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Abstract

Travel demand emerges from individual decisions. These decisions,

depending on individual objectives, preferences, experiences and spatial

knowledge about travel, are both heterogeneous and evolutionary. Re-

search emerging from fields such as road pricing and ATIS requires travel

demand models that are able to consider travelers with distinct attributes

(value of time (VOT), willingness to pay, travel budgets, etc.) and behav-

ioral preferences (e.g. willingness to switch routes with potential savings)

in a differentiated market (by tolls and the level of service). Traditional

trip-based models have difficulty in dealing with the aforementioned het-

erogeneity and issues such as equity. Moreover, the role of spatial in-

formation, which has significant influence on decision-making and travel

behavior, has not been fully addressed in existing models. To bridge the

gap, this paper proposes to explicitly model the formation and spread-

ing of spatial knowledge among travelers. An Agent-based Route Choice

(ARC) model was developed to track choices of each decision-maker on

a road network over time and map individual choices into macroscopic

flow pattern. ARC has been applied on both SiouxFalls network and
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Chicago sketch network. Comparison between ARC and existing models

(UE and SUE) on both networks shows ARC is valid and computationally

tractable. To be brief, this paper specifically focuses on the route choice

behavior, while the proposed model can be extended to other modules of

travel demand under an integrated framework.

Keywords: Agent-based model, route choice, traffic assignment, travel de-

mand modeling

1 Introduction

Travel demand emerges from individual decisions. Travelers make decisions ac-

cording to their individual objectives, preferences, experiences and knowledge

about travel. Furthermore, previous decisions provide travelers with unique

experience and spatial knowledge, thus influencing their subsequent decisions.

Therefore, travelers decisions are both heterogeneous and evolutionary (Levin-

son, 1995; Srinivasan and Mahmassani, 2003; McFadden, 2002; Yang and Huang,

2004). There has been long-established effort both by practitioners and re-

searchers to bridge the gap by mapping individual travel decisions onto a macro-

scopic context. Because of the behavioral nature of travel decisions, it is widely

believed that travel demand models should treat individual traveler as the basic

units of analysis based on solid behavioral principals (Ramming, 2002; Balmer

et al., 2004; Zhang and Levinson, 2004; Zhang, 2006). Mainstream research

and practice, however, has treated trips as the units of analysis since the 1950s

due to the lack of deep understanding of the mechanisms of travel behavior and

limitation in data, computational power, and algorithms. By assuming homo-

geneity, these models simplify the object of study to analyze large networks.

Consequently, these models received great popularity in practice during the sec-

ond half of the twentieth century and many algorithms and commercial software
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packages have been developed to implement these aggregate models.

However, this trip based modeling paradigm encounters great difficulty when

it tries to describe and evaluate some emerging initiatives to mitigate congestion

and pollution, such as toll roads and advanced traveler information systems. For

example, toll roads differentiate level of service on the supply side. As travelers

who have distinct attributes (value of time (VOT), willingness to pay, travel

budgets, etc.) and behavioral preferences (e.g. willingness to switch routes

with potential savings) adjust their travel decisions in a differentiated market,

the network can exhibit new traffic patterns, which will further affect pric-

ing strategies and investment decisions. Traditional trip based models cannot

provide an accurate description of this complex mechanism, as they are inca-

pable of addressing important issues such as equity. Actually, many researchers

(Estache and Strong, 2000; Yang and Zhang, 2002; Santos and Rojey, 2004)

have emphasized the importance of equity as a consequence of road pricing and

pointed out equity is an individual, not a group, problem (Evans, 1992). To

account for this complexity, transportation economists and policy makers have

long advanced their focus from first-best prices with homogeneous network as-

sumptions to second-best prices under heterogeneity in both network users and

service providers (Pigou, 1920; Knight, 1924; Mohring and Harwitz, 1962; Vick-

rey, 1963; Button and Verhoef, 1998; Levinson, 2005; Zou and Levinson, 2006),

which requires explicitly modeling individual travelers route choice behavior.

Although some researchers have studied these problems on small networks, a

behavior-based model, which is not only sufficiently accurate but also applicable

on large network, does not exist (Zhang, 2006).

