147,401 research outputs found

    Benchmarking Measures of Network Influence

    Get PDF
    Identifying key agents for the transmission of diseases (ideas, technology, etc.) across social networks has predominantly relied on measures of centrality on a static base network or a temporally flattened graph of agent interactions. Various measures have been proposed as the best trackers of influence, such as degree centrality, betweenness, and kk-shell, depending on the structure of the connectivity. We consider SIR and SIS propagation dynamics on a temporally-extruded network of observed interactions and measure the conditional marginal spread as the change in the magnitude of the infection given the removal of each agent at each time: its temporal knockout (TKO) score. We argue that the exhaustive approach of the TKO score makes it an effective benchmark measure for evaluating the accuracy of other, often more practical, measures of influence. We find that none of the common network measures applied to the induced flat graphs are accurate predictors of network propagation influence on the systems studied; however, temporal networks and the TKO measure provide the requisite targets for the hunt for effective predictive measures

    Exploiting Query Structure and Document Structure to Improve Document Retrieval Effectiveness

    Get PDF
    In this paper we present a systematic analysis of document retrieval using unstructured and structured queries within the score region algebra (SRA) structured retrieval framework. The behavior of di®erent retrieval models, namely Boolean, tf.idf, GPX, language models, and Okapi, is tested using the transparent SRA framework in our three-level structured retrieval system called TIJAH. The retrieval models are implemented along four elementary retrieval aspects: element and term selection, element score computation, score combination, and score propagation. The analysis is performed on a numerous experiments evaluated on TREC and CLEF collections, using manually generated unstructured and structured queries. Unstructured queries range from the short title queries to long title + description + narrative queries. For generating structured queries we exploit the knowledge of the document structure and the content used to semantically describe or classify documents. We show that such structured information can be utilized in retrieval engines to give more precise answers to user queries then when using unstructured queries

    MHP-VOS: Multiple Hypotheses Propagation for Video Object Segmentation

    Full text link
    We address the problem of semi-supervised video object segmentation (VOS), where the masks of objects of interests are given in the first frame of an input video. To deal with challenging cases where objects are occluded or missing, previous work relies on greedy data association strategies that make decisions for each frame individually. In this paper, we propose a novel approach to defer the decision making for a target object in each frame, until a global view can be established with the entire video being taken into consideration. Our approach is in the same spirit as Multiple Hypotheses Tracking (MHT) methods, making several critical adaptations for the VOS problem. We employ the bounding box (bbox) hypothesis for tracking tree formation, and the multiple hypotheses are spawned by propagating the preceding bbox into the detected bbox proposals within a gated region starting from the initial object mask in the first frame. The gated region is determined by a gating scheme which takes into account a more comprehensive motion model rather than the simple Kalman filtering model in traditional MHT. To further design more customized algorithms tailored for VOS, we develop a novel mask propagation score instead of the appearance similarity score that could be brittle due to large deformations. The mask propagation score, together with the motion score, determines the affinity between the hypotheses during tree pruning. Finally, a novel mask merging strategy is employed to handle mask conflicts between objects. Extensive experiments on challenging datasets demonstrate the effectiveness of the proposed method, especially in the case of object missing.Comment: accepted to CVPR 2019 as oral presentatio

    Uncertainty in the Design Stage of Two-Stage Bayesian Propensity Score Analysis

    Full text link
    The two-stage process of propensity score analysis (PSA) includes a design stage where propensity scores are estimated and implemented to approximate a randomized experiment and an analysis stage where treatment effects are estimated conditional upon the design. This paper considers how uncertainty associated with the design stage impacts estimation of causal effects in the analysis stage. Such design uncertainty can derive from the fact that the propensity score itself is an estimated quantity, but also from other features of the design stage tied to choice of propensity score implementation. This paper offers a procedure for obtaining the posterior distribution of causal effects after marginalizing over a distribution of design-stage outputs, lending a degree of formality to Bayesian methods for PSA (BPSA) that have gained attention in recent literature. Formulation of a probability distribution for the design-stage output depends on how the propensity score is implemented in the design stage, and propagation of uncertainty into causal estimates depends on how the treatment effect is estimated in the analysis stage. We explore these differences within a sample of commonly-used propensity score implementations (quantile stratification, nearest-neighbor matching, caliper matching, inverse probability of treatment weighting, and doubly robust estimation) and investigate in a simulation study the impact of statistician choice in PS model and implementation on the degree of between- and within-design variability in the estimated treatment effect. The methods are then deployed in an investigation of the association between levels of fine particulate air pollution and elevated exposure to emissions from coal-fired power plants
    corecore