1,592 research outputs found

    Full-Duplex Versus Half-Duplex Amplify-and-Forward Relaying: Which is More Energy Efficient in 60-GHz Dual-Hop Indoor Wireless Systems?

    Get PDF
    We provide a comprehensive energy efficiency (EE) analysis of the full-duplex (FD) and half-duplex (HD) amplify-and-forward (AF) relay-assisted 60-GHz dual-hop indoor wireless systems, aiming to answer the question of which relaying mode is greener (more energy efficient) and to address the issue of EE optimization. We develop an opportunistic relaying mode selection scheme, where FD relaying with one-stage self-interference cancellation (passive suppression) or two-stage self-interference cancellation (passive suppression + analog cancellation) or HD relaying is opportunistically selected, together with transmission power adaptation, to maximize the EE with given channel gains. A low-complexity joint mode selection and EE optimization algorithm are proposed. We show a counter-intuitive finding that with a relatively loose maximum transmission power constraint, FD relaying with two-stage self-interference cancellation is preferable to both FD relaying with one-stage self-interference cancellation and HD relaying, resulting in a higher optimized EE. A full range of power consumption sources is considered to rationalize our analysis. The effects of imperfect self-interference cancellation at relay, drain efficiency, and static circuit power on EE are investigated. Simulation results verify our theoretical analysis

    High-Precision Channel Estimation for Sub-Noise Self-Interference Cancellation

    Full text link
    Self-interference cancellation plays a crucial role in achieving reliable full-duplex communications. In general, it is essential to cancel the self-interference signal below the thermal noise level, which necessitates accurate reconstruction of the self-interference signal. In this paper, we propose a high-precision channel estimation method specifically designed for sub-noise self-interference cancellation. Exploiting the fact that all transmitted symbols are known to their respective receivers, our method utilizes all transmitted symbols for self-interference channel estimation. Through analytical derivations and numerical simulations, we validate the effectiveness of the proposed method. The results demonstrate the superior performance of our approach in achieving sub-noise self-interference cancellation

    All-Digital Self-interference Cancellation Technique for Full-duplex Systems

    Full text link
    Full-duplex systems are expected to double the spectral efficiency compared to conventional half-duplex systems if the self-interference signal can be significantly mitigated. Digital cancellation is one of the lowest complexity self-interference cancellation techniques in full-duplex systems. However, its mitigation capability is very limited, mainly due to transmitter and receiver circuit's impairments. In this paper, we propose a novel digital self-interference cancellation technique for full-duplex systems. The proposed technique is shown to significantly mitigate the self-interference signal as well as the associated transmitter and receiver impairments. In the proposed technique, an auxiliary receiver chain is used to obtain a digital-domain copy of the transmitted Radio Frequency (RF) self-interference signal. The self-interference copy is then used in the digital-domain to cancel out both the self-interference signal and the associated impairments. Furthermore, to alleviate the receiver phase noise effect, a common oscillator is shared between the auxiliary and ordinary receiver chains. A thorough analytical and numerical analysis for the effect of the transmitter and receiver impairments on the cancellation capability of the proposed technique is presented. Finally, the overall performance is numerically investigated showing that using the proposed technique, the self-interference signal could be mitigated to ~3dB higher than the receiver noise floor, which results in up to 76% rate improvement compared to conventional half-duplex systems at 20dBm transmit power values.Comment: Submitted to IEEE Transactions on Wireless Communication

    Full-Duplex Systems Using Multi-Reconfigurable Antennas

    Full text link
    Full-duplex systems are expected to achieve 100% rate improvement over half-duplex systems if the self-interference signal can be significantly mitigated. In this paper, we propose the first full-duplex system utilizing Multi-Reconfigurable Antenna (MRA) with ?90% rate improvement compared to half-duplex systems. MRA is a dynamically reconfigurable antenna structure, that is capable of changing its properties according to certain input configurations. A comprehensive experimental analysis is conducted to characterize the system performance in typical indoor environments. The experiments are performed using a fabricated MRA that has 4096 configurable radiation patterns. The achieved MRA-based passive self-interference suppression is investigated, with detailed analysis for the MRA training overhead. In addition, a heuristic-based approach is proposed to reduce the MRA training overhead. The results show that at 1% training overhead, a total of 95dB self-interference cancellation is achieved in typical indoor environments. The 95dB self-interference cancellation is experimentally shown to be sufficient for 90% full-duplex rate improvement compared to half-duplex systems.Comment: Submitted to IEEE Transactions on Wireless Communication

    Photonic enabled RF self-interference cancellation for full-duplex communication

    Get PDF
    Photonic enabled RF self-interference cancellation for full-duplex communication by using phase modulation and optical sideband filtering is proposed. Based on the inherent out-of-phase property between the left and right sidebands of phasemodulated signal and optical sideband filtering, the RF self-interference cancellation is achieved by tuning the delay time and amplitude in the optical domain. The operational principle of the proposed scheme is theoretically analyzed and the feasibility is experimentally demonstrated. The optical sideband filtering for the phase modulated signals is measured and the RF self-interference cancellation at different carrier frequencies is studied. The results show a good performance of the proposed photonic scheme for RF self-interference cancellation. The full-duplex communication based on the photonic enabled RF self-interference cancellation is also investigated
    • …
    corecore