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Recently, a complex network basedmethod of visibility graph has been applied to confirm the scale-freeness and presence of fractal
properties in the process of multiplicity fluctuation. Analysis of data obtained from experiments on hadron-nucleus and nucleus-
nucleus interactions results in values of Power of Scale-Freeness of Visibility Graph (PSVG) parameter extracted from the visibility
graphs. Here, the relativistic nucleus-nucleus interaction data have been analysed to detect azimuthal anisotropy by extending
the visibility graph method and extracting the average clustering coefficient, one of the important topological parameters, from
the graph. Azimuthal-distributions corresponding to different pseudorapidity regions around the central pseudorapidity value are
analysed utilising the parameter. Here we attempt to correlate the conventional physical significance of this coefficient with respect
to complex network systems, with some basic notions of particle production phenomenology, like clustering and correlation. Earlier
methods for detecting anisotropy in azimuthal distribution were mostly based on the analysis of statistical fluctuation. In this work,
we have attempted to find deterministic information on the anisotropy in azimuthal distribution bymeans of precise determination
of topological parameter from a complex network perspective.

1. Introduction

Many authors have probed the azimuthal anisotropy of the
produced particles in ultrarelativistic heavy-ion collisions
as a function of transverse momentum and it has been
used as one of the major observables to study the collective
properties of nuclear matter [Ex. [1]]. The initial volume
enclosing the interacting nucleons is essentially anisotropic
in coordinate space, because of the geometry of noncentral
heavy-ion collisions. The initial coordinate space anisotropy
of the overlapping zone of the colliding nuclei, in which
the produced nuclear matter thermalization transforms via
reciprocal interactions into the final state anisotropy in the
momentum space. This area has been a field of immense
interest in the recent past.

The azimuthal anisotropic distribution in momentum
space has been analysed using Fourier series [2], where the
first few harmonicas have been referred to as directed flow,
elliptical flow, and so on, and in general different harmonics
will have different symmetry planes. In case of an idealized

initial geometry of heavy-ion interactions, all symmetry
planes coincide to the reaction plane of the collision, which is
constituted by the impact parameter and the beam axis. If one
uses just the orthogonality properties of trigonometric func-
tions, the Fourier series can produce some nonvanishing flow
harmonics which can not confirm whether the azimuthal
anisotropic distribution in momentum space has originated
from a collective anisotropic flow or from some other fully
unrelated physical process capable of yielding event-by-event
anisotropies (as, for example, minijets) [3]. Hence, more
rigorous attempts were made to analyse collective behaviour
from different perspectives which could disentangle it from
the processes which normally involve only a smaller subset
of the produced particles termed as nonflow [3]. The use
of correlation-based techniques by including two or more
particles has eventually led to multiparticle correlation tech-
niques. Recently, Bilandzic et al. have suggested that if all
produced particles are independently emitted and correlated
only to a few common reference planes, then the presence of
azimuthal anisotropy can be confirmed [3]. This has already
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been confirmed mathematically in [4]. Sarkisyan [5] has
analysed the parametrization of multiplicity distributions of
the produced hadrons in high-energy interaction to describe
higher order genuine correlations [6] and established the
necessity of incorporating the multiparticle correlations with
the property of self-similarity to achieve a good description
of the measurements. Wang et al. [7] and Jiang et al. [8] were
the first to go beyond two-particle azimuthal correlations,
in terms of experimental analysis. However, it did not work
for increased number of particles in such multiplets. The
joint probability distribution of𝑀 number of particles with
an 𝑀-multiplicity event has been applied theoretically, for
the first time, in flow analysis of global event shapes [4]
and then in other studies [1]. Borghini et al. have further
reported a series of analysis on multiparticle correlations
and cumulants [9]. Two- and multiparticle cumulants had
drawbacks stemming from trivial and nonnegligible con-
tributions from autocorrelations, which generates interfer-
ence among various harmonics. Then Lee-Yang Zero (LYZ)
method [10, 11] filters out the authentic multiparticle estimate
for flow harmonics, equivalent to the asymptotic behaviour
of the cumulant series. But this approach has its own
integral systematic biases. Most recently, Bilandzic et al.
have proposed the 𝑄-cumulants by implementing Voloshin’s
fundamental idea of manifesting multiparticle azimuthal
correlations in terms of 𝑄-vectors assessed for different
harmonics [12]. Though previous drawbacks are partially
removed the method is very monotonous as calculation and
hence could be accomplished only for a small subset of
multiparticle azimuthal correlations. Bilandzic et al. have
provided a generic framework which allows all multiparticle
azimuthal correlations to be evaluated analytically, with a
fast single pass over the data [3]. It removed previous lim-
itations and new multiparticle azimuthal observables could
be obtained experimentally. But in this method a systematic
bias has been found, when all particles got divided into two
groups, one of reference particles and the other particles of
interest.

