dependencies may be identified and recorded whenever any of the following

events occur:

• A build file is modified and saved

48

• A file is added, renamed, moved, or deleted in the project

Any change to a build file that affects how or when a task is executed during

the build may have an effect on the build dependencies it creates, thus requiring

a reprocessing of its build dependencies. This includes build modifications made

by Formiga when a project has changed. Currently, if a manual build change is

made (that is, one that was not made by Formiga), Formiga makes no attempt to

determine the nature of the change and reprocesses all of its build dependencies.

If any files are added to the project, renamed, moved, or deleted from the project,

and the operation causes the build behavior to change, then the build dependencies

need to be reprocessed. Because these operations may first require build mainte-

nance, the determination as to whether or not the build dependencies need to be

reprocessed is made when Formiga is checking for build maintenance updates. Cur-

rently, Formiga will reprocess all of the build dependencies in the project, however,

mechanisms are in place to identify only those targets whose tasks have been up-

dated. Using these identified targets, unnecessary build dependency reprocessing

could be minimized.

Recording build dependencies

When all build dependencies have been identified, Formiga records the build depen-

dencies in its local Derby database. Derby [32] is an open source relational database

with a small footprint that is implemented in Java. This database is automatically

installed with the Formiga plugin. It has access to all projects recognized by the

49

IDE. To facilitate database interactions, Formiga uses the object-relational mapping

tool Hibernate [34]. An object-relational mapping tool allows a class to be mapped

to a database table. A class instance can then be saved using functionality provided

by Hibernate, causing a record in the corresponding database table to be either

inserted or updated. For Formiga, these classes are primarily those used to model

files and their dependencies in the filespace.

Before all build dependencies are written to the database, all existing build

dependencies for the given project in the database are deleted. The alternative to

this requires that every build dependency be checked for existence in the database

to determine whether it should be updated or inserted. This process takes longer

than simply replacing all build dependencies for the project and has the same effect.

The database commit is performed in a separate thread, allowing the developer to

continue working with the project while the data is written.

Build configuration handling

Formiga supports dependency extraction for multiple configurations that are im-

plemented using conditionally set properties (CSPs). CSPs are properties that are

instantiated only if a specified condition is met. These conditions may include calls

to determine the operating system in which Ant is running or evaluating input values

when the Ant process is executed.

An example of a CSP named “isMac” can be seen in Figure 4.5. The “isMac”

property will be defined if and only if the build is executed in a Mac OS environment

50

Figure 4.5: CSP Example

due to the os task nested within the condition task. The target “buildForMac”

can only be executed if the “isMac” property has been defined. Because of its

handling of CSPs, Formiga will analyze the “buildForMac” target twice, once with

the “isMac” property defined and once without it defined. Formiga will recognize

the “isMac” property as a dependency for the deliverable “prog.zip” produced by

the target “buildForMac”. Besides the condition task, CSPs are also created by

the available and uptodate tasks.

When a CSP is encountered by Formiga, it is recognized as such. When that

CSP is later referenced within a target, that target is processed twice: once with

the property instantiated and once without the property instantiated. If a target

references n CSPs, then that target will be processed 2n times. The same is poten-

tially true for any targets that follow in the target chain. Because the same target

with different CSP values can potentially produce different files, different filespaces

are needed for each processing of that target.

Much like Formiga does when processing multiple target chains, it can reuse

51

previous filespaces when it recognizes that a previously evaluated target chain with

a different set of CSP values produces an equivalent filespace. While this can sig-

nificantly improve processing time across all occurring CSP permutations, for build

systems with a large number of CSPs, this process can be still be time consum-

ing. Additional opportunities for improvement are likely present for this approach.

Configuration handling is discussed further in Section 6.3.

4.3.2 Presenting build dependencies

Build dependencies are displayed in Formiga using a directed graph where the nodes

represent files and the edges represent dependencies between those files. It allows

users to find both forward and backward dependencies. If file A can only be produced

if file B is present (or if file A includes file B), then A is a forward dependency of B

and B is a backward dependency of A. Graphs can be produced for a given project

deliverable or for a given project file. Currently, a deliverable graph will display

the deliverable’s backward dependencies, and a project file graph can display either

the file’s forward or backward dependencies. Because most project files are not

generated from other project files, a project’s file forward dependency graph is more

useful. These graphs are constructed using the JUNG framework [35]. JUNG is

also responsible for the layout of the graph. Formiga’s graphs provide the following

functionality:

• Highlight a dependency construction location in a build file (via edge click)

52

• Display backward dependencies for a file (via node click)

• Filter by file name, path, and/or file type

• Zoom in/out

• Show/Hide file names

• View file path (via node hover)

• Manual node rearrangement

When Formiga discovers dependencies in a build, it records the line numbers in

the build file that are responsible for the construction of those dependencies. When

an edge is clicked in the graph, this information is used to open the build file in

the IDE and highlight the location where the indicated dependency is constructed.

Without Formiga, this is not a simple task, particularly for projects with a large

build system. A deliverable’s dependency graph will automatically display back-

ward dependencies for all included files, but the ability to display a file’s backward

dependencies when its node is clicked is useful after filtering. This functionality is

also useful for graphs displaying a file’s forward dependencies. Filtering and zoom-

ing are particularly useful for deliverable dependency graphs, since they are more

likely to contain a large number of nodes than dependency graphs for project files.

File names are not shown automatically, as they may be distracting in graphs with

many nodes, so the ability to show and hide file names is provided. Lastly, a file’s

53

path can be seen when the cursor hovers over the file’s corresponding node in the

graph, and graph nodes can be rearranged.

Formiga is designed to integrate into an IDE, leveraging existing metaphors used

to maintain source code. Developers are accustomed to accessing various source code

dependency and refactoring operations using context menus associated with project

resources and source code units. Formiga mimics this behavior by adding context

menu items to project resources and Ant build file components. A “Formiga” option

is added to the package explorer context menus for a project and its files, which

allows a graph to be generated for a specific project deliverable or file.

Dependency graphs for a given deliverable produced by a project’s build sys-

tem can be generated by selecting the project’s “Formiga” context menu item and

choosing the desired deliverable, as seen in Figure 4.6. An example of a backward

dependency graph for a project deliverable can be seen in Figure 4.7.

Dependency graphs for a given file in a project can be generated by selecting the

file’s “Formiga” context menu item and choosing either “Forward Dependencies”

or “Backward Dependencies”, as seen in Figure 4.8. An example of a forward

dependency graph for a project file can be seen in Figure 4.9.

54

Figure 4.6: Project Deliverable Dependencies

55

Figure 4.7: Deliverable Dependency Graph

56

Figure 4.8: Project File Dependencies

57

Figure 4.9: Project File Forward Dependency Graph

58

4.4 Build maintenance due to internal changes

Formiga allows developers to make changes directly to the build system more easily

by renaming and removing targets and properties. These build refactoring opera-

tions can be error prone if performed manually, particularly if they require a large

number of updates or span multiple build files. Support for these operations within

IDEs is limited to a basic find and replace for all document text, which can indicate

many false positives.

Much like it does for displaying build dependencies, Formiga leverages metaphors

used to refactor source code to facilitate build refactoring. To refactor variables and

methods in source code, users can highlight the name of a variable or method and

select a desired refactoring operation within an associated context menu. Formiga

adds context menu options to highlighted build targets and properties to allow build

refactoring. An example of the build refactoring context menu can be seen in Figure

4.10.

4.4.1 Target removal

To remove a target with Formiga, users can highlight the name of the target at

its declaration, and select “Remove Target” from its context menu. Formiga will

remove the target from the build file as well as any references to that target. These

references could appear in the dependency lists of other targets or as an attribute

value in the antcall task. If the removed target depends on another target that

59

Figure 4.10: Build Refactoring Context Menu

60

Figure 4.11: Target Removal Confirmation

is unreferenced elsewhere in the build, Formiga will prompt the user for removal of

that target as well, as seen in Figure 4.11. This practice avoids the presence of dead

code within the build system. After the refactoring as been completed, Formiga will

report the number of removed targets and references.

