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Abstract

Although many individual route choice models have been proposed to incorporate
travel time variability as a decision factor, they are typically still deterministic in the
sense that the optimal strategy requires choosing one particular route that maximizes
utility. In contrast, this study introduces an individual route choice model where choos-
ing a portfolio of routes instead of a single route is the best strategy for a rational
traveler who cares about both journey time and lateness when facing stochastic net-
work conditions. The model is then tested with GPS data collected in metropolitan
Minneapolis-St. Paul, Minnesota. Our data suggest strong correlation among link
speed when analyzing morning commute trips. There is no single dominant route (de-
fined here as a route with the shortest travel time for a 15 day period) in 18% of cases
when links travel times are correlated. This paper demonstrates that choosing a port-
folio of routes could be the rational choice of a traveler who wants to optimize route
decisions under variability.

Transportation planning, route choice, travel behavior, link performance

1 Introduction

Route choice is a daily decision travelers make under variable traffic conditions. Traffic pat-
terns emerge from individual decisions, and each day’s collective decisions update the travel
experience of all travelers. In the long run, we expect that each traveler will develop an
explicit or implicit strategy to guide individual route decisions. Conventional User Equilib-
rium (UE) models assume that travelers seek to minimize individual travel time with perfect
knowledge of network conditions. In equilibrium, “the journey times in all routes actually
used are equal and less than those which would be experienced by a single vehicle on any
unused route” (Wardrop, 1952). Although this shortest-path (usually measured as shortest
travel time path) assumption and the resulting aggregate UE approach is simple, intuitive,
and easy to implement (efficient solutions are widely available), it has been criticized for
ignoring the heterogeneity in individual preferences among travelers and limitations in their
spatial knowledge. Given the stochasticity in network conditions and potential penalties for
being late or early, travel time reliability has been widely identified as an important factor in
route decisions (e.g. (Bekhor et al., 2006; Brownstone and Small, 2005; Noland and Polak,
2002; Small et al., 2005) among others).

Wardrop’s UE principle requires travelers chose the shortest time path. Although several
paths may have equal journey time in equilibrium, only one can be chosen by an individual
for a given trip. However empirical evidence finds individual travelers chose multiple routes
between a given origin-destination pair through repeated choices (Jan et al., 2000). We
discuss this in 2.1. While some travelers only had minor deviations, most travelers followed
routes that deviated significantly from the shortest time path.

Although many individual route choice models have been proposed to incorporate travel
time variability as a decision factor, they are typically still deterministic in the sense that
the optimal strategy requires choosing one particular route that maximizes utility.

The Stochastic User Equilibrium (SUE) model adds a random component to the expected
travel time. Under SUE, “no user believes he can improve his travel time by unilaterally
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changing routes” (Daganzo and Sheffi, 1977). The stochasticity is due to either some traveler
characteristics not observable by the modeler or other randomness on the network.

The SUE theory however does not explain why some travelers prefer multiple routes over
a time period instead of choosing one optimal route. Route choice models based on prospect
theory further argue that travelers usually perceive uncertainty in travel cost asymmetri-
cally and human choices usually deviate from what is predicted by expected utility based
in empirical studies (Kahneman and Tversky, 1979; Tversky et al., 2005). People are found
to underweight high probability events when certainty is not guaranteed (Allais Paradox
(Allais, 1979) ) and inflate the larger gain when facing alternatives with small probabilities.
Parthasarathi (2011) found that traffic network structure variables (such as intersection den-
sity, street density, proportion of limited access roads, route complexity, etc.) can also affect
travel time perception. Prospect theory has been applied to route choice by investigating the
value function and appropriate reference point (Avineri and Prashker, 2004; de Palma and
Picard, 2006; Katsikopoulos et al., 2002). However, given an estimated value function, we
would expect a pure strategy of choosing the route that minimizes the relative utility when
compared to the reference point.

