46 research outputs found

    Auditory Self-Motion Simulation is Facilitated by Haptic and Vibrational Cues Suggesting the Possibility of Actual Motion

    Get PDF
    Sound fields rotating around stationary blindfolded listeners sometimes elicit auditory circular vection, the illusion that the listener is physically rotating. Experiment 1 investigated whether auditory circular vection depends on participants\u27 situational awareness of "movability", i.e., whether they sense/know that actual motion is possible or not. While previous studies often seated participants on movable chairs to suspend the disbelief of self-motion, it has never been investigated whether this does, in fact, facilitate auditory vection. To this end, 23 blindfolded participants were seated on a hammock chair with their feet either on solid ground ("movement impossible") or suspended ("movement possible") while listening to individualized binaural recordings of two sound sources rotating synchronously at 60 degrees. Although participants never physically moved, situational awareness of movability facilitated auditory vection. Moreover, adding slight vibrations like the ones resulting from actual chair rotation increased the frequency and intensity of vection. Experiment 2 extended these findings and showed that nonindividualized binaural recordings were as effective in inducing auditory circular vection as individualized recordings. These results have important implications both for our theoretical understanding of self-motion perception and for the applied field of self-motion simulations, where vibrations, non-individualized binaural sound, and the cognitive/perceptual framework of movability can typically be provided at minimal cost and effort

    Moving Sounds Enhance the Visually-Induced Self-Motion Illusion (Circular Vection) in Virtual Reality

    Get PDF
    While rotating visual and auditory stimuli have long been known to elicit self-motion illusions (“circular vection”), audiovisual interactions have hardly been investigated. Here, two experiments investigated whether visually induced circular vection can be enhanced by concurrently rotating auditory cues that match visual landmarks (e.g., a fountain sound). Participants sat behind a curved projection screen displaying rotating panoramic renderings of a market place. Apart from a no-sound condition, headphone-based auditory stimuli consisted of mono sound, ambient sound, or low-/high-spatial resolution auralizations using generic head-related transfer functions (HRTFs). While merely adding nonrotating (mono or ambient) sound showed no effects, moving sound stimuli facilitated both vection and presence in the virtual environment. This spatialization benefit was maximal for a medium (20 degrees × 15 degrees) FOV, reduced for a larger (54 degrees × 45 degrees) FOV and unexpectedly absent for the smallest (10 degrees × 7.5 degrees) FOV. Increasing auralization spatial fidelity (from low, comparable to five-channel home theatre systems, to high, 5 degree resolution) provided no further benefit, suggesting a ceiling effect. In conclusion, both self-motion perception and presence can benefit from adding moving auditory stimuli. This has important implications both for multimodal cue integration theories and the applied challenge of building affordable yet effective motion simulators

    The search for instantaneous vection: An oscillating visual prime reduces vection onset latency

    Get PDF
    2018 Palmisano, Riecke. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Typically it takes up to 10 seconds or more to induce a visual illusion of self-motion ( vection ). However, for this vection to be most useful in virtual reality and vehicle simulation, it needs to be induced quickly, if not immediately. This study examined whether vection onset latency could be reduced towards zero using visual display manipulations alone. In the main experiments, visual self-motion simulations were presented to observers via either a large external display or a head-mounted display (HMD). Priming observers with visually simulated viewpoint oscillation for just ten seconds before the main self-motion display was found to markedly reduce vection onset latencies (and also increase ratings of vection strength) in both experiments. As in earlier studies, incorporating this simulated viewpoint oscillation into the self-motion displays themselves was also found to improve vection. Average onset latencies were reduced from 8-9s in the no oscillating control condition to as little as 4.6 s (for external displays) or 1.7 s (for HMDs) in the combined oscillation condition (when both the visual prime and the main self-motion display were oscillating). As these display manipulations did not appear to increase the likelihood or severity of motion sickness in the current study, they could possibly be used to enhance computer generated simulation experiences and training in the future, at no additional cost

    Influence of Auditory Cues on the visually-induced Self-Motion Illusion (Circular Vection) in Virtual Reality