4.4.2 Target renaming

To rename a target with Formiga, users can highlight the name of the target at

its declaration, and select “Rename Target” from its context menu. Formiga will

prompt for a new target name and replace the existing target name and all references

to it with the new name. After the refactoring as been completed, Formiga will

report the number of updated target references.

4.4.3 Property removal

To remove a property with Formiga, users can highlight the name of the property at

its declaration, and select “Remove Property” from its context menu. Formiga will

remove the property from the build file and replace any references to that property

61

Figure 4.12: Property Rename Alert

with its previous value. This will ensure that the build behaves the same way before

and after the property removal. These references could appear nearly anywhere in

the build. After the refactoring as been completed, Formiga will report the number

of updated property references.

4.4.4 Property renaming

To rename a property with Formiga, users can highlight the name of the property

at its declaration, and select “Rename Property” from its context menu. Formiga

will prompt for a new property name and replace the existing property name and

all references to it with the new name. After the refactoring as been completed,

Formiga will report the number of updated property references, as seen in Figure

4.12.

62

Chapter 5

Controlled Experiment

5.1 Organization

A controlled experiment was conducted to assess Formiga’s capabilities. The study

was conducted primarily to answer two research questions:

1. Does Formiga decrease the time required to maintain a build system?

2. Does Formiga improve the accuracy with which users can maintain a build

system?

The study was conducted using the Java software project “JFreeChart” (version

1.0.16) [36]. This project was chosen for the following reasons:

• It is open source

• It uses the Ant build system

63

• Its build is well organized

• Its build file’s size is appropriate for inexperienced Ant developers (389 lines)

• It produces an appropriate number of deliverables for the study (6 deliverables)

• The total project size is appropriate for the study (1143 files)

JFreeChart contains two build files, neither of which references the other. For the

sake of the inexperienced build developers, only the main build file was addressed

in this experiment. No changes were made to this project for the purposes of this

experiment, other than to the formatting of the main build file. Formiga does not

require that an Ant build file is formatted in any particular way, but the build files it

produces when it makes modifications have a fixed format in which nested elements

are always indented using a single tab.

The experiment was run in a conventional university office that happened to be

out of active use during the period of the study. The experimenter was present in

the room with the subjects during the study. Subjects performed the experiment’s

tasks using a Macbook Pro laptop with a 2.66 GHz Intel Core i7 processor, 4 GB

of ram, and the OS X Mavericks operating system. A wired mouse was available

for use. Because Formiga is integrated with the Eclipse IDE (version 3.8), this IDE

was used for the study.

64

5.1.1 Subjects

Sixteen subjects participated in the experiment. Subjects were chosen from a pool

of former coworkers, acquaintances, graduate students, and undergraduate students.

Before a subject was chosen to participate, that subject was asked about his or her

knowledge of Ant and/or Make. Subjects were required to either have familiarity

with Ant or express comfort with Make. Potential subjects were also asked to specify

their level of knowledge of Ant, so that we could obtain 8 subjects with little-to-no

knowledge of Ant and 8 subjects with at least a moderate knowledge of Ant.

5.1.2 Experimental Procedure

Each subject was required to first read and agree to the consent letter, which can

be seen in Appendix A. If needed, subjects were provided instruction on using the

Eclipse IDE and Mac OS X. Subjects were also given an overview of Ant if needed.

An explanation of the JFreeChart project and its build system were provided to all

subjects. The purpose of each target in the project’s main build file was discussed.

Subjects were given the opportunity to ask questions about JFreeChart and its build

system after they were described.

The experimental procedure was designed to test the speed and correctness with

which subjects could perform eleven (11) build maintenance and refactoring tasks,

both using Formiga and not using Formiga. The study used a within-subjects design,

so each subject actually performed 22 concrete tasks, two for each of the eleven

65

abstract tasks. The experimental session was divided into 3 sections. Each section

consisted of a series of tasks and/or questions about the software project and its

build system. The first section contained 8 concrete tasks and addressed build

maintenance due to external changes. The second section contained 6 concrete

tasks and addressed how project resources contribute to the deliverables produced

by the build system. The third section contained 8 concrete tasks and addressed

build maintenance due to internal changes. Before each section, subjects were given

a demonstration of Formiga’s related capabilities as well as how those capabilities

could be performed without using Formiga. Subjects were given the opportunity to

ask questions about any other relevant functionality of the IDE.

In order to avoid biased results due to order effects, the study used a balanced

design relative to both the order in which subjects performed the two concrete

tasks corresponding to a particular abstract task and the order of the experimental

(with Formiga) and control (without Formiga) conditions. Furthermore, the design

ensured that order balancing was not confounded with the subjects’ level of Ant

expertise.

For each concrete task, subjects were given a narrative describing a hypothetical

situation that required a modification of the build file and/or a question to be

answered about the build. These narratives can be seen in Appendix A. Before

each subject began a task, he or she was allowed to ask clarification questions about

the provided scenario. Subjects were also told that questions asked while the tasks

were being performed might not be answered if the answer provided too much insight

66

into the task. The subjects were instructed to indicate when they were ready to

begin the task as well as when they had finished the task. Each task was timed

and the modifications and/or answers recorded. Modifications and/or answers were

identified as either correct or incorrect. Upon completion of the study, subjects were

given a survey, which can also be seen in Appendix A. The remainder of this section

describes the tasks performed in each section of the experiment.

Build maintenance due to external changes

This section addressed changes to the build system when project resources were

added, renamed, moved, and deleted. Subjects were given a demonstration of each

operation using Formiga and were also shown how this information could be ob-

tained without Formiga for the same modifications. For the tasks performed us-

ing Formiga, subjects actually added, renamed, moved, and deleted the indicated

project resources. For the tasks performed without Formiga, subjects did not actu-

ally add, rename, move, or delete the indicated project resources but were instead

asked to anticipate what effects it would have on the build system. Because of

these slight variations in operations, two versions of each narrative in this section

were written, one in which the project resources were actually modified, and the

other in which the project resources were not actually modified. In the latter case,

if those operations were performed, Formiga would have informed the subjects of

their effects on the build system.

Because this was the first section performed, subjects were likely to spend more

67

time on the first few tasks to better familiarize themselves with the build. To account

for this, half of the subjects addressed the tasks in the following order: adding files,

renaming files, moving files, and deleting files. The other half addressed the tasks

in the opposite order.

For the two tasks regarding added project resources, subjects were asked to

identify tasks that were “directly affected” by the added files. For the purposes of

this study, a task is “directly affected” by an added file if it would use the file (at

its original location) as input. For these tasks, subjects were asked to write down

each target and task that was directly affected by the added file.

For the four tasks regarding renamed and moved project resources, subjects

were asked to modify the build so that it operated the same way after the rename

or move as it did before the operation. In other words, all tasks were asked to have

the same set of input files before the operation as they did after the operation. If

using Formiga, subjects were asked to write down the modified targets and tasks.

If Formiga was not used, subjects were asked to make the necessary changes to the

build file.

For the two tasks regarding deleted project resources, subjects were asked to

make any necessary changes to the build to account for the deleted file as well as to

identify any tasks that would no longer use the file as input, but would not require

modifications. The former identifies tasks containing direct references to the deleted

file, and the latter identifies tasks containing indirect references to the deleted file.

If using Formiga, subjects were asked to write down this information. If Formiga

68

was not used, subjects were asked to make the necessary changes to the build file

and to write down any targets and tasks that would no longer use the file as input

but did not require modifications.