Some researchers approached this multiplicity problem by arguing that travelers are
boundedly rational (Lou et al., 2009; Mahmassani and Chang, 1987) and may use one of
multiple acceptable routes. Differences in travel cost between these routes and the shortest
route are tolerable or not noticeable by travelers. Under this theory, the route in the accept-
able set to be chosen will depend on some random events or personal experience. However,
no theory is provided to determine the probability of choosing each route. In the context of
transit route choice, Spiess and Florian (1989) proposed that the chance of taking a particu-
lar transit line among several attractive ones is proportionate to their service frequency. Its
applicability to vehicular route choice problem has yet to be explored.

Models such as SUE still treat link travel costs as a deterministic value. In contrast,
Watling (2002) assumes network conditions are stochastic and proposes more complicated
equilibrium models. Facing such stochasticity, travelers could also change route through a
day-to-day learning process, or simply react to previous bad experience. One recent example
of that day-to-day dynamics could be the significant link flow oscillation observed after the
2007 I-35 Bridge collapse in Minneapolis, Minnesota (Zhu et al., 2010). However, as travelers
accumulate more network knowledge through day-to-day experience, especially for commute
trips, deterministic route choice models predict a single optimal route based on the perceived
travel time distribution. For example, Mirchandani and Soroush (1987) considered both
stochastic link travel time and individual travel time perception error. Although travelers
with different risk-taking preferences, thus different utility functions, would take different
routes, the final choice for each individual is still deterministic.

To provide such an explanation to the phenomenon that travelers chose multiple routes
between a given origin-destination pair through repeated choices, this study introduces an
individual route choice model where choosing a portfolio of routes instead of a single route
may be the best strategy for a rational traveler trying to satisfy multiple criteria (trading-off
journey time and lateness) facing stochastic network conditions. The next section provides
empirical evidence of people choosing multiple routes between the same origin and destina-
tion, employing GPS data collected in metropolitan Minneapolis-St. Paul, Minnesota. A
portfolio theory of route choice is then proposed and tested with the field data. Findings
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from this paper may inform future travel demand models.

2 Empirical evidence of route portfolios

2.1 GPS data

This study investigates commuters’ day-to-day route choices by analyzing a large set of GPS
data collected during a 13-week long study targeting behavioral reactions to the I-35W Bridge
reopening on September 18th, 2008. Details about this behavioral study and data collection
process are provided by Zhu et al. (2010). Participants were randomly selected commuters
in the Minneapolis, Saint Paul, Minnesota metropolitan area (Twin Cities). Either a log-
ging Global Positioning System (GPS) devices (QSTARZ BT-Q1000p GPS Travel Recorder
powered by DC output from in-vehicle cigarette lighter) or a real-time communicating GPS
device (adapted from the system deployed in the Commute Atlanta study ((Rates, 2007))
were installed in the vehicle of study participants. The GPS device is non-intrusive and
unlikely to affect the behavior of participants. No instructions were given and participants
were free to make travel choices. In all, 190 subjects participated in this study. However,
only 143 GPS records were recovered due to the failure of devices (the data from GPS loggers
can only be checked at the end of the study. Some of them failed because of power supply
problems, such as being disconnected by subjects).

The logging GPS devices accurately monitored the travel trajectories of each probe vehicle
at a frequency of one point per 25 meters up to 13 weeks, about 3 weeks before the reopening
of the bridge and between 8 and 10 weeks after it. The real-time communicating GPS
device recorded the position of instrumented vehicles every second. The geographic location
and time stamps of each point were documented and projected onto a GIS map for post-
processing. The GPS data were then matched to the 2009 Twin Cities Regional Planning
network, which has been conflated to real road geometry.

An algorithm was developed and applied to ensure all points have been snapped to the
nearest link which:

• is directly connected to the upstream link previously identified;

• is consistent with the travel direction of nearby GPS points; and

• is connected to the downstream link which is also consistent with travel direction of
downstream GPS points.