The evidences of self-similar characteristics in high-
energy interactions have connections to the idea of fractality.
In view of these, study of azimuthal anisotropy can also be
attempted using differentmethods that are based on fractality
of a complex system. It started from the introduction of
intermittency by Bialas andPeschanski [13], for the analysis of
large fluctuations, where the power-lawbehaviour (indicating
self-similarity) of the factorial moments with decreasing
size of phase-space intervals was confirmed. A relationship
between the anomalous fractal dimension and intermittency
indices has been established by Paladin and Vulpiani [14].
The evolution of scaling-law (thereby self-similarity) in small
phase-space domains has been reviewed in terms of particle
correlations and fluctuations in different high-energy multi-
particle collisions by DeWolf et al. [15], and eventually a rela-
tionship between fractality and intermittency inmultiparticle
final states has been established.The built-in cascadingmech-
anism in the multiparticle production process [16], naturally
gives rise to a fractal structure to form the spectrum of fractal
dimensions, and hence the presence of scale invariance in the
hadronization process is evident. Further, various methods

based on the fractal theory have been utilised to examine
the multiparticle emission data [14, 17–20], and two of them,
the 𝐺𝑞 moment and 𝑇𝑞 moment methods, were developed,
respectively, by Ghosh et al. and implemented extensively
to similar systems [21]. Then techniques like the Detrended
Fluctuation Analysis (DFA) method [22] and Multifractal-
DFA (MF-DFA) method [23] were introduced for analysing
fractal and multifractal behaviour of fluctuations in high-
energy interactions.

Recently, novel approaches to analyse complex networks
have been proposed. Various natural systems can be termed
as complex, and heterogeneous systems consisting of various
kinds of fundamental units which communicate among
themselves through varied interactions (namely, long-range
and short-range interactions). Complex network based sys-
tems present us with a quantitative model for large-scale
natural systems (in the various fields like physics, biology,
and social sciences). The topological parameters extracted
from these complex networks provide us with important
information about the nature of the real system. The latest
advances in the field of complex networks have been reviewed
and the analytical models for random graphs, small-world,
and scale-free networks have been analysed in the recent past
[24, 25]. Havlin et al. have reported the relevance of network
sciences to the analysis, perception, design, and repair of
multilevel complex systems which are found in man-made
and human social systems, in organic and inorganic matter,
in various scales (from nano to macro), in natural and in
anthropogenic systems [26]. Zhao et al. have investigated the
dynamics of stock market, using correlation-based network,
and identified global expansion and local clustering market
behaviours during crises, using the heterogeneous time scales
[27].

Lacasa et al. have introduced a very interestingmethod of
visibility graph analysis [28, 29] that has gained importance
because of its completely different, rigorous approach to
estimate fractality. They have started applying the classical
method of complex network analysis to measure long-
range dependence and fractality of a time series [29]. Using
fractional Brownian motion (fBm) and fractional Gaussian
noises (fGn) series as a theoretical framework, they have
experimented over real time series in various scientific fields.
They have converted fractional Brownian motion (fBm)
and fractional Gaussian noises (fGn) series into a scale-free
visibility graph having degree distribution as a function of
the Hurst parameter associated with the fractal dimension
which is the degree of fractality of the time series and can
be deduced from the Detrended Fluctuation Analysis (DFA)
of the time series [23]. Recently, multiplicity fluctuation in𝜋−-AgBr interaction at an incident energy of 350GeV and
32S-AgBr interaction at an incident energy of 200AGeV
have been analysed using visibility graph method [30] and
the fractality of void probability distribution in 32S-Ag/Br
interaction at an incident energy of 200GeV per nucleon
has also been analysed, using the same method (see [31] and
reference there in).

