648 research outputs found

    Correction: Space-charge accumulation and band bending at conductive P3HT/PDIF-CN<sub>2</sub> interfaces investigated by scanning-Kelvin probe microscopy

    Get PDF
    Correction for 'Space-charge accumulation and band bending at conductive P3HT/PDIF-CN2 interfaces investigated by scanning-Kelvin probe microscopy' by Federico Chianese et al., J. Mater. Chem. C, 2021, DOI: 10.1039/d1tc04840f

    Mechanism of Polarization Fatigue in BiFeO3: the Role of Schottky Barrier

    Full text link
    By using piezoelectric force microscopy and scanning Kelvin probe microscopy, we have investigated the domain evolution and space charge distribution in planar BiFeO3 capacitors with different electrodes. It is observed that charge injection at the film/electrode interface leads to domain pinning and polarization fatigue in BiFeO3. Furthermore, the Schottky barrier at the interface is crucial for the charge injection process. Lowering the Schottky barrier by using low work function metals as the electrodes can also improve the fatigue property of the device, similar to what oxide electrodes can achieve

    Modifying the surface electronic properties of YBa2Cu3O7-delta with cryogenic scanning probe microscopy

    Full text link
    We report the results of a cryogenic study of the modification of YBa2Cu3O7-delta surface electronic properties with the probe of a scanning tunneling microscope (STM). A negative voltage applied to the sample during STM tunneling is found to modify locally the conductance of the native degraded surface layer. When the degraded layer is removed by etching, the effect disappears. An additional surface effect is identified using Scanning Kelvin Probe Microscopy in combination with STM. We observe reversible surface charging for both etched and unetched samples, indicating the presence of a defect layer even on a surface never exposed to air.Comment: 6 pages, 4 figures. To appear in Superconductor Science and Technolog

    Surface band bending of a-plane GaN studied by scanning Kelvin probe microscopy

    Get PDF
    We report the value of surface band bending for undoped, a-plane GaN layers grown on r-plane sapphire by metalorganic vapor phase epitaxy. The surface potential was measured directly by ambient scanning Kelvin probe microscopy. The upward surface band bending of GaN films grown in the [112¯0] direction was found to be 1.1±0.1V. Because polarization effects are not present on a-plane GaN, we attribute such band bending to the presence of charged surface states. We have modeled the surface band bending assuming a localized level of surface states in the band gap on the surface. It should be noted that the band bending observed for a-plane layers is comparable to that obtained on polar c-plane layers, and both a-plane and c-plane GaN films with similar surface treatments demonstrate comparable band bending behavior, indicating that charged surface states dominate band banding in both cases

    Tuning the graphene work function by electric field effect

    Full text link
    We report variation of the work function for single and bi-layer graphene devices measured by scanning Kelvin probe microscopy (SKPM). Using the electric field effect, the work function of graphene can be adjusted as the gate voltage tunes the Fermi level across the charge neutrality point. Upon biasing the device, the surface potential map obtained by SKPM provides a reliable way to measure the contact resistance of individual electrodes contacting graphene.Comment: 11 pages and 8 figures including supplementary information, to appear in Nano Letter

    Origin of multiple memory states in organic ferroelectric field-effect transistors

    Get PDF
    In this work, we investigate the ferroelectric polarization state in metal-ferroelectric-semiconductor-metal structures and in ferroelectric field-effect transistors (FeFET). Poly(vinylidene fluoride-trifluoroethylene) and pentacene was used as the ferroelectric and semiconductor, respectively. This material combination in a bottom gate—top contact transistor architecture exhibits three reprogrammable memory states by applying appropriate gate voltages. Scanning Kelvin probe microscopy in conjunction with standard electrical characterization techniques reveals the state of the ferroelectric polarization in the three memory states as well as the device operation of the FeFET

    Charging of highly resistive granular metal films

    Full text link
    We have used the Scanning Kelvin probe microscopy technique to monitor the charging process of highly resistive granular thin films. The sample is connected to two leads and is separated by an insulator layer from a gate electrode. When a gate voltage is applied, charges enter from the leads and rearrange across the sample. We find very slow processes with characteristic charging times exponentially distributed over a wide range of values, resulting in a logarithmic relaxation to equilibrium. After the gate voltage has been switched off, the system again relaxes logarithmically slowly to the new equilibrium. The results cannot be explained with diffusion models, but most of them can be understood with a hopping percolation model, in which the localization length is shorter than the typical site separation. The technique is very promising for the study of slow phenomena in highly resistive systems and will be able to estimate the conductance of these systems when direct macroscopic measurement techniques are not sensitive enough.Comment: 8 pages, 7 figure

    Water-Gated Charge Doping of Graphene Induced by Mica Substrates

    Full text link
    We report on the existence of water-gated charge doping of graphene deposited on atomically flat mica substrates. Molecular films of water in units of ~0.4 nm-thick bilayers were found to be present in regions of the interface of graphene/mica hetero-stacks prepared by micromechanical exfoliation of kish graphite. The spectral variation of the G and 2D bands, as visualized by Raman mapping, shows that mica substrates induce strong p-type doping in graphene, with hole densities of (9±2)×1012cm(9 \pm 2) \times 1012 cm{-2}$. The ultrathin water films, however, effectively block interfacial charge transfer, rendering graphene significantly less hole-doped. Scanning Kelvin probe microscopy independently confirmed a water-gated modulation of the Fermi level by 0.35 eV, in agreement with the optically determined hole density. The manipulation of the electronic properties of graphene demonstrated in this study should serve as a useful tool in realizing future graphene applications.Comment: 15 pages, 4 figures; Nano Letters, accepted (2012

    Charge trapping in polymer transistors probed by terahertz spectroscopy and scanning probe potentiometry

    Full text link
    Terahertz time-domain spectroscopy and scanning probe potentiometry were used to investigate charge trapping in polymer field-effect transistors fabricated on a silicon gate. The hole density in the transistor channel was determined from the reduction in the transmitted terahertz radiation under an applied gate voltage. Prolonged device operation creates an exponential decay in the differential terahertz transmission, compatible with an increase in the density of trapped holes in the polymer channel. Taken in combination with scanning probe potentionmetry measurements, these results indicate that device degradation is largely a consequence of hole trapping, rather than of changes to the mobility of free holes in the polymer.Comment: 4 pages, 3 figure
    corecore