Deliverable construction

This section addressed how project resources contribute to the deliverables produced

by the build system. Subjects were given a demonstration of Formiga’s ability to

generate dependency graphs for files in the project as well as for the deliverables

produced by the build system. The graph’s filtering operations and construction

location identification were demonstrated as well. Subjects were also shown how

one would trace these same dependencies without Formiga. Subjects were not given

any further instruction on how to generate or use the graph after the initial demon-

stration.

For the first two tasks, subjects were asked to identify all deliverables to which a

given project resource contributed. A list of all deliverables produced by the build

system was provided in the narrative. Subjects were asked to write down the names

of each deliverable whether or not Formiga was used for the task.

For the next two tasks, subjects were asked whether or not the contents of a

given directory were involved in the construction of a specified deliverable. Subjects

were asked to simply provide a “yes” or “no” answer to these questions.

For the last two tasks in this section, subjects were asked to identify all targets

69

and tasks involved in a given project resource’s contribution to a specified deliv-

erable. Subjects were asked to write down these targets and tasks whether or not

Formiga was used for the task.

Build maintenance due to internal changes

This section addressed changes made directly to the build system when renaming and

removing properties and targets. Subjects were given a demonstration of Formiga’s

ability to perform each of these tasks along with a description of the required changes

without using Formiga. For all tasks performed with Formiga, subjects simply

indicated when they had finished the task. For all tasks performed without Formiga,

subjects were asked to make the necessary changes to the build file and indicate

when they had finished. Correctness was determined either while the task was being

performed, after the task had been completed, or after the subject had completed

the experiment. The resulting build file for each subject was saved.

Subjects were first asked to rename two properties from the build file. Next,

two build targets were renamed. Subjects were then asked to remove two properties

from the build file, replacing their references with their previously specified values.

Lastly, subjects were asked to remove two targets from the build file. Subjects were

told that if the target removal resulted in unreferenced targets, those unreferenced

targets should be removed as well.

70

5.2 Experiment results

Times to complete each task with and without Formiga were tested for statistical

significance using a paired, two-tailed, Student’s t-test with 15 degrees of freedom.

The subjects’ average task completion time (both with and without Formiga) and

paired-samples t-test values can be seen in Table 5.2. A paired-samples t-test was

used because, for each row in the table, subjects completed two tasks: one with

Formiga and the other without it. The t-test values show that, for nearly all tasks,

Formiga has a statistically significant impact on the time required to complete the

build maintenance tasks performed. For example, the subjects’ times to complete

the “Add File” task with Formiga were significantly faster than their times without

Fomriga (t(15)=6.83, p <.0001). Tasks for which the p-values are less than .05

indicate that there is less than a 5% chance that randomly generated data would

produce the same results. In other words, for our purposes, the p-value indicates

the probability that there is no real difference between completing the corresponding

task with and without Formiga.

The completion time results indicate that Formiga saves developers time in all 3

categories of tasks: those related to build maintenance caused by external changes,

those focused on deliverable construction, and those related to build maintenance

caused by internal changes. When performed without Formiga, the tasks related

to project changes and deliverable construction are time consuming due to their

complexity (this is demonstrated in the correctness results). While less complex than

71

Task
Time(s)

t(15) p
Formiga Without

Add File 38.75 195.13 6.83 <.0001
Rename File 34.81 97.50 5.13 <.001
Move File 32.38 184.19 7.10 <.0001
Delete File 52.63 186.31 4.73 <.001
Forward Dependencies 95.56 290.38 6.23 <.0001
Backward Dependencies 102.94 123.13 0.87 n.s.
Dependency Construction 125.19 202.13 2.59 <.05
Rename Property 27.19 92.69 3.69 <.005
Rename Target 23.56 60.56 8.69 <.0001
Remove Property 20.63 132.31 5.03 <.001
Remove Target 34.69 112.75 7.00 <.0001

Table 5.1: Task completion time

the other tasks, the build refactoring tasks are also time consuming when performed

without Formiga, as they often require one to examine each token identified by a

basic text search to ensure its appropriateness for updating.

The only task for which this p-value was greater than .05 was the “Backward

Dependencies” task. For this task, subjects were asked whether or not the contents

of a directory contributed to a deliverable. The most efficient way to accomplish

this task with Formiga is to produce the backward dependencies for the indicated

deliverable and filter the results using the directory’s path. However, many subjects

instead produced the forward dependencies for each file in this directory, checking to

see if the indicated deliverable was present. This approach is more time consuming

than the expected approach, significantly increasing the time required to complete

the task.

Correctness was tested using a Pearson’s chi-squared test with one degree of

72

freedom. The subjects’ task correctness (both with and without Formiga) and chi-

squared test values can be seen in Table 5.2. The chi-squared values show that, for

nearly all tasks, Formiga has a statistically significant impact on the accuracy with

which build maintenance tasks can be performed. For example, the subjects were

more able to correctly identify affected tasks in the “Add File” task with Fomriga

than without it (χ2=10.67, p <.001).

The correctness results indicate that Formiga is most useful for automatically

updating the build files when project resources are changed. This is especially true

for tasks that required subjects to identify how project files were used by the build

system. This was a primary component of the “Add File”, “Move File”, “Delete

File”, and “Forward Dependencies” tasks. While still significant, Formiga has less

of an impact on the correctness of the tasks that required users to rename and

remove build targets and properties. These tasks are error prone but require less

understanding of the responsibilities of a project’s build system than the other tasks.

The only tasks for which this p-value was greater than .05 were the “Backward

Dependencies” task and the “Rename Target” task. The “Backward Dependencies”

task had a yes or no answer. All of the subjects who answered this question incor-

rectly using Formiga used the filtering operations incorrectly. The “Rename Target”

task was likely the most straight-forward build refactoring task in our experiment,

thus diminishing the benefits provided by Formiga for this purpose.

73

Task
Formiga Without

χ2 p
C IC C IC

Add File 16 0 8 8 10.67 <.001
Rename File 16 0 11 5 5.93 <.01
Move File 16 0 4 12 19.20 <.0001
Delete File 16 0 6 10 14.55 <.0001
Forward Dependencies 12 4 1 15 15.68 <.0001
Backward Dependencies 12 4 10 6 0.58 n.s.
Dependency Construction 9 7 3 13 4.8 <.05
Rename Property 16 0 13 3 3.31 <.05
Rename Target 16 0 14 2 2.13 n.s.
Remove Property 16 0 13 3 3.31 <.05
Remove Target 15 1 11 5 3.28 <.05

Table 5.2: Task correctness

5.3 Survey results

Upon finishing the experiment tasks, subjects completed a survey, the results of

which can be seen in Appendix A. This survey included questions about Formiga’s

usefulness, subjects’ levels of experience, and general likes/dislikes regarding Formiga.

5.3.1 Formiga’s usefulness

As a part of this survey, subjects were asked to rate Formiga’s usefulness for each

task performed, according to the following evaluation scale:

(5) Excellent (4) Very Good (3) Good (2) Fair (1) Poor

All subjects responded very positively to Formiga. Their responses to this por-

tion of the survey can be seen in Table 5.3.

74

Task Average
Add File 4.63
Rename File 4.94
Move File 4.94
Delete File 4.81
Forward Dependencies 4.44
Backward Dependencies 4.63
Dependency Construction 4.50
Rename Property 4.81
Rename Target 4.88
Remove Property 4.69
Remove Target 4.75
Overall 4.88

Table 5.3: Survey responses on Formiga’s usefulness

5.3.2 Subject levels of experience

The survey also included questions regarding the subject’s development experience

and knowledge of Ant. Subjects were asked to identify themselves as either profes-

sional developers (7 out of 16) or students (9 out of 16). Those identifying themselves

as professional developers reported an average of 6.1 years of professional develop-

ment experience. Those identifying themselves as students (many of whom also

indicated some level of professional development experience) reported an average of

9.67 semesters of studying computer science.

