147,401 research outputs found
Benchmarking Measures of Network Influence
Identifying key agents for the transmission of diseases (ideas, technology,
etc.) across social networks has predominantly relied on measures of centrality
on a static base network or a temporally flattened graph of agent interactions.
Various measures have been proposed as the best trackers of influence, such as
degree centrality, betweenness, and -shell, depending on the structure of
the connectivity. We consider SIR and SIS propagation dynamics on a
temporally-extruded network of observed interactions and measure the
conditional marginal spread as the change in the magnitude of the infection
given the removal of each agent at each time: its temporal knockout (TKO)
score. We argue that the exhaustive approach of the TKO score makes it an
effective benchmark measure for evaluating the accuracy of other, often more
practical, measures of influence. We find that none of the common network
measures applied to the induced flat graphs are accurate predictors of network
propagation influence on the systems studied; however, temporal networks and
the TKO measure provide the requisite targets for the hunt for effective
predictive measures
Exploiting Query Structure and Document Structure to Improve Document Retrieval Effectiveness
In this paper we present a systematic analysis of document
retrieval using unstructured and structured queries within
the score region algebra (SRA) structured retrieval framework. The behavior of di®erent retrieval models, namely
Boolean, tf.idf, GPX, language models, and Okapi, is tested
using the transparent SRA framework in our three-level structured retrieval system called TIJAH. The retrieval models are implemented along four elementary retrieval aspects: element and term selection, element score computation, score combination, and score propagation.
The analysis is performed on a numerous experiments
evaluated on TREC and CLEF collections, using manually
generated unstructured and structured queries. Unstructured queries range from the short title queries to long title
+ description + narrative queries. For generating structured
queries we exploit the knowledge of the document structure
and the content used to semantically describe or classify
documents. We show that such structured information can
be utilized in retrieval engines to give more precise answers to user queries then when using unstructured queries
MHP-VOS: Multiple Hypotheses Propagation for Video Object Segmentation
We address the problem of semi-supervised video object segmentation (VOS),
where the masks of objects of interests are given in the first frame of an
input video. To deal with challenging cases where objects are occluded or
missing, previous work relies on greedy data association strategies that make
decisions for each frame individually. In this paper, we propose a novel
approach to defer the decision making for a target object in each frame, until
a global view can be established with the entire video being taken into
consideration. Our approach is in the same spirit as Multiple Hypotheses
Tracking (MHT) methods, making several critical adaptations for the VOS
problem. We employ the bounding box (bbox) hypothesis for tracking tree
formation, and the multiple hypotheses are spawned by propagating the preceding
bbox into the detected bbox proposals within a gated region starting from the
initial object mask in the first frame. The gated region is determined by a
gating scheme which takes into account a more comprehensive motion model rather
than the simple Kalman filtering model in traditional MHT. To further design
more customized algorithms tailored for VOS, we develop a novel mask
propagation score instead of the appearance similarity score that could be
brittle due to large deformations. The mask propagation score, together with
the motion score, determines the affinity between the hypotheses during tree
pruning. Finally, a novel mask merging strategy is employed to handle mask
conflicts between objects. Extensive experiments on challenging datasets
demonstrate the effectiveness of the proposed method, especially in the case of
object missing.Comment: accepted to CVPR 2019 as oral presentatio
Uncertainty in the Design Stage of Two-Stage Bayesian Propensity Score Analysis
The two-stage process of propensity score analysis (PSA) includes a design
stage where propensity scores are estimated and implemented to approximate a
randomized experiment and an analysis stage where treatment effects are
estimated conditional upon the design. This paper considers how uncertainty
associated with the design stage impacts estimation of causal effects in the
analysis stage. Such design uncertainty can derive from the fact that the
propensity score itself is an estimated quantity, but also from other features
of the design stage tied to choice of propensity score implementation. This
paper offers a procedure for obtaining the posterior distribution of causal
effects after marginalizing over a distribution of design-stage outputs,
lending a degree of formality to Bayesian methods for PSA (BPSA) that have
gained attention in recent literature. Formulation of a probability
distribution for the design-stage output depends on how the propensity score is
implemented in the design stage, and propagation of uncertainty into causal
estimates depends on how the treatment effect is estimated in the analysis
stage. We explore these differences within a sample of commonly-used propensity
score implementations (quantile stratification, nearest-neighbor matching,
caliper matching, inverse probability of treatment weighting, and doubly robust
estimation) and investigate in a simulation study the impact of statistician
choice in PS model and implementation on the degree of between- and
within-design variability in the estimated treatment effect. The methods are
then deployed in an investigation of the association between levels of fine
particulate air pollution and elevated exposure to emissions from coal-fired
power plants
- …