Motivated by the findings obtained from the previous
studies in this work the azimuthal anisotropy was studied



Advances in High Energy Physics 3

using the 32S-AgBr interaction at 200AGeV by extending the
complex network based visibility graph method. The average
clustering coefficient [32], one of the important topological
parameters, is extracted from the visibility graph constructed
from the azimuthal distribution data corresponding to sev-
eral pseudorapidity regions around the central pseudorapid-
ity. The scale-freeness and fractal and multifractal properties
of the process of multiparticle production have already
been confirmed in [33–36], by using the DFA and MF-
DFA methods. Recently, complex network based visibility
graph method has been applied over data collected from𝜋−-AgBr interaction at 350GeV and 32S-AgBr interaction
at 200AGeV, and then by analysing the Power of Scale-
Freeness of Visibility Graph (PSVG) [28, 29, 37] parameter
extracted from the graphs, the scale-freeness and fractal
properties of the process of particle production have been
established [30, 31]. Mali et al. have applied visibility, hori-
zontal visibility graphs, and the sandbox algorithm to analyse
multiparticle emission data in high-energy nucleus-nucleus
collisions in [38, 39]. The topological parameters of the
visibility graphs have their usual significance with respect to
the complex network systems. Here we attempted to correlate
the physical significance of average clustering coefficient
with some fundamental notions of particle production phe-
nomenology, like clustering and correlation. Earlier meth-
ods for detecting anisotropy in azimuthal distribution were
mostly based on the analysis of statistical fluctuation. So,
in this work, we have attempted to analyse the azimuthal
distribution using the approach of complex network which
gives more deterministic information about the anisotropy
in azimuthal distribution by means of precise topological
parameters.

The rest of the paper is organized as follows. The method
of visibility graph algorithm and the significance of complex
network parameters like scale-freeness and average clustering
coefficient are presented in Section 2. The data description
and related terminologies are elaborated in Section 3.1. The
details of our analysis are given in Section 3.2. The physical
significance of the network parameter and its prospective cor-
relation with the traditional concepts of azimuthal anisotropy
in heavy-ion collisions is elaborated in Section 3.3, and the
paper is concluded in Section 4.

2. Method of Analysis

As per the visibility graph method, a graph can be formed for
a time or data series according to the visibility of each node
from the rest of the nodes [29]. In this way the visibility graph
preserves the dynamics of the fluctuation of the data present
within it. Hence periodic series is transformed to a regular
graph, random series to a randomgraph, and naturally fractal
series to a scale-free network in which the graph’s degree
distribution conforms to the power-law with respect to its
degree. Thus a fractal series can be mapped into a scale-free
visibility graph [29], which is also from a series with finite
number of data points [40]. However, other nonstationary
and nonlinear methods like DFA and MF-DFA require an
infinite number of data points as input for yielding accurate
result
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Figure 1: Visibility graph for time series𝑋.

2.1. Visibility Graph Method. Let us suppose that the value of
the 𝑖th (in the sequence of the input data series) point of time
series is 𝑋𝑖. In this way all the input data points are mapped
to their corresponding nodes or vertices (according to their
value or magnitude). In this node-series, two nodes, say 𝑋𝑚
and𝑋𝑛, corresponding to the𝑚th and 𝑛th points in the time
series are said to be visible to each other or in other words
joined by a two-way edge, if and only if the following equation
is satisfied. In this way, a visibility graph is constructed out of
a time series𝑋:

𝑋𝑚+𝑗 < 𝑋𝑛 + (𝑛 − (𝑚 + 𝑗)
𝑛 − 𝑚 ) ⋅ (𝑋𝑚 − 𝑋𝑛) , (1)

where ∀𝑗 ∈ 𝑍+ and 𝑗 < (𝑛 − 𝑚). The nodes 𝑋𝑚 and 𝑋𝑛
with 𝑚 = 𝑖 and 𝑛 = 𝑖 + 6 are shown in Figure 1 where the
nodes 𝑋𝑚 and 𝑋𝑛 are visible to each other and connected
with a bidirectional edge as they satisfy (1). It is evident that
the sequential nodes are always connected as two sequential
points of the time or data series can always see each other.