All participants were asked about their experience with Ant. Subjects reported

an average of 2.53 years of experience of Ant. Subjects were also asked to indicate

their level of knowledge of Ant using the following scale:

None Little Moderate Experienced Expert

75

Three subjects reported “None”, five subjects reported “Little”, six subjects

reported “Moderate”, and two subjects reported “Experienced”.

5.3.3 Formiga likes/dislikes

Lastly, the survey included questions regarding what subjects liked best about

Formiga, liked least about Formiga, and what capabilities were missing. Selected

responses have been included below along with a more general representation of user

responses.

What did you like best about Formiga?

Five subjects indicated something specifically about the automatic build updates

when refactoring project resources. An additional six subjects made more general

comments about automatic updates to the build file. Six subjects referred to the

dependency graph.

• “Can see a lot of search time being cut from build manipulation. Effortless

source reorganization without worrying you broke the build.”

• “That refactoring of dependencies in the build was automatic. I realize thats

the purpose of the application, but it really makes it almost too easy to modify

the build based on refactoring code.”

• “Automation of lot of manually intensive tasks like checking dependencies,

etc. The colorful representation of deliverables and its dependent files.”

76

• “Reduced trial and error when it comes to maintaining projects. Dependency

graph edges showing lines in the build XML was extremely useful.”

• “Eliminates possibility of subtle refactoring errors when performing a task by

hand”

What did you like least about Formiga?

Four subjects mentioned a lack of feedback. Four subjects reported something about

the dependency graph.

• “The graphing was a little confusing at first, but after a bit of time, it would

make perfect sense.”

• “Maybe some sort of logging would be nice so you can see all that has been

changed. Otherwise you only see one popup telling you what it did and that’s

all”

• “The graphing functionality was very pretty but somewhat hard to use.”

• “Did not show where refactorings were occurring when renaming or removing

properties and tasks”

• “Minor lack of feedback for refactoring”

77

Are there any capabilities that you wish Formiga had?

Two subjects mentioned additional feedback (both of whom also reported this for the

previous question). Two subjects also expressed a desire for another representation

of the build.

• “Build diagram showing a nicely formatted list of properties/targets with de-

scriptions/dependencies.”

• “More detail/specifics regarding targets/tasks affected by rename and deletes.”

• “Maybe a UI on top of the build xml with all your targets so you don’t have

to scroll through to find the one to modify/delete”

• “When determining if any file in a directory is used by another deliverable,

’Check all in directory’ graphing functionality would be nice.”

• “Removing related comments.”

78

Chapter 6

Constraints

6.1 Implementation

Formiga assists in build maintenance for software projects using the Ant build sys-

tem. It does not currently work with other build systems. Additional build system

support is described in Section 8.2. Formiga is implemented as an Eclipse plugin

and has been tested with version 3.8 (Juno) of Eclipse. Due to its use of IDE specific

code, Formiga is unlikely to work as-is with other versions of Eclipse. Support is

planned for integration with more recent versions of Eclipse.

6.2 Task support

Formiga uses knowledge of tool behaviors and Ant task specifications to determine

the build dependencies imposed by those tasks and tools. The exec and java

79

tasks execute a user-specified program or Java class. We refer to these tasks as

arbitrary execution tasks or AET s. Because Formiga cannot predict the behavior

of AETs, they also cannot be processed in the same way as the other packaged Ant

tasks. Additionally, Ant allows for the implementation of custom tasks. Like AETs,

Formiga cannot predict the behavior of custom Ant tasks, so it cannot include them

in its dependency identification. However, if formatted comments describing these

tasks were present in the build file, the dependencies created by those tasks could

be included in Formigas analysis. These formatted comments could consist of a

comma-separated list of input and output files read and written by the task. The

same property references and wildcard patterns recognized by Ant could be used

to identify files. Formiga could then (at least) describe the tasks input files as

dependencies for the task itself and the task as a dependency for the output files it

produces.

6.3 Configuration support

Configurations are recognizable by Formiga as long as they are specified using

conditionally-set properties (CSPs). For projects with a large number of frequently

referenced CSPs, dependency identification could take a considerable amount of

time. While this process can be executed in a separate thread allowing the user to

continue working, multiple build updates in succession or a save upon closing the

IDE could cause undesirable wait times for the user. A significant amount of effort

80

has been spent on reducing this time, but more evaluation is necessary.

Another common way to identify configurations in an Ant build is through the

use of build property files. These property files define a set of Ant properties and

values that can be referenced by build files. Typically, a property file exists for each

desired configuration or environment, and each property file provides values for the

same set of properties. While Formiga does not currently support configurations

using build property files, support for their use is planned. Users could identify the

location containing these build property files, and Formiga could evaluate the build

once for each property file.

6.4 Dependency identificaiton

Formiga identifies files both on the filesystem and in its filespace by their name and

location. This means that, if a file with the same name and location is produced by

the build system by multiple targets, it is considered to be the same file. If that file’s

dependencies are different based on which target is producing it, those dependencies

will be merged by Formiga. Currently, Formiga assumes that this is bad practice,

and while it hasn’t been seen in any builds evaluated thus far, more consideration is

necessary to determine whether or not Formiga’s behavior here is truly appropriate.

81

Chapter 7

Contributions

Formiga’s most novel feature is its ability to automatically update build files when

project resources are refactored. This functionality automates many of the build up-

dates necessitated by changes to a software project. Because these operations often

require accompanying build maintenance, it saves developers time and ensures that

the build isn’t broken to due to a neglected or incorrect build update. Furthermore,

it informs developers of behavioral changes in the build even when no build con-

tent changes are necessary, thus increasing the visibility of the build during routine

project refactorings.

Formiga’s unique approach to build analysis allows the benefits of dynamic anal-

ysis without all of the costs. It runs more quickly than a traditional dynamic ap-

proach, because it allows Ant to behave as if it were executing tasks without any

unnecessary tool execution for analysis purposes. This approach also won’t produce

any undesirable side effects caused by destructive build operations, since it does

82

not modify the filesystem. Formiga’s analysis approach is possible because the Ant

tasks that Formiga models have fixed semantics, making their behavior predictable.

Our controlled experiment analyzed the ability of developers to perform build

maintenance tasks that accompany project changes both with and without Formiga.

These tasks included identifying build operations affected by project changes, up-

dating the build to account for project changes, and identifying how project files

are used by the build system. We are unaware of any other experiments that assess

the abilities of developers to perform these tasks. Our experiment demonstrated

that Formiga decreases the amount of time necessary to perform build maintenance

while improving correctness. Additionally, although a more exhaustive study would

be needed, this experiment suggests that developers have a difficult time identifying

exactly how a build system uses the files on which it operates.

Formiga’s implementation as an Eclipse plugin allows it to leverage existing

metaphors that developers use to maintain source code. This is possible because

many build maintenance operations are similar to source code maintenance opera-

tions. Formiga is intended to be practical and easy to use. Its implementation as

a plugin is a key component in facilitating both characteristics. The results of the

controlled experiment are largely a testament to Formiga’s usability. Furthermore,

for development teams in which build maintenance is dispersed amongst the devel-

opers (rather than using a dedicated team for build maintenance), the integration of

a build maintenance tool with their existing toolset is likely to be a major benefit,

as build maintenance has been shown to be coupled with source code maintenance.

83

Chapter 8

Future Research

8.1 Repository integration

Initial support is in place to integrate Formiga with a software repository. Doing

so would allow Formiga to version the build dependencies that it identifies. In our

design, an instance of Formiga residing with the software repository would identify

and record backward dependencies of project resources as they are committed to

the repository, much like it does currently when files are saved locally in the IDE.

