11,478 research outputs found

    Shortest path or anchor-based route choice: a large-scale empirical analysis of minicab routing in London

    Get PDF
    Understanding and modelling route choice behaviour is central to predicting the formation and propagation of urban road congestion. Yet within conventional literature disagreements persist around the nature of route choice behaviour, and how it should be modelled. In this paper, both the shortest path and anchor-based perspectives on route choice behaviour are explored through an empirical analysis of nearly 700,000 minicab routes across London, United Kingdom. In the first set of analyses, the degree of similarity between observed routes and possible shortest paths is established. Shortest paths demonstrate poor performance in predicting both observed route choice and characteristics. The second stage of analysis explores the influence of specific urban features, named anchors, in route choice. These analyses show that certain features attract more route choices than would be expected were individuals choosing route based on cost minimisation alone. Instead, the results indicate that major urban features form the basis of route choice planning – being selected disproportionately more often, and causing asymmetry in route choice volumes by direction of travel. At a finer scale, decisions made at minor road features are furthermore demonstrated to influence routing patterns. The results indicate a need to revisit the basis of how routes are modelled, shifting from the shortest path perspective to a mechanism structured around urban features. In concluding, the main trends are synthesised within an initial framework for route choice modelling, and presents potential extensions of this research

    A heuristic model of bounded route choice in urban areas

    Get PDF
    There is substantial evidence to indicate that route choice in urban areas is complex cognitive process, conducted under uncertainty and formed on partial perspectives. Yet, conventional route choice models continue make simplistic assumptions around the nature of human cognitive ability, memory and preference. In this paper, a novel framework for route choice in urban areas is introduced, aiming to more accurately reflect the uncertain, bounded nature of route choice decision making. Two main advances are introduced. The first involves the definition of a hierarchical model of space representing the relationship between urban features and human cognition, combining findings from both the extensive previous literature on spatial cognition and a large route choice dataset. The second advance involves the development of heuristic rules for route choice decisions, building upon the hierarchical model of urban space. The heuristics describe the process by which quick, 'good enough' decisions are made when individuals are faced with uncertainty. This element of the model is once more constructed and parameterised according to findings from prior research and the trends identified within a large routing dataset. The paper outlines the implementation of the framework within a real-world context, validating the results against observed behaviours. Conclusions are offered as to the extension and improvement of this approach, outlining its potential as an alternative to other route choice modelling frameworks

    Pedestrian route choice: an empirical study

    Get PDF
    There has been relatively little work done on route choice for pedestrians. The present paper addresses this issue by using a sample survey of daily walks in a UK urban area. The walks undertaken are reconstructed using a geographical information system and compared with the shortest available route. It was found that about 75 per cent of walkers in the sample chose the shortest available route. Two strategies were used to synthesise sets from which pedestrians could have chosen their routes. These choice sets can then be used in discrete choice modelling to study route choice and to determine which factors are important to pedestrians in this. At the time of writing, it is proposed to proceed with this modelling. The structure of the paper is as follows. Section 2 describes the various sources of data used in this work, section 3 discusses the choice set generation strategies that were developed, section 4 briefly compares the walks with the corresponding shortest routes, while section 5 presents the conclusions that were drawn from this

    An Analysis of Motorists’ Route Choice Using Stated Preference Techniques

    Get PDF
    This paper presents some results of an analysis of motorists' route choice based on stated preference responses. This is done for both an inter-urban and urban route choice context. The nature of the study is exploratory; the analysis being based upon a pilot survey of some 79 motorists undertaken in March/April 1984. The quality and nature of the responses are assessed in terms of a 'rationality' test and also through a consideration of lexicographical forms of decision making. The formal quantitative analysis examines the ranked preferences of motorists by means of an ordered multinomial logit model. Detailed results are presented for various formulations of the representative utility function to assess the influence of various relevant variables upon mute choice and to identify the best explanation of motorists' stated route preferences in both route choice contexts. Values of time are derived for a variety of rodel specifications as part of this consideration of the usefullness of the ranking approach to an analysis of motorists route choice

    An Agent-based Route Choice Model

    Get PDF
    Travel demand emerges from individual decisions. These decisions, depending on individual objectives, preferences, experiences and spatial knowledge about travel, are both heterogeneous and evolutionary. Research emerging from fields such as road pricing and ATIS requires travel demand models that are able to consider travelers with distinct attributes (value of time (VOT), willingness to pay, travel budgets, etc.) and behavioral preferences (e.g. willingness to switch routes with potential savings) in a differentiated market (by tolls and the level of service). Traditional trip-based models have difficulty in dealing with the aforementioned heterogeneity and issues such as equity. Moreover, the role of spatial information, which has significant influence on decision-making and travel behavior, has not been fully addressed in existing models. To bridge the gap, this paper proposes to explicitly model the formation and spread- ing of spatial knowledge among travelers. An Agent-based Route Choice (ARC) model was developed to track choices of each decision-maker on a road network over time and map individual choices into macroscopic flow pattern. ARC has been applied on both SiouxFalls network and Chicago sketch network. Comparison between ARC and existing models (UE and SUE) on both networks shows ARC is valid and computationally tractable. To be brief, this paper specifically focuses on the route choice behavior, while the proposed model can be extended to other modules of travel demand under an integrated framework.Agent-based model, route choice, traffic assignment, travel demand modeling

    A Portfolio Theory of Route Choice

    Get PDF
    Although many individual route choice models have been proposed to incorporate travel time variability as a decision factor, they are typically still deterministic in the sense that the optimal strategy requires choosing one particular route that maximizes utility. In contrast, this study introduces an individual route choice model where choos- ing a portfolio of routes instead of a single route is the best strategy for a rational traveler who cares about both journey time and lateness when facing stochastic net- work conditions. The model is then tested with GPS data collected in metropolitan Minneapolis-St. Paul, Minnesota. Our data suggest strong correlation among link speed when analyzing morning commute trips. There is no single dominant route (de- fined here as a route with the shortest travel time for a 15 day period) in 18% of cases when links travel times are correlated. This paper demonstrates that choosing a port- folio of routes could be the rational choice of a traveler who wants to optimize route decisions under variability.Transportation planning, route choice, travel behavior, link performance

    The Day-to-Day Dynamics of Route Choice

    Get PDF
    This paper reviews methods proposed for modelling the day-to-day dynamics of route choice, on an individual driver level. Extensions to within-day dynamics and choice of departure time are also discussed. A new variation on the approaches reviewed is also described. Simulation tests on a simple two-link network are used to illustrate the approach, and to investigate probabilistic counterparts of equilibrium uniqueness and stability. The long-term plan is for such a day-to-day varying demand-side model to be combined with a suitable microscopic supply-side model, thereby producing a new generation network model. The need for such a model - particularly in the context of assessing real-time transport strategies - has been identified in previous working papers
    corecore