The degree of a node of the graph, here visibility graph,
is the number of connections/edges a node has with the rest
of the nodes in the graph. Hence, the degree distribution of
a network, say 𝑃(𝑘), is defined as the fraction of nodes in
the network having degree 𝑘. Let us assume that there are 𝑛𝑘
number of nodes with degree 𝑘 and 𝑛 is the total number of
nodes present in a network; then 𝑃(𝑘) = 𝑛𝑘/𝑛 for all probable𝑘-s.

According to Lacasa et al. [28, 29] and Ahmadlou et
al. [37], the degree of scale-freeness of visibility graph cor-
responds to the degree of fractality and complexity of the
input time or data series. The manifestation of the scale-
freeness property of a visibility graph is reflected in its degree
distribution, which must obey a power-law. It means that,
for a visibility graph, 𝑃(𝑘) ∼ 𝑘−𝜆𝑝 is satisfied, where 𝜆𝑝, a
constant, is called the Power of the Scale-Freeness in Visibility
Graph or PSVG. PSVG, thus, signifies the degree of self-
similarity and fractality and is, therefore, a measurement of
complexity of the input time series and is linearly related to
the fractal dimension of the time series [28, 29, 37]. Also,
there is an inverse linear relationship between PSVG and the
Hurst exponent of the time series [29].

2.2. Average Clustering Coefficient. We know that by defini-
tion a cluster in a network is a set of nodes with similar
features. In this experiment, we have extracted clusters of
particles based on a density-based algorithm proposed by
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Ester et al. [41] from the visibility networks constructed from
various experimental data sets. The algorithm followed is
underlined below.

For a given set of points in some space, the points that
are closely packed together or points with numerous nearby
neighbours are grouped together to form clusters. Here, the
density of nodes has been measured in terms of number of
nodes (which has a threshold value; let’s denote it by 𝛿 in
our experiment) between each pair of visible nodes in the
visibility graph, to form clusters. That means the closeness of
the nodes to be included in a particular cluster is measured
in terms of proximity as well as in terms of the visibility
with respect to each other. For each node (let’s denote by 𝑛𝑎),
among all nodes that are visible from 𝑛𝑎, (let’s denote them by{𝑛𝑏1, 𝑛𝑏2, . . . , 𝑛𝑏𝑛}) those having a count less than 𝛿, between
each node ∈ {𝑛𝑏1, 𝑛𝑏2, . . . , 𝑛𝑏𝑛} and the source node 𝑛𝑎, remain
in the same cluster. Naturally, these nodes are both visible
from and close to the source node 𝑛𝑎. In this way the cluster
data sets are formed for each visibility graph. Then for each
of the data sets corresponding to a particular cluster, again
visibility graphs are constructed and the average clustering
coefficient is extracted from each of these graphs.

Clustering coefficient is the calculation of the extent to
which nodes in a graph have the tendency to cluster together.
Average clustering coefficient has been defined by Watts and
Strogatz [32] as the overall clustering coefficient of a network,
which is estimated as the mean local clustering coefficient
of all the nodes in the network. For each node present in a
visibility graph, the more visible its neighbouring nodes are,
the more correlated and clustered these neighbours will be.
In this way for each node the correlation between its neigh-
bouring nodes is calculated and finally the average clustering
coefficient of the particular visibility graph is measured. High
value of this coefficient indicates the robustness of a network.

3. Experimental Details

3.1. Data Description. The experimental data has been col-
lected by exposing Illford G5 emulsion plates to a 32S-beam
of 200GeV per nucleon incident energy, from CERN. A
Leitz Metaloplan microscope having 10x ocular lens and
equipped with a semiautomatic scanning stage was used
to examine the plate. Each plate was examined by two
observers to increase the accuracy in detection, counting,
and measurement. For the angle measurement of tracks,
an oil immersion-100x objective was used. The measuring
system has 1 𝜇𝑚 resolution along𝑋- and 𝑌-axes, and 0.5 𝜇m
resolution along 𝑍-axis.

In the previous works [31, 42] the basis for event selection
is already explained. In the context of nuclear emulsion [43],
after interactions the emitted particles of different categories
result in shower, grey, and black tracks.

3.2. Method of Analysis. In [30] the pseudorapidity space for
10 overlapping intervals around the central pseudorapidity
value (denoted by 𝑐𝑟) of the 32S-AgBr interaction has been
analysed using the visibility graph method.There, it has been
established that the multiplicity fluctuation in high- energy
interaction follows scaling laws in pseudorapidity space.
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Figure 2: 5 clusters extracted from the azimuthal space correspond-
ing to a sample pseudorapidity data set around 𝑐𝑟 for 32S-AgBr
(200AGeV) interaction.