This algorithm rules out the possibility of incorrectly snapping the GPS point to the
link in the opposite direction and changing directions mid-link. The high resolution of one
point every 25 meters (the real-time communicating GPS provided an even higher resolution)
reduces the possibility of holes and keeps discontinuity in identified routes to a minimum. In
rare cases of data losses due to the communication difficulties with satellites, the shortest time
path was used to connect the different segments of the same trip. This algorithm, combined
with accurate GIS files, ensures that the right links will be identified for each trip. It also
helps to ensure that the speed estimated from vehicle trajectories will later be assigned to
the link through which travelers passed. A visual check was conducted for all trips of two
random subjects during the entire study period, and confirms the accuracy of the algorithm.
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2.2 Diversity of commute trips

This study focuses on commute trips because 1) A large number of trips could be observed
between the same origin and destination; 2) Travelers are likely to gain enough experience
through daily commuting to develop a reasonable estimation of the network; 3) People are
more concerned about lateness and travel time reliability, for commute trips than for dis-
cretionary trips. To keep the problem simple, we only consider home-to-work trips here,
although the same analysis could also be applied for work-to-home trips. Home-to-work
trips are defined as any trips starting within a 600 m radius from home and ending in a 600
m radius from the workplace during a weekday, without any stop longer than 5 minutes.
The threshold of 600 m represents approximately 4 city blocks, which is chosen by observing
parking and workplaces for a subset of subjects. To make all trips comparable in the following
analysis, minor changes have been made to ensure trips made by the same subjects always
start from the same origin node and end at the same destination node. Very few changes
resulted, since parking locations at both home and work places are stable for most people.

The reopening of I-35W Mississippi River Bridge during the study period represents a
major change of network condition, which may affect people’s route choice behavior. To
avoid this confounding factor, we only use data collected during the three weeks before the
bridge reopening. Since we only focus on the Twin Cities (7 County) area, subjects who live
outside of the region are excluded from the study. In total, 657 home-to-work trips made by
95 subjects have been identified. These trips are then compared segment-by-segment using
GIS and different home-to-work routes are identified for each subject. Although the problems
of route overlapping and trivial alternatives have been discussed by many researchers under
various contexts (e.g. (Bovy, 2009; Frejinger and Bierlaire, 2007)), no consensus has been
reached for the threshold to define distinct routes. Therefore, a series of threshold values
have been tested. Figure 1 summarizes the percentage of subjects with different number of
distinct home-to-work routes observed during three weeks.

If routes with any different segments are treated as different routes, then more than three
quarters of all subjects used more than 1 route during three weeks. Some subjects traveled
on more than 8 different routes. As the threshold of minimum difference in length to define
distinct routes increases, home-to-work route choices exhibit less diversity. However, even if
more than 30% difference in distance is required to define a different route, about 40% of
all subjects followed more than one route during the study period. Therefore, a significant
fraction of subjects chose a portfolio of routes for their morning commute trips. Many reasons
could help to explain the behavior of choosing multiple commute routes during a period of
time. The next section addresses this problem by investigating route decisions of a rational
traveler under uncertain network conditions.

3 Portfolio Theory of Route Choice

In his seminal work Risk, Uncertainty, and Profit, Frank Knight (1921) established the dis-
tinction between risk and uncertainty.

“... Uncertainty must be taken in a sense radically distinct from the familiar
notion of Risk, from which it has never been properly separated. The term risk,
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Figure 1: The morning commute route diversity among 95 subject during 3 weeks. Percentage
indicates share of distance which may differ without routes still being considered “different”.
Data were collected by in-vehicle GPS devices during September, 2008 for a study focusing
on route choice behavior before and after the reopening of I-35W Mississippi River Bridge in
Minneapolis. Source: Authors
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as loosely used in everyday speech and in economic discussion, really covers two
things which, functionally at least, in their causal relations to the phenomena of
economic organization, are categorically different. ... The essential fact is that
risk means in some cases a quantity susceptible of measurement, while at other
times it is something distinctly not of this character; and there are far-reaching
and crucial differences in the bearings of the phenomenon depending on which
of the two is really present and operating. ... It will appear that a measurable
uncertainty, or risk proper, as we shall use the term, is so far different from an
unmeasurable one that it is not in effect an uncertainty at all. We ... accordingly
restrict the term uncertainty to cases of the non-quantitive type.” (Knight, 1921).