    Get PDF
    This study investigated whether the visually induced selfmotion illusion (“circular vection”) can be enhanced by adding a matching auditory cue (the sound of a fountain that is also visible in the visual stimulus). Twenty observers viewed rotating photorealistic pictures of a market place projected onto a curved projection screen (FOV: 54°x45°). Three conditions were randomized in a repeated measures within-subject design: No sound, mono sound, and spatialized sound using a generic head-related transfer function (HRTF). Adding mono sound increased convincingness ratings marginally, but did not affect any of the other measures of vection or presence. Spatializing the fountain sound, however, improved vection (convincingness and vection buildup time) and presence ratings significantly. Note that facilitation was found even though the visual stimulus was of high quality and realism, and known to be a powerful vection-inducing stimulus. Thus, HRTF-based auralization using headphones can be employed to improve visual VR simulations both in terms of self-motion perception and overall presence

    Self-motion control of kinematically redundant robot manipulators

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2012Includes bibliographical references (leaves: 88-92)Text in English; Abstract: Turkish and Englishxvi,92 leavesRedundancy in general provides space for optimization in robotics. Redundancy can be defined as sensor/actuator redundancy or kinematic redundancy. The redundancy considered in this thesis is the kinematic redundancy where the total degrees-of-freedom of the robot is more than the total degrees-of-freedom required for the task to be executed. This provides infinite number of solutions to perform the same task, thus, various subtasks can be carried out during the main-task execution. This work utilizes the property of self-motion for kinematically redundant robot manipulators by designing the general subtask controller that controls the joint motion in the null-space of the Jacobian matrix. The general subtask controller is implemented for various subtasks in this thesis. Minimizing the total joint motion, singularity avoidance, posture optimization for static impact force objectives, which include maximizing/minimizing the static impact force magnitude, and static and moving obstacle (point to point) collision avoidance are the subtasks considered in this thesis. New control architecture is developed to accomplish both the main-task and the previously mentioned subtasks. In this architecture, objective function for each subtask is formed. Then, the gradient of the objective function is used in the subtask controller to execute subtask objective while tracking a given end-effector trajectory. The tracking of the end-effector is called main-task. The SCHUNK LWA4-Arm robot arm with seven degrees-of-freedom is developed first in SolidWorks® as a computer-aided-design (CAD) model. Then, the CAD model is converted to MATLAB® Simulink model using SimMechanics CAD translator to be used in the simulation tests of the controller. Kinematics and dynamics equations of the robot are derived to be used in the controllers. Simulation test results are presented for the kinematically redundant robot manipulator operating in 3D space carrying out the main-task and the selected subtasks for this study. The simulation test results indicate that the developed controller’s performance is successful for all the main-task and subtask objectives

    Altered Insular and Occipital Responses to Simulated Vertical Self-Motion in Patients with Persistent Postural-Perceptual Dizziness.

    Get PDF
    BACKGROUND: Persistent postural-perceptual dizziness (PPPD) is a common functional vestibular disorder characterized by persistent symptoms of non-vertiginous dizziness and unsteadiness that are exacerbated by upright posture, self-motion, and exposure to complex or moving visual stimuli. Recent physiologic and neuroimaging data suggest that greater reliance on visual cues for postural control (as opposed to vestibular cues-a phenomenon termed visual dependence) and dysfunction in central visuo-vestibular networks may be important pathophysiologic mechanisms underlying PPPD. Dysfunctions are thought to involve insular regions that encode recognition of the visual effects of motion in the gravitational field. METHODS: We tested for altered activity in vestibular and visual cortices during self-motion simulation obtained via a visual virtual-reality rollercoaster stimulation using functional magnetic resonance imaging in 15 patients with PPPD and 15 healthy controls (HCs). We compared between groups differences in brain responses to simulated displacements in vertical vs horizontal directions and correlated the difference in directional responses with dizziness handicap in patients with PPPD. RESULTS: HCs showed increased activity in the anterior bank of the central insular sulcus during vertical relative to horizontal motion, which was not seen in patients with PPPD. However, for the same comparison, dizziness handicap correlated positively with activity in the visual cortex (V1, V2, and V3) in patients with PPPD. CONCLUSION: We provide novel insight into the pathophysiologic mechanisms underlying PPPD, including functional alterations in brain processes that affect balance control and reweighting of space-motion inputs to favor visual cues. For patients with PPPD, difficulties using visual data to discern the effects of gravity on self-motion may adversely affect balance control, particularly for individuals who simultaneously rely too heavily on visual stimuli. In addition, increased activity in the visual cortex, which correlated with severity of dizziness handicap, may be a neural correlate of visual dependence