In this experiment, we have considered the azimuthal
angles of the shower tracks belonging to four overlapping
pseudorapidity intervals centered around 𝑐𝑟, from the same
interaction to analyse the fluctuation and to identify the
clustering pattern from a complex network perspective, and
attempted to detect whether the azimuthal fluctuation is
also self-similar in nature and follows scaling laws. Further
the presence of azimuthal anisotropy has been probed by
extracting the clusters and calculating the average clustering
coefficient, for each of the four 𝜙-data sets, in the light of
conventional concept of multiparticle correlations.

The detailed steps for the analysis are described below.

(1) For each of the 4 overlapping pseudorapidity intervals
centered around 𝑐𝑟 (the range of the 𝜂-values is
indicated by 𝑐𝑟 −Δ𝜂 to 𝑐𝑟 +Δ𝜂, where Δ𝜂 varies from 1
to 4), the𝜙-values of the shower tracks are considered,
and this way the 4 input data sets for the experiment
are formed. Four visibility graphs are constructed
according to the method described in Section 2.1.

(2) Then clusters are extracted following the density-
based algorithm proposed by Ester et al. [41] from
each of the 4 visibility graphs and one set of data
points corresponding to each of the clusters is
obtained. Figure 2 shows a specimen of 5 clusters
taken out from the data set of 𝜙-values in the
pseudorapidity region closest to 𝑐𝑟 for 32S-AgBr (at200AGeV) interaction.

(3) Once again visibility graphs are constructed from
all the cluster data extracted from the four visibility
graphs constructed in the step (1). For each graph
the values of 𝑃(𝑘) for all possible values of 𝑘-s
are computed and the power-law fitting is done by
following the method suggested by Clauset et al. [44].
In Figure 3(a) the 𝑃(𝑘) versus 𝑘 plot for a sample
cluster is shown, where the power-law relationship
is evident from the value of 𝑅2(0.96) of the power-
law fitting. As explained in Section 2.1, once the
power-law has been confirmed for the 𝑃(𝑘) versus𝑘 variation, the power-law exponent PSVG of the
corresponding cluster is obtained.
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Figure 3: (a) 𝑃(𝑘) versus 𝑘 plot for a cluster (b) log2[𝑃(𝑘)] versus log2[1/𝑘] plot for the same cluster.

The same values of PSVG parameter are also obtained
from the gradient of log2[𝑃(𝑘)] versus log2[1/𝑘] plot
for the same cluster data. Again goodness of fit
for straight line fitting can be confirmed from the
corresponding value of 𝑅2. Figure 3(b) shows such a
plot for the same specimen cluster data that is plotted
in Figure 3(a) and the PSVG is 2.44 ± 0.1, while 𝑅2 =0.96.
Table 1 shows a list of PSVG values calculated for
the visibility graphs constructed from a sample set
of 30 cluster data sets extracted from the visibility
graph corresponding to one of the four data set of𝜙-values for 32S-AgBr (200AGeV) interaction data
(constructed in step (1)). The table also shows the
corresponding 𝜒2/DOF values, and the values of 𝑅2
calculated for both power-law fitting for 𝑃(𝑘) versus𝑘 data set and straight line fitting for log2[𝑃(𝑘)]
versus log2[1/𝑘] plot of the same data set. The power-
law relationship and good scaling behaviour can be
confirmed from the corresponding 𝜒2/DOF values
and the values of 𝑅2 for all the cluster data sets in
Table 1.

(4) Similar analysis for all the clusters extracted from
the visibility graphs constructed for all four 𝜙-data
sets around the 𝑐𝑟 value of the experimental data
(constructed in step (1)) is carried out. As PSVG
correlates the amount of complexity with fractality
of the data series, and eventually with the fractal
dimension of the experimental data series [28, 29, 37],
it can be confirmed that all these clusters are scale-free
and also are of fractal structure.

