542 research outputs found

    The Blind Watchmaker Network: Scale-freeness and Evolution

    Get PDF
    It is suggested that the degree distribution for networks of the cell-metabolism for simple organisms reflects an ubiquitous randomness. This implies that natural selection has exerted no or very little pressure on the network degree distribution during evolution. The corresponding random network, here termed the blind watchmaker network has a power-law degree distribution with an exponent gamma >= 2. It is random with respect to a complete set of network states characterized by a description of which links are attached to a node as well as a time-ordering of these links. No a priory assumption of any growth mechanism or evolution process is made. It is found that the degree distribution of the blind watchmaker network agrees very precisely with that of the metabolic networks. This implies that the evolutionary pathway of the cell-metabolism, when projected onto a metabolic network representation, has remained statistically random with respect to a complete set of network states. This suggests that even a biological system, which due to natural selection has developed an enormous specificity like the cellular metabolism, nevertheless can, at the same time, display well defined characteristics emanating from the ubiquitous inherent random element of Darwinian evolution. The fact that also completely random networks may have scale-free node distributions gives a new perspective on the origin of scale-free networks in general.Comment: 5 pages, 3 figure

    Azimuthal Anisotropy in High Energy Nuclear Collision - An Approach based on Complex Network Analysis

    Get PDF
    Recently, a complex network based method of Visibility Graph has been applied to confirm the scale-freeness and presence of fractal properties in the process of multiplicity fluctuation. Analysis of data obtained from experiments on hadron-nucleus and nucleus-nucleus interactions results in values of Power-of-Scale-freeness-of-Visibility-Graph-(PSVG) parameter extracted from the visibility graphs. Here, the relativistic nucleus-nucleus interaction data have been analysed to detect azimuthal-anisotropy by extending the Visibility Graph method and extracting the average clustering coefficient, one of the important topological parameters, from the graph. Azimuthal-distributions corresponding to different pseudorapidity-regions around the central-pseudorapidity value are analysed utilising the parameter. Here we attempt to correlate the conventional physical significance of this coefficient with respect to complex-network systems, with some basic notions of particle production phenomenology, like clustering and correlation. Earlier methods for detecting anisotropy in azimuthal distribution, were mostly based on the analysis of statistical fluctuation. In this work, we have attempted to find deterministic information on the anisotropy in azimuthal distribution by means of precise determination of topological parameter from a complex network perspective

    Scale-freeness for networks as a degenerate ground state: A Hamiltonian formulation

    Full text link
    The origin of scale-free degree distributions in the context of networks is addressed through an analogous non-network model in which the node degree corresponds to the number of balls in a box and the rewiring of links to balls moving between the boxes. A statistical mechanical formulation is presented and the corresponding Hamiltonian is derived. The energy, the entropy, as well as the degree distribution and its fluctuations are investigated at various temperatures. The scale-free distribution is shown to correspond to the degenerate ground state, which has small fluctuations in the degree distribution and yet a large entropy. We suggest an implication of our results from the viewpoint of the stability in evolution of networks.Comment: 7 pages, 3 figures. To appear in Europhysics lette

    Models and average properties of scale-free directed networks

    Full text link
    We extend the merging model for undirected networks by Kim et al. [Eur. Phys. J. B 43, 369 (2004)] to directed networks and investigate the emerging scale-free networks. Two versions of the directed merging model, friendly and hostile merging, give rise to two distinct network types. We uncover that some non-trivial features of these two network types resemble two levels of a certain randomization/non-specificity in the link reshuffling during network evolution. Furthermore the same features show up, respectively, in metabolic networks and transcriptional networks. We introduce measures that single out the distinguishing features between the two prototype networks, as well as point out features which are beyond the prototypes.Comment: 7 pages, 8 figure

    Increased signaling entropy in cancer requires the scale-free property of protein interaction networks

    Full text link
    One of the key characteristics of cancer cells is an increased phenotypic plasticity, driven by underlying genetic and epigenetic perturbations. However, at a systems-level it is unclear how these perturbations give rise to the observed increased plasticity. Elucidating such systems-level principles is key for an improved understanding of cancer. Recently, it has been shown that signaling entropy, an overall measure of signaling pathway promiscuity, and computable from integrating a sample's gene expression profile with a protein interaction network, correlates with phenotypic plasticity and is increased in cancer compared to normal tissue. Here we develop a computational framework for studying the effects of network perturbations on signaling entropy. We demonstrate that the increased signaling entropy of cancer is driven by two factors: (i) the scale-free (or near scale-free) topology of the interaction network, and (ii) a subtle positive correlation between differential gene expression and node connectivity. Indeed, we show that if protein interaction networks were random graphs, described by Poisson degree distributions, that cancer would generally not exhibit an increased signaling entropy. In summary, this work exposes a deep connection between cancer, signaling entropy and interaction network topology.Comment: 20 pages, 5 figures. In Press in Sci Rep 201

    Scale-Free Networks beyond Power-Law Degree Distribution

    Full text link
    Complex networks across various fields are often considered to be scale free -- a statistical property usually solely characterized by a power-law distribution of the nodes' degree kk. However, this characterization is incomplete. In real-world networks, the distribution of the degree-degree distance η\eta, a simple link-based metric of network connectivity similar to kk, appears to exhibit a stronger power-law distribution than kk. While offering an alternative characterization of scale-freeness, the discovery of η\eta raises a fundamental question: do the power laws of kk and η\eta represent the same scale-freeness? To address this question, here we investigate the exact asymptotic {relationship} between the distributions of kk and η\eta, proving that every network with a power-law distribution of kk also has a power-law distribution of η\eta, but \emph{not} vice versa. This prompts us to introduce two network models as counterexamples that have a power-law distribution of η\eta but not kk, constructed using the preferential attachment and fitness mechanisms, respectively. Both models show promising accuracy by fitting only one model parameter each when modeling real-world networks. Our findings suggest that η\eta is a more suitable indicator of scale-freeness and can provide a deeper understanding of the universality and underlying mechanisms of scale-free networks

    All scale-free networks are sparse

    Get PDF
    We study the realizability of scale free-networks with a given degree sequence, showing that the fraction of realizable sequences undergoes two first-order transitions at the values 0 and 2 of the power-law exponent. We substantiate this finding by analytical reasoning and by a numerical method, proposed here, based on extreme value arguments, which can be applied to any given degree distribution. Our results reveal a fundamental reason why large scale-free networks without constraints on minimum and maximum degree must be sparse.Comment: 4 pages, 2 figure
    • …
    corecore