    Measuring Vection in a Large Screen Virtual Environment

    Get PDF
    This paper describes the use of a large screen virtual environment to induce the perception of translational and rotational self-motion. We explore two aspects of this problem. Our first study investigates how the level of visual immersion (seeing a reference frame) affects subjective measures of vection. For visual patterns consistent with translation, self-reported subjective measures of self-motion were increased when the floor and ceiling were visible outside of the projection area. When the visual patterns indicated rotation, the strength of the subjective experience of circular vection was unaffected by whether or not the floor and ceiling were visible. We also found that circular vection induced by the large screen display was reported subjectively more compelling than translational vection. The second study we present describes a novel way in which to measure the effects of displays intended to produce a sense of vection. It is known that people unintentionally drift forward if asked to run in place while blindfolded and that adaptations involving perceived linear self-motion can change the rate of drift. We showed for the first time that there is a lateral drift following perceived rotational self-motion and we added to the empirical data associated with the drift effect for translational self-motion by exploring the condition in which the only self-motion cues are visual

    Cybersickness Influences the Affectieve Appraisal of a Virtual Environment

    Get PDF
    We investigated if cybersickness has an effect on the affective appraisal of a virtual environment (VE). For many applications it is essential that users experience the simulated environment in a similar way as the corresponding real one. Navigation through VEs is known to negatively influence the physical well-being of observers by inducing cybersickness. Since people tend to misattribute their feelings to the environment they perceive, cybersicknesss may influence their affective appraisal of a VE. Participants passively watched a simulated walk through a VE, while the visual scene continuously performed a quasi-sinusoidal frontal roll oscillation. Immediately after the exposure, they reported their experienced level of cybersickness and assessed the environment on a semantic differential scale. People experiencing cybersickness rated the environment as less pleasant and more arousing, as compared to people with no symptoms. Thus, users suffering from cybersickness misattributed their unpleasant feelings to the affective qualities of the VE. Applications that rely on VEs to evoke the same emotional and affective user responses as their real equivalent should therefore minimise or account for the incidence of cybersicknes

    Neuroticism modulates brain visuo-vestibular and anxiety systems during a virtual rollercoaster task.

    Get PDF
    Different lines of research suggest that anxiety-related personality traits may influence the visual and vestibular control of balance, although the brain mechanisms underlying this effect remain unclear. To our knowledge, this is the first functional magnetic resonance imaging (fMRI) study that investigates how individual differences in neuroticism and introversion, two key personality traits linked to anxiety, modulate brain regional responses and functional connectivity patterns during a fMRI task simulating self-motion. Twenty-four healthy individuals with variable levels of neuroticism and introversion underwent fMRI while performing a virtual reality rollercoaster task that included two main types of trials: (1) trials simulating downward or upward self-motion (vertical motion), and (2) trials simulating self-motion in horizontal planes (horizontal motion). Regional brain activity and functional connectivity patterns when comparing vertical versus horizontal motion trials were correlated with personality traits of the Five Factor Model (i.e., neuroticism, extraversion-introversion, openness, agreeableness, and conscientiousness). When comparing vertical to horizontal motion trials, we found a positive correlation between neuroticism scores and regional activity in the left parieto-insular vestibular cortex (PIVC). For the same contrast, increased functional connectivity between the left PIVC and right amygdala was also detected as a function of higher neuroticism scores. Together, these findings provide new evidence that individual differences in personality traits linked to anxiety are significantly associated with changes in the activity and functional connectivity patterns within visuo-vestibular and anxiety-related systems during simulated vertical self-motion. Hum Brain Mapp 38:715-726, 2017. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.Italian University Ministry. Grant Number: PRIN grant 2010MEFNF7_002 ; Italian Space Agency. Grant Number: COREA grant 2013-084-R.0This is the final version of the article. It first appeared from Wiley via https://doi.org/10.1002/hbm.2341
    corecore