(5) Then Monte-Carlo simulated data set is generated
for each of the cluster data sets, assuming indepen-
dent emission of pions in 32S-Ag/Br interaction at200AGeV. The data for Monte-Carlo simulated data
sets have been chosen in such a way that 𝑑𝑛/𝑑𝜙 distri-
bution of the Monte-Carlo simulated data resembles
the corresponding 𝑑𝑛/𝑑𝜙 of the experimental ensem-
bles. Then for all these Monte-Carlo simulated data
sets, first visibility graphs are constructed and then
PSVG-s are calculated. Table 2 shows the list of PSVG
values alongwith values of𝜒2/DOF and𝑅2, calculated

Table 1: List of PSVG values calculated for the visibility graphs
constructed from a sample set of 30 cluster data sets extracted from
the visibility graph corresponding to one of the four data sets of 𝜙-
values for 32S-AgBr (200A GeV) interaction data (constructed in
step (1)).
Clusterseq PSVG 𝜒2/DOF 𝑅2
Cluster1 2.2 ± 0.14 0.92 0.03
Cluster2 2.03 ± 0.18 0.86 0.03
Cluster3 2.12 ± 0.17 0.88 0.02
Cluster4 2.1 ± 0.14 0.92 0.02
Cluster5 2.02 ± 0.19 0.85 0.02
Cluster6 2.15 ± 0.18 0.89 0.05
Cluster7 2.33 ± 0.17 0.92 0.02
Cluster8 2.25 ± 0.2 0.88 0.02
Cluster9 2.61 ± 0.26 0.86 0.03
Cluster10 2.3 ± 0.13 0.94 0.02
Cluster11 2.11 ± 0.1 0.95 0.02
Cluster12 2.16 ± 0.14 0.91 0.03
Cluster13 2 ± 0.18 0.87 0.01
Cluster14 1.83 ± 0.16 0.84 0.04
Cluster15 2.34 ± 0.15 0.93 0.03
Cluster16 2.51 ± 0.13 0.96 0.03
Cluster17 2.32 ± 0.15 0.93 0.03
Cluster18 2.23 ± 0.15 0.92 0.02
Cluster19 2.02 ± 0.13 0.91 0.03
Cluster20 2.14 ± 0.18 0.88 0.02
Cluster21 2.31 ± 0.11 0.95 0.04
Cluster22 2.06 ± 0.18 0.87 0.04
Cluster23 1.98 ± 0.23 0.79 0.02
Cluster24 2.21 ± 0.19 0.87 0.02
Cluster25 1.88 ± 0.18 0.82 0.02
Cluster26 2.03 ± 0.21 0.83 0.04
Cluster27 2 ± 0.12 0.91 0.02
Cluster28 2.15 ± 0.17 0.87 0.04
Cluster29 1.93 ± 0.15 0.86 0.03
Cluster30 2.16 ± 0.19 0.86 0.04

for the visibility graphs constructed from the Monte-
Carlo simulated version of the same sample set of
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Figure 4: Trend of PSVG values calculated for a specimen set of
30 cluster data sets (both experimental and their MC simulated
ones as shown in Tables 1 and 2) extracted from the visibility graph
corresponding to one of the four data sets of 𝜙-values for 32S-AgBr
(200AGeV) interaction data (constructed in step (1)).

30 cluster data sets as shown in Table 1 for the
same particular 𝜙-data set for 32S-AgBr (200AGeV)
interaction (constructed in step (1)) data.
Figure 4 also shows the trend of PSVG values cal-
culated for the same specimen set of 30 cluster-
datasets (both experimental and the MC simulated
results) as shown in Tables 1 and 2. The PSVG values
calculated for the experimental data sets significantly
differ from their Monte-Carlo simulated counterpart.
This finding establishes that the degree of complexity
for any cluster is not the result of the Monte-Carlo
simulated fluctuation pattern, but of some dynamics
present in the cluster data sets.

(6) The statistical errors shown in Tables 1 and 2 and
Figure 4 are obtained from the corresponding fit
processes.Thedetails of error calculation have already
been discussed in a previous work [45]. The values
of 𝜒2/DOF and 𝑅2 for the straight line fitting (for
log2[1/𝑘] versus log2[𝑃(𝑘)] plots) and power-law fit-
ting (for 𝑘 versus𝑃(𝑘)plots) in these figures and tables
reflect the goodness of fit. We have followed Pearson’s
chi-squared test [46] to calculate the 𝜒2/DOF values,
after considering the statistical errors. These errors
are calculated individually for every point and the
diagonal elements of the full covariance matrix are
obtained thereof [47]. The off-diagonal elements of
the covariance matrix are produced because of the
correlation between the data points and this corre-
lation must be considered to have a detailed picture
of the full covariance matrix. The diagonal elements
of the full covariance matrix mainly contribute to𝜒2/DOF values, as per the analysis done in various
other works [48]. If the off-diagonal elements are
considered, the changes contributing to the 𝜒2/DOF
values are trivial and hence do not affect the final
conclusion.