It is crucial to recognize that travel decisions are based on travelers’ knowl-

edge about the network. Travelers, limited in their capability of acquiring, pro-

cessing and storing spatial knowledge, can only consider the routes they know.
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This is the very reason that engineers try to assist travelers to make decisions

by providing additional information about the network through technological

innovations such as ATIS. As indicated by Srinivasan and Mahmassani (2003),

ATIS cannot be well evaluated without explicitly accounting for the heterogene-

ity in behavior and the presence of dynamic learning and adjustment processes

in user behavior. Many other researchers (Tversky and Simonson, 1993; Zhang

et al., 2004) also emphasized the role of information and learning in traveler be-

havior such as route choice decisions. However, limited work has been done to

systematically model the mechanism of acquiring, processing, storing of spatial

knowledge and its communication among travelers.

To bridge the gap between the aforementioned demand and current practice

in modeling, this paper explicitly models the formation and spreading of spatial

knowledge (route information) among travelers and tracks the choices of each

decision-maker on a road network over time. Individual travelers are treated as

the unit of analysis and extending previous work (Zhang and Levinson, 2004),

an Agent-based Route Choice (ARC) model is built to map individual choices

into system flow patterns. Given a set of system parameters, the modeled

road network can evolve a specific flow pattern, replicating real-world network

changes. This agent-based approach, representing a significant departure from

the previous literature that has primarily relied on equilibrium analysis, is also

applicable on large real-world transportation networks. The second section re-

views previous research, and introduces the new ARC model. Its properties

are discussed and application on the Chicago Sketch network is demonstrated.

Models such as ARC produce insights that may have significant implications for

a more comprehensive agent-based travel demand model.
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2 Literature Review

Route choice model maps travel demand (often defined by an origin-destination

(OD) trip table) into a link flow pattern, which is also known as a traffic as-

signment. Theoretical research in this field has a long history. Varying in as-

sumptions of route choice behavior, many assignment models and corresponding

algorithms have been proposed. All-or-Nothing is a simple route choice model

that assumes travelers minimize some disutility (usually travel time) while ig-

noring what other travelers are doing. If we take other travelers into account,

this minimization assumption, known as Wardrop’s first principle (Wardrop,

1952), leads to the User Equilibrium model. The original UE models assumed

perfect knowledge of the network by travelers and also assumed all travelers

were identical (homogeneous). To account for the heterogeneity problem, re-

searchers introduced the bi-criteria or multiclass assignment problem (Arnott

and Kraus, 1998; Yang and Huang, 2004), in which travelers are differentiated

into groups and characteristics such as VOT are identical within group and

different between groups.

Other researchers tried to solve heterogeneity problem employing discrete

choice models. Introducing a random perception error in travel time and treat-

ing it with Multinomial Logit model, Daganzo and Sheffi (1977) proposed the

Stochastic User Equilibrium model. This model suffers from the so-called In-

dependence of Irrelevant Alternative problem and many alternatives, including

Nested Logit, Probit and Logit Kernel model, have been proposed to miti-

gate this problem (Ramming, 2002). However, these models only model how

to choose route among alternatives but tell little about how to generate the

route choice set. To generate the route choice set, sometimes known as the

K-Shortest Path problem, several solutions based on Dijkstras algorithm (Zil-

iaskopoulos, 1994) have been introduced. Other heuristic approaches such as
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Link Elimination Approaches by Azevedo et al. (1993), Link Penalty Approaches

by De La Barra et al. (1993), and Branching approach by Bellman and Kalaba

(1960), have also been used. These approaches are also related to shortest path

algorithm and lack an explicit behavioral foundation.

As computer simulation becomes more and more common in transportation,

researchers are now able to model and simulate individuals traveling on large

networks. As a result, simulation models are increasingly common in the field of

route choice study because of their capability of modeling and tracking behavior

of individual travelers over time. Mahmassani and Hawas (1998) developed DY-

NASmart, which simulates not only day-to-day but also on-road route choice

decisions. DYNASmart focuses more on modeling travelers choice given the

presence of additional information rather than how such information is gener-

ated. Agent-based modeling has received increasing emphasis in transportation

(Transportation Research Part C (2002 Volume: 10C 325-527) has dedicated

a special issue to this topic) because of its capability in modeling individual

components and their interactions in complex network. Following this modeling

strategy, Nagel and Barrett (1999); Nagel and Rickert (2001) proposed TRAN-

SIMS, assuming travelers take the shortest path constrained by activity choices

and generating flow patterns through Cellular Automata simulation. Noticing

the limitation of the shortest path assumption, researchers (Balmer et al., 2004;

Charypar and Nagel, 2005; Balmer and Nagel, 2006) proposed Matsim as an

extension, in which choice sets are generated by randomly mutating routes and

then discarding unrealistic options (e.g. routes with unreasonably high cost or

using modes inconsistent with traveler characteristics). While this algorithm is

enlightening and capable of dealing with multi-modal cases, the route choice set

generation is inefficient and unrealistic.