This study investigates the route choice behavior of a rational user who seeks to maxi-
mize utility under network variability. A wide spectrum of studies has dealt with risk and
uncertainty in route choice, either due to perception errors or stochasticity in network con-
ditions (in most cases travel time). Some researchers followed the expected utility approach
which was originally proposed by Bernoulli (1954) (originally in Latin and translated by Dr.
Louis Sommer ) and later popularized by Von Neumann et al. (1947). For example, Pells
(1987) assumes that travelers’ utility is a linear combination of the generalized travel cost
and a slack time that travelers allocate to avoid arriving late (dubbed a “safety margin”
by Knight (1974) ). Polak (1987) further defined a safety margin as the difference between
the mean arrival time and the work start time. The problem with risk and uncertainty was
implicitly addressed since travelers have to reserve a larger safety margin with lower travel
time reliability.

In contrast, other researchers insist that travel time reliability has intrinsic value (you
still prefer reliability even when you are flexible with arrival time) and should be modeled
explicitly. Research work in this direction follows the two-parameter approach (mean-variance
in most cases) which was originated by Markowitz (1952a,b) and Hester and Tobin (1967)
in portfolio studies and then introduced to transportation by Jackson and Jucker (1982).
Given an a priori estimate of network conditions (mean travel time and the variance), two-
parameter models usually define the objective for a rational traveler as:

Min U = αE(t) + τV (t) + δC (1)

where E(t) is the expected travel time, the V (t) is the variance of travel time, and C
summarizes other generalized costs associated with each route. The relative importance of
travel time reliability is captured by the parameter τ . Given an individual whose value of
time (measured in α/δ), value of reliability (measured in τ/δ), and perception (or prediction
for a specific day) of network conditions are fixed, a deterministic choice would be generated
in previous studies.

Although these studies reveal that travelers have strong preference for travel time relia-
bility, they provide limited information about why travelers would choose multiple routes
over time under the same condition. Previous studies show that travelers trade-off be-
tween travel time and travel time reliability because there is a disutility associated with
either arriving too early or arriving too late and because of variability of network condi-
tions. Therefore, we first assume that the objective of travelers is to minimize travel time
while keeping travel time variability under a certain threshold. Consider a traveler m who
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faces N alternative routes whose travel time t′ = {t1, t2, ...tN} are believed to have expected
values E(t)′ = {E(t1), E(t2), ...E(tN)} and a covariance matrix Σ = (σi,j). It has to be indi-
cated that route travel time tn is stochastic, which differs from many previous models such
as SUE which assumes deterministic network condition. Here the subscript m is omitted
to keep the expression succinct. A rational traveler is to select daily routes according to
p′ = {p1, p2, ...pN} in order to

Min U = E(p′t) (2)

subject to:
V ar(p′t) ≤ vc (3)

∑
i

pi = 1 (4)

pi ∈ [0, 1],∀i ∈ N (5)

where pi is the probability of choosing route i on a given day and vc is the maximum
travel time variance the traveler can tolerate. Given a network condition t and a personal
preference vc, the optimal strategy p̂ can be derived by solving the problem. If p̂ has more
than one non-zero member, then the optimal strategy is to choose a route portfolio according
to p̂ instead of sticking to a single route.

To illustrate the idea, consider the simplest case where the rational traveler faces only
two alternative routes: 1 and 2. Figure 2 presents an example of possible distribution of
travel time on routes 1 and 2 where the traveler has to trade-off between travel time and
travel time reliability.

Depending on the travel time distributions and the tolerance for travel time reliability
(or variability), a rational traveler could have a different strategy.