(7) In the next step the average clustering coefficients
are extracted from the visibility graphs for all the
cluster data sets corresponding to the four 𝜙-data sets

Table 2: List of PSVG values calculated for the visibility graphs
constructed from the Monte-Carlo simulated version of the same
sample set of 30 cluster data sets (as shown in Table 1) extracted
from the visibility graph corresponding to one of the four data sets
of 𝜙-values for 32S-AgBr (200A GeV) interaction data (constructed
in step (1)).
Clusterseq PSVG 𝜒2/DOF 𝑅2
Cluster1 3.24 ± 0.11 0.96 0.02
Cluster2 2.99 ± 0.13 0.94 0.02
Cluster3 3.29 ± 0.13 0.95 0.02
Cluster4 3.09 ± 0.11 0.96 0.03
Cluster5 3.14 ± 0.14 0.94 0.02
Cluster6 2.99 ± 0.13 0.94 0.03
Cluster7 2.97 ± 0.1 0.96 0.02
Cluster8 2.89 ± 0.11 0.95 0.03
Cluster9 3.18 ± 0.17 0.91 0.02
Cluster10 3.32 ± 0.14 0.94 0.02
Cluster11 3.22 ± 0.13 0.95 0.01
Cluster12 3.14 ± 0.14 0.94 0.02
Cluster13 3.02 ± 0.09 0.97 0.02
Cluster14 3.12 ± 0.12 0.95 0.02
Cluster15 3.07 ± 0.13 0.94 0.02
Cluster16 3.26 ± 0.17 0.93 0.02
Cluster17 3.26 ± 0.12 0.95 0.03
Cluster18 3.11 ± 0.14 0.94 0.02
Cluster19 3.13 ± 0.13 0.95 0.03
Cluster20 3.07 ± 0.12 0.95 0.03
Cluster21 3.09 ± 0.1 0.97 0.02
Cluster22 3.03 ± 0.15 0.93 0.03
Cluster23 3.06 ± 0.13 0.94 0.02
Cluster24 3.16 ± 0.13 0.95 0.03
Cluster25 3.3 ± 0.12 0.95 0.02
Cluster26 2.99 ± 0.09 0.97 0.01
Cluster27 3.04 ± 0.09 0.97 0.02
Cluster28 3.08 ± 0.11 0.95 0.02
Cluster29 3.08 ± 0.12 0.95 0.02
Cluster30 3.01 ± 0.1 0.96 0.02

(constructed in step (1)), as per themethod explained
in Section 2.2. Then from the visibility graphs con-
structed from all the corresponding Monte-Carlo
simulated data sets, the average clustering coefficients
are calculated.

(i) In this way we obtain 4 sets containing pairs
of average clustering coefficients (calculated
for experimental and MC simulated cluster-
datasets) for the four 𝜙-data sets.

(ii) Each pair of average clustering coefficients cor-
responds to the average clustering coefficient
of the visibility graph created for a particular
cluster data set, and the average clustering coef-
ficient of the visibility graph constructed also for
its Monte-Carlo simulated version.
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Table 3: Trend of number of clusters is selected from each of
the four 𝜙-data sets [corresponding to the pseudorapidity regions
around 𝑐𝑟 for 32S-AgBr (200A GeV) interaction] which have almost
similar average clustering coefficient to theirMonte-Carlo simulated
counterparts.

Δ𝜂 Number of clusters
1.0 7
2.0 5
3.0 5
4.0 2

(iii) Then from each these four sets, the cluster data
sets which have almost similar average cluster-
ing coefficient as their Monte-Carlo simulated
counterparts are selected.