Formiga could then version these dependencies using the same version identifiers

used by the version control system (VCS) to identify the file versions. Using this

data, Formiga would be able to produce dependency graphs for prior versions of a

software project. Additionally, Formiga could allow build dependencies to be com-

pared between components recognized by the IDE and components of prior versions

84

recorded by the VCS. Versioning build dependencies would make it easier for de-

velopers to understand differences between the build systems of different versions

of a software project. Without this functionality, it may be necessary to manu-

ally compare different versions of one or more build files (as well as the resources

they operate on) or evaluate multiple versions of a software project using a build

maintenance tool.

8.2 Integration with other build tools

In addition to assisting developers with build maintenance for software projects using

the Ant build system, it would be interesting to see if Formiga can provide similar

benefits for projects using Maven and/or Gradle. Because both build systems are

packaged with the tools that they use to build software projects (and because they

are both open source projects), an analysis similar to Formiga’s analysis of an Ant

build system could be performed. To integrate either build system with Formiga,

the build system’s source code would need to be modified similarly to Ant’s. This

would require adding hooks into the source code responsible for executing the tools

used throughout the build process.

Because Maven takes a “build by convention” approach to building software

projects, it essentially shields developers from the tools it uses during the build

process. Perhaps more so than any other build system, the required understanding

of a software project’s Maven build system is likely to differ between the developers

85

who are responsible for creating a project’s Maven build versus the developers who

simply execute Maven’s build operations for a project. It would be interesting to

see what benefits Formiga could provide to both sets of developers.

Because of its emphasis on flexibility, the Gradle build tool is relatively similar

to Ant. However, due to its implementation in Groovy, the learning curve for Gradle

integration is likely higher than it would be to integrate Maven. Also because of

its flexibility, Gradle is packaged with many tools that can be used by a project’s

build system, requiring substantially more effort to integrate. Because it allows for

Ant tasks to be directly executed within a Gradle build file, much of the work to

analyze Ant builds could be reused for Gradle. Since, like Ant, many Gradle builds

are procedural, Formiga may provide similar benefits for Gradle users as it does for

Ant users.

86

Chapter 9

Conclusion

Despite the demonstrated need for build maintenance tools due to the growth and

complexity of build systems, few such tools exist. Formiga addresses this need by

offering a build maintenance and dependency discovery tool for software projects

using the Ant build system.

Formiga automates build maintenance due to external changes, alerts developers

when project modifications will affect the build, and facilitates build maintenance

due to internal changes. It also aids in the understanding of a project’s build system

by identifying how a project’s files are used by the build system using an interactive

graph.

Our controlled experiment demonstrated that Formiga does indeed allow users

to perform build maintenance and identify build dependencies more quickly and

accurately than is possible without it.

Formiga is intended to be unobtrusive and intuitive. It is distinguished by its

87

ability to automatically update or inform developers when project changes require

accompanying build changes, its unique analysis approach to discover build depen-

dencies, and its implementation as an easy-to-use Eclipse plugin.

88

Appendix A

Controlled Experiment Files

89

Informed Consent
UW - Milwaukee

IRB Protocol Number: 13.427

IRB Approval date: June 14, 2013

Dear participant,

You are invited to participate in a research study, entitled “Evaluating the effectiveness of Formiga on build
maintenance”. The study is being conducted by Ryan Hardt and Ethan Munson
of the University of Wisconsin - Milwaukee.

The purpose of this research study is to evaluate the usefulness of a build maintenance tool when updating
the build system in response to source code changes, performing build maintenance (such as
modifying/removing build targets), and identifying build dependencies. Approximately 16 subjects will
participate in this study. If you agree to participate, you will be asked to perform a series of build
maintenance-related tasks on a given software project both with and without our build maintenance tool
“Formiga”, as well complete a short survey afterwards. This will take approximately 90-150 minutes of
your time.

Risks that you may experience from participating are considered minimal. There are no costs for
participating. There are no benefits to you other than to further research.

Your responses will be treated as confidential and all reasonable efforts will be made so that no individual
participant will be identified with his/her answers. Identifying information such as your name will be
collected only to link data related to your activities. The research team will remove your identifying
information after analyzing the data and all study results will be reported without identifying information so
that no one viewing the results will ever be able to match you with your responses. Data from this study
will be saved on a networked, password-protected computer in a locked room (EMS 1010) until May 2016.
Only Ryan Hardt and Ethan Munson will have access to your information. However, the Institutional
Review Board at UW-Milwaukee or appropriate federal agencies like the Office for Human Research
Protections may review this study’s records.

Your participation in this study is voluntary. You may choose not to take part in this study, or if you decide
to take part, you can change your mind later and withdraw from the study. You are free to not answer any
questions or withdraw at any time. Your decision will not change any present or future relationships with
the University of Wisconsin Milwaukee.

If you have questions about the study or study procedures, you are free to contact the investigator at the
address and phone number below. If you have questions about your rights as a study participant or
complaints about your treatment as a research subject, contact the Institutional Review Board at (414) 229-
3173 or irbinfo@uwm.edu.

To voluntarily agree to take part in this study, you must be 18 years of age or older. By completing the
survey, you are giving your consent to voluntarily participate in this research project.

Thank you!

Ryan Hardt
Department of EECS
P.O. Box 784
Milwaukee, WI 53201
(414) 229-6479
rrhardt@uwm.edu

90

Formiga Usability Study

Category: build maintenance due to project refactoring
Subcategory: adding files

A new unit of time measurement is needed to represent a decade. You are asked to
add a java source file named “Decade.java” in the org.jfree.data.time package in the
“source” directory at the project root. You are also asked to identify the build targets
and tasks that will be directly affected by this new file. A build task is “directly affected”
by a new file if that task uses it as input in its original location.

• Add “Decade.java” to the org.jfree.data.time package in the “source” directory
• Identify the build targets and tasks that will be directly affected by this new file

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

91

Formiga Usability Study

Category: build maintenance due to project refactoring
Subcategory: adding files

A new unit of time measurement is needed to represent a decade. You are asked to
add a java source file named “Decade.java” in the org.jfree.data.time package in the
“source” directory at the project root. You are also asked to identify the build targets
and tasks that will be directly affected by this new file. A build task is “directly affected”
by a new file if that task uses it as input in its original location.

• Identify the build targets and tasks that will be directly affected by adding the file
“Decade.java” to the org.jfree.data.time package in the “source” directory (but do
not actually add the file)

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

92

Formiga Usability Study

Category: build maintenance due to project refactoring
Subcategory: adding files

A new JUnit test is needed for a class named “Decade.java” which resides in the
org.jfree.data.time package in the “source” directory at the project root. You are asked
to create the JUnit test “DecadeTest.java” in the org.jfree.data.time package in the
“tests” directory at the project root. You are also asked to identify the build targets and
tasks that will be directly affected by this new file. A build task is “directly affected” by a
new file if that task uses it as input in its original location.

• Add the JUnit test named “DecadeTest.java” to the org.jfree.data.time package in
the “tests” directory

• Identify the build targets and tasks that will be directly affected by this new file

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

93

Formiga Usability Study

Category: build maintenance due to project refactoring
Subcategory: adding files

A new JUnit test is needed for a class named “Decade.java” which resides in the
org.jfree.data.time package in the “source” directory at the project root. You are asked
to create the JUnit test “DecadeTest.java” in the org.jfree.data.time package in the
“tests” directory at the project root. You are also asked to identify the build targets and
tasks that will be directly affected by this new file. A build task is “directly affected” by a
new file if that task uses it as input in its original location.

• Identify the build targets and tasks that will be directly affected by adding the
JUnit test “DecadeTest.java” to the org.jfree.data.time package in the “tests”
directory (but do not actually add the file)

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

94

Formiga Usability Study

Category: build maintenance due to project refactoring
Subcategory: renaming files

A new version of the pom.xml file needs to be created. In the meantime, you are asked
to rename “pom.xml” (which is located at the project root) to “pom-old.xml” and update
the build to account for this. The file should still be used the same way within the build.
This means that if the file was previously used by some task, it is still used by that task.
If the file was not previously used by some task, it is still not used by that task.