For convenience, assume t1 and t2 are independent. Then

V ar(p′t) = p′V ar(t)p = p21V ar(t1) + p22V ar(t2) = p21V ar(t1) + (1− p1)2V ar(t2) (6)

Here p2 = 1− p1 because of equation 4. Therefore, the travel time variance by following
strategy p is a quadratic function of p1. Without losing generality, assume V ar(t1) ≥ V ar(t2).
Then by evaluating equation 6 on the range [0, 1],

V ar(p′t) ∈
[
V ar(t1)V ar(t2)

V ar(t1) + V ar(t2)
, V ar(t1)

]
(7)

and as shown on Figure 3, the minimum is achieved when

p1 =
V ar(t2)

V ar(t1) + V ar(t2)
(8)

Depending on the value of vc, there are 4 situations.

1. if vc ≥ V ar(t1), all possible strategies p are feasible and the best strategy is to always
select the route with smaller expected travel time because 3 is always satisfied;
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Figure 2: An example of possible distribution of travel time route 1 and route 2. Route 1
has a small expected travel time, but larger travel time variability
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2. if vc <
V ar(t1)V ar(t2)
V ar(t1)+V ar(t2)

, there is no solution to the problem because no strategy p can
satisfy 3, in which case the traveler needs to adapt vc or not travel;

3. if vc ∈ [V ar(t2), V ar(t1)], a feasible strategy p must satisfy p1 ∈ [0, pc], while pc is the
strategy when V ar(p′t) equals vc. Therefore, if E(t1) < E(t2), the best strategy should
be to always select route 1. However, when E(t1) > E(t2), the optimal is achieved by
selecting route 1 by pc of the time and route 2 by 1− pc of the time. A route portfolio
serves better the objective than a strategy of always choosing a single route. When
E(t1) = E(t2), the traveler is indifferent.

4. if vc ∈ [ V ar(t1)V ar(t2)
V ar(t1)+V ar(t2)

, V ar(t2)), the feasible strategy is depicted by [pc1, pc2] and the
best strategy is to always select a route portfolio. The minimum expected travel time
is achieved on either pc1 or pc2, depending on which route has smaller mean travel time.

Therefore, under some circumstances (such as that of cases 3 and 4), the proposed model
predicts that choosing a route portfolio over time represents a better strategy compared to
that of always choosing a single route. The independence of travel time on alternatives is
not a required condition, but only helps to simplify the presentation. Actually, when the
decision maker holds a belief of travel time correlation (captured by Σ), the only difference
is that Equation 6 becomes

V ar(p′t) = p′Σp = p21V ar(t1) + p22V ar(t2) + 2p1p2Cov(t1, t2) (9)

The conclusion may differ depending on the new quadratic curve depicted by 9. Under
certain conditions, a route portfolio could become a dominant strategy.

The results could be further extended to the case of route choice when facing N alterna-
tives. Because the covariance matrix Σ is positive semi-definite, the feasible set defined by
Equation 3 is convex. The objective function is a linear combination of expected travel time
of all alternatives, so the optimal solution will always fall on the boundary of the feasible
set. As long as the optimal solution is achieved at a point other than such corner points that
one of the pi = 1 and other members of p̂ equal zero, a route portfolio becomes a dominant
strategy. Moreover, since the feasible set defined by Equation 3 is convex, the objective
function Equation 2 could be a non-linear function as long as it is also a convex function.
By following the same reasoning as presented in this section, situations under which a route
portfolio dominates a single-route strategy can be derived. The math is likely to be more
complex.