(iv) The count of such clusters for each of the four𝜙-data sets is calculated and listed in Table 3.
The trend of this count across the 𝜙-data sets
(corresponding to the pseudorapidity regions
withΔ𝜂 = 1.0 toΔ𝜂 = 4.0 around 𝑐𝑟) is shown in
Table 3. The trend is evidently decreasing from
the azimuthal distribution in the pseudorapidity
region closest to 𝑐𝑟 to the farthest one.

3.3. Results and Discussions. As already mentioned in the
Section 1, several analyses have shown that the power-law
spectra arising even from nonextensive statistics can rightly
identify the general properties of particle production in high-
energy interactions. Recently, Deppman and Megı́as [49]
have shown that the fractal dimensions of the thermofractal
obtained from values of temperature and entropic index
resulting from the analysis of 𝑝𝑇 distributions in high-
energy interactions are similar to those found in analyses of
intermittency in experimental data in high-energy collisions.

Experimental data from 32S-AgBr at 200AGeV interac-
tion has been analysed using the complex network based
visibility graphmethod and the PSVGvalues obtained thereof
have been compared for all the overlapping 𝜂-regions cen-
tered around 𝑐𝑟, and it has been shown that the multiplicity
fluctuation in high-energy interaction is self-similar and
scale-free [30]. The present work provides another evidence
of fractal structure in multiparticle emission data.

In this work we have constructed visibility graphs from
their corresponding azimuthal space or 𝜙-data sets. From
each visibility graph, a number of cluster data sets are
extracted, and then again visibility graphs are constructed
for each cluster data set and its Monte-Carlo simulated
counterpart. Finally it is shown that each of these clusters is
self-similar and scale-free and hence is of fractal structure.

(i) For each cluster and its Monte-Carlo simulated coun-
terpart, average clustering coefficients are calculated,
and it has been found that the count of clusters having
almost similar average clustering coefficient to their
Monte-Carlo simulated counterparts is decreasing

from the 𝜙-region closest to the farthest from 𝑐𝑟.
Clustering coefficient is essentially generalised as
signed correlation between the nodes of the networks
[50]. In this experiment the correlation ismeasured in
terms of the visibility between the nodes of the cluster
data sets.

(ii) Hence this decreasing count of clusters shown in
Table 3 from pseudorapidity regions with Δ𝜂 = 1.0
to Δ𝜂 = 4.0 around 𝑐𝑟 signifies that the particle-to-
particle correlation in the azimuthal distribution is
least in the pseudorapidity region that is closest to𝑐𝑟 (with Δ𝜂 = 1.0). Therefore, this region has the
maximum number of clusters having similar average
clustering coefficient to their Monte-Carlo simulated
versions.However, the particle-to-particle correlation
is gradually increasing as the count of clusters having
similar average clustering coefficient compared to
their Monte-Carlo simulated counterparts decreases
in the regions that are farther from 𝑐𝑟 and finally this
count is least in the farthest pseudorapidity region
from 𝑐𝑟.

(iii) Particle-to-particle correlation in the azimuthal dis-
tribution is least in the most central pseudorapidity
space, which gradually increases towards the region
farthest from 𝑐𝑟 and becomes highest in the pseudora-
pidity region with Δ𝜂 = 4.0.

4. Conclusion

Bilandzic et al. have discussed that azimuthal anisotropic
distribution might be the underlying cause of collective
anisotropic flow of the produced particles in ultrarelativis-
tic heavy-ion collisions [3]. The dynamics of azimuthal
anisotropy in multiparticle production process is yet to come
out with accurate parameters. Detailed and latest methods
to analyse collective anisotropic flow using multiparticle
azimuthal correlations are not free from systematic bias in
conventional differential flow analyses. Hence, this is still an
open area of research. In view of this, we have attempted
to analyse azimuthal anisotropy by analysing the azimuthal
distribution from a complex network perspective, which
gives more deterministic information about the anisotropy
in azimuthal distribution in terms of precise topological
parameter.

It is observed that particle-to-particle correlation in the
azimuthal distribution is least in the region closest to the
central pseudorapidity, because in this region the pattern of
clusters formed by the particles is mostly similar to their
Monte-Carlo simulated counterparts. But, this correlation
increases monotonically towards the region farthest from
the central pseudorapidity. This in effect establishes the
anisotropic nature of the azimuthal distribution closest to the
central pseudorapidity region. This interesting observation
might have a far reaching consequence to confirm the
collective anisotropic flow in that region.
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