• Rename “pom.xml” (located at the project root) to “pom-old.xml”
• Update the build to account for this change

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

95

Formiga Usability Study

Category: build maintenance due to project refactoring
Subcategory: renaming files

A new version of the pom.xml file needs to be created. In the meantime, you are asked
to rename “pom.xml” (which is located at the project root) to “pom-old.xml” and update
the build to account for this. The file should still be used the same way within the build.
This means that if the file was previously used by some task, it is still used by that task.
If the file was not previously used by some task, it is still not used by that task.

• Update the build to account the rename of “pom.xml” (located at the project root)
to “pom-old.xml” (but do not actually rename the file)

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

96

Formiga Usability Study

Category: build maintenance due to project refactoring
Subcategory: renaming files

A decision has been made to augment the servlet jar with its version number. Rename
“servlet.jar” (located in the “lib” directory at the project root) to “servlet-2.3.1.jar”. The
file should still be used the same way within the build. This means that if the file was
previously used by some task, it is still used by that task. If the file was not previously
used by some task, it is still not used by that task.

• Rename “servlet.jar” (located in the “lib” directory) to “servlet-2.3.1.jar”
• Update the build to account for this change

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

97

Formiga Usability Study

Category: build maintenance due to project refactoring
Subcategory: renaming files

A decision has been made to augment the servlet jar with its version number. Rename
“servlet.jar” (located in the “lib” directory at the project root) to “servlet-2.3.1.jar”. The
file should still be used the same way within the build. This means that if the file was
previously used by some task, it is still used by that task. If the file was not previously
used by some task, it is still not used by that task.

• Update the build to account for the rename of “servlet.jar” (located in the “lib”
directory) to “servlet-2.3.1.jar” (but do not actually rename the file)

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

98

Formiga Usability Study

Category: build maintenance due to project refactoring
Subcategory: moving files

The application is going to add an emphasis on pie charts. You are responsible for
maintaining documentation. You are asked to create a new directory at the project root
named “docfiles-pie” and move the file “docfiles/PiePlotSample.png” to this newly
created “docfiles-pie” directory. The file should still be used the same way within the
build. This means that if the file was previously used by some task, it is still used by
that task. If the file was not previously used by some task, it is still not used by that
task.

• Move “PiePlotSample.png” in the “docfiles” directory to a new directory named
“docifles-pie” at the project root

• Update the build to account for this change

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

99

Formiga Usability Study

Category: build maintenance due to project refactoring
Subcategory: moving files

The application is going to add an emphasis on pie charts. You are responsible for
maintaining documentation. You are asked to create a new directory at the project root
named “docfiles-pie” and move the file “docfiles/PiePlotSample.png” to this newly
created “docfiles-pie” directory. The file should still be used the same way within the
build. This means that if the file was previously used by some task, it is still used by
that task. If the file was not previously used by some task, it is still not used by that
task.

• Update the build to account for the move of “PiePlotSample.png” from the
“docfiles” directory to a new directory named “docifles-pie” at the project root (but
do not actually move the file or create the directory)

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

100

Formiga Usability Study

Category: build maintenance due to project refactoring
Subcategory: moving files

You are responsible for the French localization of the editor functionality. A decision
has been made to move the property files from source/org/jfree/chart/editor to a new
directory at the project root named “properties”. You are asked to create the new
directory and move the file source/org/jfree/chart/editor/LocalizationBundle_fr.properties
to this new “properties” directory. The file should still be used the same way within the
build. This means that if the file was previously used by some task, it is still used by
that task. If the file was not previously used by some task, it is still not used by that
task.

• Move “LocalizationBundle_fr.properties” in the “source/org/jfree/chart/editor”
directory to the newly created “properties” directory

• Update the build to account for this change

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

101

Formiga Usability Study

Category: build maintenance due to project refactoring
Subcategory: moving files

You are responsible for the French localization of the editor functionality. A decision
has been made to move the property files from source/org/jfree/chart/editor to a new
directory at the project root named “properties”. You are asked to create the new
directory and move the file source/org/jfree/chart/editor/LocalizationBundle_fr.properties
to this new “properties” directory. The file should still be used the same way within the
build. This means that if the file was previously used by some task, it is still used by
that task. If the file was not previously used by some task, it is still not used by that
task.

• Update the build to account for the move of “LocalizationBundle_fr.properties”
from the “source/org/jfree/chart/editor” directory to the newly created “properties”
directory (but do not actually move the file or create the directory)

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

102

Formiga Usability Study

Category: build maintenance due to project refactoring
Subcategory: deleting files

You are told that jfreechart will no longer be licensed under lgpl. You are asked to
delete the file “licence-LGPL.txt” (located at the project root) and account for this
removal in the build. You are also asked to identify any targets and tasks that will be
directly affected by this change. A build task is “directly affected” by a deleted file if that
task previously used it as input in its original location.

• Delete the file “licence-LGPL.txt” (located at the project root)
• Update the build to account for this change
• Identify any targets and tasks that will be directly affected by this change

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

103

Formiga Usability Study

Category: build maintenance due to project refactoring
Subcategory: deleting files

You are told that jfreechart will no longer be licensed under lgpl. You are asked to
delete the file “licence-LGPL.txt” (located at the project root) and account for this
removal in the build. You are also asked to identify any targets and tasks that will be
directly affected by this change. A build task is “directly affected” by a deleted file if that
task previously used it as input in its original location.

• Update the build to account for the deleted file “licence-LGPL.txt”, located at the
project root (but do not actually delete the file)

• Identify any targets and tasks that will be directly affected by this change

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

104

Formiga Usability Study

Category: build maintenance due to project refactoring
Subcategory: deleting files

You are told that the image located at source/org/jfree/chart/gorilla.jpg is no longer
necessary. You are asked to delete the file and account for this removal in the build.
You are also asked to identify any targets and tasks that will be directly affected by this
change. A build task is “directly affected” by a deleted file if that task previously used it
as input in its original location.

• Delete the file “gorilla.jpg” located in the “source/org/jfree/chart/” directory
• Update the build to account for this change
• Identify any targets and tasks that will be directly affected by this change

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

105

Formiga Usability Study

Category: build maintenance due to project refactoring
Subcategory: deleting files

You are told that the image located at source/org/jfree/chart/gorilla.jpg is no longer
necessary. You are asked to delete the file and account for this removal in the build.
You are also asked to identify any targets and tasks that will be directly affected by this
change. A build task is “directly affected” by a deleted file if that task previously used it
as input in its original location.

• Update the build to account for the deleted file “gorilla.jpg” located in the
“source/org/jfree/chart/” directory (but do not actually delete the file)

• Identify any targets and tasks that will be directly affected by this change

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

106

Formiga Usability Study

Category: dependency discovery
Subcategory: forward dependencies

You are told that the file “CombinedXYPlot.java” in the package
org.jfree.experimental.chart.plot in the “experimental” directory needs to change and are
asked what deliverables will need to be rebuilt. Name all of the deliverables that the file
“CombinedXYPlot.java” contributes to. A file contributes to a deliverable if it is used by
any task that is potentially executed in order to build that deliverable. At the bottom of
this page is a list of all deliverables produced by jfreechart.