As a further extension, other criteria regarding travel time reliability are also applicable.
For example, travelers might prefer that the travel is less than 5 minutes longer than the
average 95% of the time. Given the travel time co-variance matrix of alternative routes, this
constraint can be easily translated into forms similar to Equation 3 (Pr([t − E(t)] ≤ 5) ≥
0.95) ⇔ V ar(t) ≤

(
5

1.645

)2
) if we assume t is normal. This too is likely to result in a route

portfolio being preferred in circumstances similar to cases 3 and 4.
Although the proposed route portfolio theory may generate similar aggregate travel de-

mand, it differs from conventional User Equilibrium or Stochastic User Equilibrium models
through several fundamental behavior assumptions. Both UE and SUE models assume de-
terministic network conditions. However, given the same travel demand, travel time could
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still fluctuate significantly for reasons such as signal control, freeway bottleneck activation
when demand is close to capacity, etc. When the travel time fluctuation becomes small, the
reliability constraint imposed by 3 is no longer binding. The proposed route portfolio theory
collapses to UE models. In contrast, SUE model assumes deterministic travel time on each
route, but with an individual specific perception error ξ. For our one OD pair, two routes
case, the perceived travel time on two alternative routes becomes T1 = t1+ξ1 and T2 = t2+ξ2.
The individual error term ξ= (ξ1, ξ2) follows uncertain distribution among the population.
For one individual, once this perception error is known (e.g. a value is drawn from the pop-
ulation distribution), the traveler would choose the one with shorter travel time T . For the
entire population, ξ follows, for example, Multi Variate Normal distribution. Following the
standard Probit SUE model, the probability of choosing alternative 1 becomes:

P1 = Φ

(
t2 − t1√

σ2

)
(10)

where σ2 represents the variance of the normal distributed error ξ2 − ξ1. However, this
aggregate route choice probability across the population differs from an individual mixed
strategy predicted by the proposed Route Portfolio Theory.

We expect that Portfolio Theory and SUE appropriately calibrated would both give the
same aggregate results (averaged over many simulation runs in the case of portfolio theory).
However, portfolio theory gives individual travelers different routes on different days (all else
equal), while SUE gives each traveler the same route probabilistically. This difference is im-
portant for (1) modeling traveler learning behavior, in Portfolio Theory, travelers explicitly
learn about some alternatives as they are actually experienced, in SUE, travelers cannot know
about the routes that are not traveled on, and some unreasonable assumptions are required
about travelers possessing perfect information about alternatives never chosen, (2) model-
ing the behavior of individuals which is important for air quality, pricing, and many other
applications, (3) understanding the underlying logic of traveler behavior. Future research is
required to estimate individual preferences. The objective is not necessarily to have a better
aggregate assignment, it is to have a better disaggregate route choice. This will begin to
matter as HOT lanes and other differentiated pricing schemes on roads are deployed, where
assuming the same value of time for all travelers would result in mis-estimation of benefits.

4 Field study

The portfolio theory of route choice we propose shows when the strategy of randomly choos-
ing a route among alternatives is superior to the strategy of always using one route, given
travelers’ belief of network conditions. The posterior outcome of perceived average travel time
could differ from the perceived expected travel time based on prior information. In the long
term, however, especially for commute trips where enough experience has been gained to de-
velop consistent perceptions of network conditions, we anticipate convergence between prior
and posterior estimates. To check the theoretical reasoning, this section tests the proposed
model against field data.
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4.1 Predicting route travel time

In order to evaluate whether a rational decision maker guided by our theoretical model is
likely to choose a portfolio of routes due to concerns of travel time reliability, travel time
distributions of different routes are required. Ideally, we can obtain this information by
observing day-to-day route choices during a period so long that we can collect enough samples
for each route to empirically establish its travel time distribution. However, this is infeasible
due to limited resources for most studies, especially for those subjects with very diverse route
choices. Moreover, relying exclusively on direct observations also limits our ability to extend
our analysis to the general population and to inform travel demand modeling efforts. Instead,
empirical models are built in this study to predict route travel time distributions.

The large number of GIS equipped vehicles are used as probe vehicles for the purpose
of measuring travel speed on the network in this study. The speed with which the probe
vehicle traversed a link along its trajectory could be estimated by comparing the spatial and
temporal distances between points at each end of the link. The average link speed could be
estimated from all probe vehicles passing this link during a defined time period. The long
study period allows us a large number of observations not only on freeway links, but also on
major arterial links and local streets in downtown (see Figure 4).
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Figure 4: The number of speed observations on each link during the entire study period

Speed samples on arterial roads in the outer suburbs are generally low. However, road
density in those areas were low and the traffic was unlikely to vary much due to scattered
demand. Therefore, speed on roads with insufficient samples were assumed constant through
the study and equal to the average speed on all the links of the same functional class defined
by the US Census Bureau in their TIGER files (Marx, 1990). 1 More details about GPS
data processing and link speed estimation are provided by Zhu et al. (2010).

4.2 Normality test

Given the mean and variance of link speed, we can simulate route travel time by generating
random link speed and then summing up link travel time for all links along a specific route.
Although route travel time has been widely assumed to follow a normal distribution in
previous research (e.g. (Liu et al., 2004; Ryuichi and Mohamed, 1997)), this assumption is

1The data can be downloaded from http://www.datafinder.org.
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empirically tested here using GPS observations. Figure 5 provides the normal probability plot
of home-to-work travel time observations for one subject over 13 weeks. The y-axis represents
route travel time in seconds, while the x-axis represents the Z-score of corresponding points
ordered from small to large. The normality of data is established if a straight line can be fit
to the points. Three points in red are clearly outliers according to the plot. According to the
original data, the unusually long travel time in these three cases are due to stops near the
destination. These stops could be due to activities such as searching for parking, visiting a
coffee shop, or making a phone call along the route. However, GPS data alone cannot detect
the causes and future research is required to define those trips.
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Figure 5: Normal probability plot of home-to-work travel time observations for one subject
during 13 weeks

Although the normal probability plot provides an intuitive illustration of how well a
normal distribution fits the data, a more robust statistical test is required. We apply the
Shapiro-Wilk test to all subjects and choose 0.05 as the critical value to reject normal as-
sumption. In total, the assumption that route travel time follows a normal distribution has
been rejected for 22 out of all 95 subjects (23%). Future research efforts for better detecting
side trips can help to exclude outliers in current commute time data set and the normal
assumption could be more convincingly supported. Given that the majority of evidence do
not reject the normal assumption, we assume route travel time follows a normal distribution
in the following sections.
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4.3 Testing link travel times for independence or correlation

In order to simulate route travel time from random draws of link speed, assumptions about
speed interdependency among different links on the network have to be made. Some studies
conveniently assumed link travel time are independent and identically distributed (IID),
which implies no correlation across links. However, there is clearly speed correlation across
links, presumably due in part to exogenous factors like weather, holidays, etc. affecting overall
demand and in part to congestion (recurring and non-recurring) causing link interactions.
Although many previous studies investigate the short-term spatiotemporal pattern of traffic
flow (e.g. Kalman filtering approach by Whittaker et al. (1997)), it is hard to extend these
models to a real network where the number of variables to be estimated become prohibitive.
Few studies address spatiotemporal speed patterns on a large network (Kamarianakis and
Prastacos, 2005). To simplify the analysis, this study evaluates assumptions of both no
correlation and perfect correlation across links. Reality is probably somewhere in between.
Perfect correlation is modeled using a single random number to draw travel time from a
link’s travel time distribution (a normal distribution as per above, given the link’s mean and
standard deviation) on all links on the route, IID is modeled using a different random number
for each link.

Link travel time for 15 days is simulated and travel time on all routes are evaluated, under
both IID and perfect correlation assumptions for link speed. The simulated mean route travel
time and its standard deviation are then compared to those derived directly from GPS data.
Figures 6 and 7 compare the observed mean travel time and simulated travel time under
two extreme assumptions about link speed correlation. Both graphs show systematic bias in
travel time estimation. Our simulation model underestimates travel time for most cases. As
previously indicated, some GPS observations provide unusually long route travel time due
to stops for various reasons. These trips inflate average route travel time derived from GPS
data. Future research should address this issue.