• Identify all of the deliverables that the file “CombinedXYPlot.java” in the package
org.jfree.experimental.chart.plot contributes to

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

JFreeChart Deliverables

• jfreechart-1.0.16.jar
• jfreechart-1.0.16-experimental.jar
• jfreechart-1.0.16-javadocs.jar
• jfreechart-1.0.16.zip
• jfreechart-1.0.16.tar.gz
• jfreechart-1.0.16-bundle.jar

107

Formiga Usability Study

Category: dependency discovery
Subcategory: forward dependencies

You are told that the file “DialPlotSample.png” in the “docfiles” directory is going to
change and are asked what deliverables will need to be rebuilt. Name all of the
deliverables that the file “DialPlotSample.png” contributes to. A file contributes to a
deliverable if it is used by any task that is potentially executed in order to build that
deliverable. At the bottom of this page is a list of all deliverables produced by jfreechart.

• Identify all of the deliverables that the file “DialPlotSample.png” in the “docfiles”
directory (located at the project root) contributes to

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

JFreeChart Deliverables

• jfreechart-1.0.16.jar
• jfreechart-1.0.16-experimental.jar
• jfreechart-1.0.16-javadocs.jar
• jfreechart-1.0.16.zip
• jfreechart-1.0.16.tar.gz
• jfreechart-1.0.16-bundle.jar

108

Formiga Usability Study

Category: dependency discovery
Subcategory: backward dependencies

You are the developer that oversees the production of the jfreechart-1.0.16-bundle.jar
deliverable. The developer responsible for maintaining the JUnit tests for the gantt
charts located in the package org.jfree.data.gantt in the “tests” directory wants to know if
they are currently involved in the production of the jfreechart-1.0.16-bundle.jar
deliverable. A file contributes to a deliverable if it is used by any task that is potentially
executed in order to build that deliverable.

• Identify whether or not the JUnit tests located in the tests/org/jfree/data/gantt
directory are involved in the production of the jfreechart-1.0.16-bundle.jar
deliverable

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

109

Formiga Usability Study

Category: dependency discovery
Subcategory: backward dependencies

You are the developer that oversees the production of the jfreechart-1.0.16.tar.gz
deliverable. The developer responsible for maintaining the xml documents used to
validate style guidelines located in the “checkstyle” directory (located at the project root)
wants to know if they are currently involved in the production of the jfreechart-
1.0.16.tar.gz deliverable. A file contributes to a deliverable if it is used by any task that
is potentially executed in order to build that deliverable.

• Identify whether or not the xml files located in the “checkstyle” directory (located
at the project root) are involved in the production of the jfreechart-1.0.16.tar.gz
deliverable

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

110

Formiga Usability Study

Category: dependency discovery
Subcategory: graph functionality

You are told that the file “jfreechart-1.0.16-experimental.jar” in the “lib” directory is
mistakenly present in the deliverable “jfreechart-1.0.16-bundle.jar” and are asked to
remove this dependency. Identify the target(s) and task(s) in the build that are
responsible for the inclusion of /lib/jfreechart-1.0.16-experimental.jar in the jfreechart-
1.0.16-bundle.jar deliverable.

• Identify the target(s) and task(s) in the build that are responsible for the inclusion
of /lib/jfreechart-1.0.16-experimental.jar in the jfreechart-1.0.16-bundle.jar
deliverable

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

111

Formiga Usability Study

Category: dependency discovery
Subcategory: graph functionality

You are told that the file “jfreechart-1.0.16-swt.jar” in the “lib” directory is mistakenly
present in the deliverable “jfreechart-1.0.16.tar.gz” and are asked to remove this
dependency. Identify the target(s) and task(s) in the build that are responsible for the
inclusion of /lib/ jfreechart-1.0.16-swt.jar in the jfreechart-1.0.16.tar.gz deliverable.

• Identify the target(s) and task(s) in the build that are responsible for the inclusion
of /lib/jfreechart-1.0.16-swt.jar in the jfreechart-1.0.16.tar.gz deliverable

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

112

Formiga Usability Study

Category: build refactoring
Subcategory: renaming properties

You decide that the “jfreechart.version” property should be renamed to “version” and
decide to do so.

• Rename the “jfreechart.version” property to “version”

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

113

Formiga Usability Study

Category: build refactoring
Subcategory: renaming properties

You decide that the “jcommon.name” property should be renamed to “jcommon” and
decide to do so.

• Rename the “jcommon.name” property to “jcommon”

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

114

Formiga Usability Study

Category: build refactoring
Subcategory: renaming targets

You notice that the “compile” target is actually compiling source files and creating a jar
file. You decide to rename the target to “compile-jar”.

• Rename the “compile” target to “compile-jar”

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

115

Formiga Usability Study

Category: build refactoring
Subcategory: renaming targets

There is some discussion about moving away from zip files for distribution. Just in
case, you decide to change the name of the “zip” target to “archive”.

• Rename the “zip” target to “archive”

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

116

Formiga Usability Study

Category: build refactoring
Subcategory: removing properties

You decide that the “jfreechart.name” property is unnecessary and decide to remove it.
Wherever the property is referenced, you will use the property’s current value, which is
“jfreechart”.

• Remove the “jfreechart.name” property
• Replace its references with its current value, which is “jfreechart”

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

117

Formiga Usability Study

Category: build refactoring
Subcategory: removing properties

You decide that the “jcommon.version” property is unnecessary and decide to remove it.
Wherever the property is referenced, you will use the property’s current value, which is
“1.0.20”.

• Remove the “jcommon.version” property
• Replace its references with its current value, which is “1.0.20”

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

118

Formiga Usability Study

Category: build refactoring
Subcategory: removing targets

You are told that the build will no longer be responsible for JUnit testing and are asked
to update the build as a result. You are told that the “test” target is responsible for
running the tests. Remove JUnit testing from the build.

• Remove JUnit testing from the build

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

119

Formiga Usability Study

Category: build refactoring
Subcategory: removing targets

You are told that the build will no longer be responsible for creating javadoc files and
are asked to update the build as a result. You are told that the “zip-javadocs” target is
responsible for generating the archive of javadoc files. Remove the javadoc
functionality from the build.

• Remove javadoc functionality from the build

Please indicate when you are ready to begin the task. Please also indicate when you
have completed the task.

120

Formiga Survey

Please answer the following questions about how useful you feel Formiga is for the following tasks
according to the scale below. All questions are optional.

 Evaluation Scale: (5) Excellent (4) Very Good (3) Good (2) Fair (1) Poor

Build Maintenance Due to Source Code Refactoring
These questions deal with Formiga’s responses to updates made to a project’s source code and other project
resources. How would you rate Formiga’s usefulness for the following tasks:

 Adding files 5 4 3 2 1

 Renaming files 5 4 3 2 1

 Moving files 5 4 3 2 1

 Deleting files 5 4 3 2 1

Dependency Discovery
These questions deal with Formiga’s graphing functionality for dependency identification. How would you
rate Formiga’s usefulness for the following tasks:

 Identifying how a file is used by the build system*: 5 4 3 2 1

 Identifying files involved in building a deliverable**: 5 4 3 2 1

 Identifying dependency construction locations in the build: 5 4 3 2 1

 * “forward dependencies”
 **”backward dependencies”

Build Refactoring
These questions deal with Formiga’s build refactoring capabilities. How would you rate Formiga’s
usefulness for the following tasks:

 Renaming properties 5 4 3 2 1

 Renaming targets 5 4 3 2 1

 Removing properties 5 4 3 2 1

 Removing targets 5 4 3 2 1

Overall
Overall, how would you rate Formiga’s usefulness?

 Overall 5 4 3 2 1

121

Please answer the following questions about you and your level of experience with Ant prior to this
study. All questions are optional.

If you have professional software development experience, how many years and/or months have you
been working as a developer?

If you are currently a computer science student, how many semesters have you been studying
computer science?

How many years and/or months have you been using Ant?

How would you describe your knowledge of Ant?

☐ None ☐ Little ☐ Moderate ☐ Experienced ☐ Expert

What did you like best about Formiga?

What did you like least about Formiga?