To reduce the impacts of extreme values, median travel time instead of mean travel time
is used in the following analysis. A regression has been conducted to test the following
assumption:

TGPS = αTTIID + βTTCorr (11)

Where TGPS is the observed median overall route travel time; TIID and TCorr are simulated
route travel time under IID and perfect correlation assumptions, respectively. Only routes
with more than 5 GPS observations are used. By enforcing constant term as 0, we obtain
a high R2 value of 0.95 for our regression, implying a good fit for data. According to the
regression model, αT equals 0.03 and βT equals 1.17. The difference in coefficients suggests
that high speed correlation exists across links. As all the trips in this analysis are morning
commute trips, recurrent congestion during the morning peak hour may help to explain the
strong correlation in link speed. Ideally, we would expect αT + βT = 1. Deviation from this
assumption also suggests that systematic bias exists in our model.

σGPS = ασσIID + βσσCorr (12)

A similar regression model is applied for travel time standard deviation. An R2 value of
0.46 is obtained. Estimated ασ and βσ are 3.71 and -0.17, respectively. Because of the limited
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Figure 6: Comparison between observed mean route travel time and predicted mean route
travel time under the IID assumption
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Figure 7: Comparison between observed mean route travel time and predicted mean route
travel time under the perfect correlation assumption
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number of commute trips during three weeks, prediction of travel time standard deviation is
less successful compared to that of mean travel time. Should more data be available, reliable
prediction of travel time variance can be obtained by following the same process.

4.4 Mixed strategy in route choice

Many reasons explain the choice of multiple commute routes during a period of time. This
study adds one more explanation by assuming that some travelers seek to minimize travel
time while maintaining an appropriate level of travel time reliability. In this study, 60 subjects
used more than 1 morning commute route during the study period. We then compare the
predicted travel time of the two most frequently used alternatives suggested by GPS data.
Under the IID assumption, random numbers will be drawn separately for each link from a
standard-normal distribution and a normal distributed link travel time will be calculated
using the mean link travel time and the variance previously derived from GPS data. A
minimal speed of 8 mile/hour is assumed to truncate the extremely long travel time. Path
travel time can then be obtained by summing link travel time along the path. Totally 15
random draws are conducted to simulate random commute time for 15 days and the mean
and variance of travel time for each path can be calculated and compared. Similarly, the same
process is followed to derive path travel time and variance in the case of perfect correlation
except for that the same random number is used for all links in each day so that link travel
time are perfectly correlated across the network.

Under the IID assumption, there is no single dominant route (travel time always shorter
during 15 days) in 38% of cases. It drops to 18% under perfect correlation conditions. If
we define a dominant route as the those which possess both shorter travel time and smaller
travel time variance, 16 out of 60 subjects do not have a dominant route under IID conditions
(12 under the perfect correlation condition). Thus, it is possible for these people to choose
a portfolio of routes in order to trade-off between travel time and travel time reliability, as
illustrated by our theoretical model. However, better designed experiments controlling for
more confounding factors are required to establish a causal relationship between the process
of seeking travel time reliability and the choice of a route portfolio.

5 Conclusions

Many travelers use multiple routes to connect the same origin and destination on different
days. This paper demonstrates that choosing a portfolio of routes could be the rational
choice of a traveler with multiple criteria (e.g. minimizing journey time subject to avoid-
ing frequent lateness) who wants to optimize route decisions under variability. This result
can be extended to the choice among N alternatives and by following a more sophisticated
objective function. By testing the proposed model against field data, this paper advances
our understanding about travelers’ route choice behavior. Specifically, this study provides
an additional explanation for the stochasticity in individual route choice decisions.

Field study based on GPS data suggest that route travel time can be predicted from
estimates of link travel time, which are readily available through a variety of data collection
technologies. However, it is not appropriate to assume full independence across links. Our
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data suggest strong correlation among link speeds when analyzing morning commute trips.
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