Are there any capabilities that you wish Formiga had?

122

Bibliography

[1] S. Muller and T. Fritz, “Stakeholders’ information needs for artifacts and their

dependencies in a real world context,” in Software Maintenance (ICSM), 2013

29th IEEE International Conference on, pp. 290–299, 2013.

[2] S. McIntosh, B. Adams, T. H. Nguyen, Y. Kamei, and A. E. Hassan, “An

empirical study of build maintenance effort,” in Proceedings of the 33rd In-

ternational Conference on Software Engineering, ICSE ’11, (New York, NY,

USA), pp. 141–150, ACM, 2011.

[3] S. McIntosh, “Build system maintenance,” in Proceedings of the 33rd Interna-

tional Conference on Software Engineering, ICSE ’11, (New York, NY, USA),

pp. 1167–1169, ACM, 2011.

[4] B. Adams, K. De Schutter, H. Tromp, and W. De Meuter, “The evolution of

the Linux build system,” ECEASST, vol. 8, 2007.

[5] B. Adams, “Co-evolution of source code and the build system,” in Software

Maintenance, 2009. ICSM 2009. IEEE International Conference on, pp. 461–

464, Sept. 2009.

[6] S. McIntosh, B. Adams, and A. Hassan, “The evolution of ant build systems,”

in Mining Software Repositories (MSR), 2010 7th IEEE Working Conference

on, pp. 42 –51, May 2010.

[7] G. Kumfert and G. Epperly, “Software in the doe: The hidden overhead of ”the

build”,” Lawrence Livermore National Laboratory, February 2002.

123

[8] B. Adams, H. Tromp, K. De Schutter, and W. De Meuter, “Design recovery and

maintenance of build systems,” in Software Maintenance, 2007. ICSM 2007.

IEEE International Conference on, pp. 114–123, Oct. 2007.

[9] A. Tamrawi, H. A. Nguyen, H. V. Nguyen, and T. N. Nguyen, “Build code anal-

ysis with symbolic evaluation,” in Proceedings of the 2012 International Confer-

ence on Software Engineering, ICSE 2012, (Piscataway, NJ, USA), pp. 650–660,

IEEE Press, 2012.

[10] D. Spinellis, “Software builders,” Software, IEEE, vol. 25, pp. 22 –23, May-June

2008.

[11] “Gnu make.” http://www.gnu.org/software/make/, January 2014.

[12] “The apache ant project.” http://ant.apache.org, January 2014.

[13] N. Serrano and I. Ciordia, “Ant: automating the process of building applica-

tions,” Software, IEEE, vol. 21, pp. 89 – 91, Nov.-Dec. 2004.

[14] “Maven - welcome to apache maven.” http://maven.apache.org, February

2014.

[15] “Gradle - build automation evolved.” http://www.gradle.org, February 2014.

[16] “Groovy - home.” http://groovy.codehaus.org, February 2014.

[17] S. Dart, “Spectrum of functionality in configuration management systems,”

tech. rep., 1990.

[18] D. B. Leblang and R. P. Chase, Jr., “Computer-aided software engineering in

a distributed workstation environment,” SIGSOFT Softw. Eng. Notes, vol. 9,

pp. 104–112, April 1984.

[19] K. Marzullo and D. Wiebe, “Jasmine: a software system modelling facility,”

in Proceedings of the second ACM SIGSOFT/SIGPLAN software engineer-

ing symposium on Practical software development environments, SDE 2, (New

York, NY, USA), pp. 121–130, ACM, 1987.

124

[20] A. Mahler and A. Lampen, “Shape - a software configuration management

tool,” in Proceedings of the International Workshop on Software Version and

Configuration Control, (Grassau, West Germany), pp. 228–243, B. G. Teubner,

January 1988.

[21] A. Rich and M. Solomon, “A logic-based approach to system modelling,” in

Proceedings of the 3rd international workshop on Software configuration man-

agement, SCM ’91, (New York, NY, USA), pp. 84–93, ACM, 1991.

[22] Y.-J. Lin and S. P. Reiss, “Configuration management with logical structures,”

in Proceedings of the 18th international conference on Software engineering,

ICSE ’96, (Washington, DC, USA), pp. 298–307, IEEE Computer Society, 1996.

[23] A. Heydon, R. Levin, T. Mann, and Y. Yu, “The vesta approach to software

configuration management,” Compaq Systems Research Center Research Re-

port, March 2001.

[24] M. C. Chu-Carroll, J. Wright, and D. Shields, “Supporting aggregation in

fine grained software configuration management,” in Proceedings of the 10th

ACM SIGSOFT symposium on Foundations of software engineering, SIGSOFT

’02/FSE-10, (New York, NY, USA), pp. 99–108, ACM, 2002.

[25] “Ibm - rational clearcase - united states.” http://www-03.ibm.com/software/

products/en/clearcase, January 2014.

[26] L. Hochstein and Y. Jiao, “The cost of the build tax in scientific software,” in

Empirical Software Engineering and Measurement (ESEM), 2011 International

Symposium on, pp. 384–387, 2011.

[27] J. Estublier, D. Leblang, A. v. d. Hoek, R. Conradi, G. Clemm, W. Tichy, and

D. Wiborg-Weber, “Impact of software engineering research on the practice

of software configuration management,” ACM Trans. Softw. Eng. Methodol.,

vol. 14, pp. 383–430, October 2005.

[28] J. Buffenbarger, “Adding automatic dependency processing to makefile-based

build systems with amake,” in Release Engineering (RELENG), 2013 1st In-

ternational Workshop on, pp. 1–4, 2013.

125

[29] “Virtual ant.” http://www.placidsystems.com/virtualant/, January 2014.

[30] “Vizant - ant task to visualize buildfile.” http://vizant.sourceforge.net/,

January 2014.

[31] “Apache ivy.” http://ant.apache.org/ivy/index.html, January 2014.

[32] “Apache derby.” http://db.apache.org/derby/, January 2014.

[33] “xmlgraphics.apache.org.” http://xmlgraphics.apache.org, January 2014.

[34] “Hibernate. everything data. - hibernate.” http://hibernate.org, January

2014.

[35] “Jung - java universal network/graph framework.” http://jung.

sourceforge.net, February 2014.

[36] “Freechart.” http://www.jfree.org/jfreechart/, February 2014.

126

CURRICULUM VITAE

Ryan Hardt

Place of birth: Appleton, WI

Education

B.A., Computer Science, Carthage College, May 2004

B.A., Mathematics, Carthage College, May 2004

M.S., Computer Science, Univeristy of Wisconsin-Milwaukee, August 2008

Dissertation Title: Ant Build Maintenance with Formiga

Conference Publications (Full Length)

R. Hardt, E. V. Munson and H. Nguyen. “A Search Engine for Web Images

using Text Stemming,” in Proceedings of the Fourth International Conference

on Web Information Systems and Technology (WEBIST 2008), Funchal,

Portugal, Volume 2, pages 223 - 230, May 2008.

Conference Publications (Short Paper)

R. Hardt and E. V. Munson. “Ant Build Maintenance with Formiga,” in

Proceedings of the First International Conference on Release Engineering

(RELENG 2013), at 2013 International Conference on Software Engineering

(ICSE 2013), San Francisco, CA, USA, May 2013.

Course Lecturer

Introducdtion to the Internet and the World Wide Web

Introduction to Computer Science Labs

Introduction to Computer Programming

Intermediate Computer Programming

iOS Development

Graduate School Service

Graduate Student Advisory Council (2012 - 2014)

Graduate Assistant Appeals Panel (2013 - 2014)

	University of Wisconsin Milwaukee
	UWM Digital Commons
	May 2014

	Ant Build Maintenance with Formiga
	Ryan Hardt
	Recommended Citation

	tmp.1410351843.pdf.pJOR1