Though many heuristic algorithms of route choice set generation have been
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proposed, few questions have been asked about how spatial knowledge (specif-

ically route knowledge) is generated and spread among travelers. Studies in

behavioral geography (Golledge and R.J., 1997), including both place learn-

ing theories and developmental theories, may shed light on this issue. The

former hypothesized individuals learn and store routes as relationships of loca-

tions, while the latter argues route knowledge is acquired through experience

and stored hierarchically according to their importance (people are more likely

to know routes near their home, work place and frequently visited locations)

and salience (freeways are more easily memorized). In recognition of the large

amount of spatial information and numerous evidence of the distortion and in-

completeness of stored spatial knowledge, Wolpert (1952) argues that spatial

knowledge is boundedly rational rather than utility maximizing. Information-

processing theories of choices also suggests decision makers choice strategies are

simple, local and myopic when facing complex system (Olshavsky, 1979; Payne

and Johnson, 1993; de Palma et al., 1994). Moreover, Bandura (1977)’s learning

theory suggested that travelers can learn routes from each other through ob-

serving or communicating. And route learning could be trial-and-error, charac-

terized by evolutionary development of knowledge and adjustments in behavior

over time. A comprehensive review of spatial learning theory has been provided

by Zhang (2006).

3 Agent-Based Travel Demand Model

3.1 Model framework

As presented, spatial learning theory suggests 1) travelers learn routes through

experiencing and communicating with others, 2) spatial knowledge has hierar-

chy and can be communicated, and 3) travelers capability of processing spatial
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knowledge is bounded and a trial-and-error process may be involved. Based on

these assumptions, together with the assumptions of heterogeneous travelers,

this section introduces the Agent-based Route Choice (ARC) model.

ARC simulates spatial learning, tracks evolutionary route choices, and gener-

ates macroscopic flow patterns, which may be used to evaluate policy initiatives

or used as input for a more comprehensive travel demand model. Travelers form

spatial information through traveling and experiencing, and then spread that

information on the network through communication. They also make decisions

about destinations, time schedule, mode and travel route, all of which comprise

the demand side of travel activities (in this paper, to avoid confounding factors,

all but route are taken as given). Nevertheless, these demands are constrained

by the supply: network capacity and tolls, which are also taken as given in

this paper. All the decision makers have their individual attributes, goals and

behavior rules, and will make individual decisions based on information gained

through exploring the network or social exchange of information. Integrated

with other agent-based models, including residential and job location choice,

land use, and infrastructure investment models, ARC could enable a wide spec-

trum of studies in transportation and land use related topics. The following

paragraphs describe the modeling framework in detail.

3.2 Agent

The model contains three types of interactive agents: travelers, nodes, and links,

all of which have their individual attributes, goals and rules.

Travelers are characterized by their willingness to pay (u), value of time (v)

and capability of getting information (s). Willingness to pay reflects how many

resources have been allocated to travel and thus determines how far a traveler

could travel. Individual value of time provides travelers impetus to choose routes
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with different travel time and toll combinations. Travelers with a larger social

network and better information resources distinguish themselves in their ability

of getting information from their peers who have a less effective social network

and less exposure to new information. Therefore, travelers learn information

about network through both experience and learning from other travelers and

choose routes based on the information acquired and individual characteristics.

Consistent with current practice in planning, there are two categories of

nodes: network vertices and centroids. While vertices represent starting and

ending point of links, centroids represent residential locations and workplaces.

Applying social learning theory, centroids are also where people interact with

each other and communicate spatial information. Therefore, centroids also stand

for the neighborhood where travel information is pooled and communicated.

For example, people can learn travel information from their colleagues at the

workplace or from neighbors meeting in a grocery store. Suggested by spatial

learning theory, traffic information can only be generated through experience.

However, information brought to centroids will be pooled and shared by all fre-

quent visitors (e.g. people live or work here). Limited by information processing

capability, only up to K shortest paths from every other node on the network to

the current node will be kept. This information is updated as new information

is available and fed back to subsequent visiting travelers.

Links represent directed roads and are labeled with the origin, destination,

capacity (C), free flow travel time (to), and toll rate (p). Link travel time (t)

and generalized link cost (c) can be derived given the traffic flow and link cost

function. The BPR function is employed in the model to map flows to travel

time.
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3.3 Rules

ARC simulates individual route choices and determines the flow pattern on the

network subject to a given OD distribution.

The initial route choice can be either given or generated by a random-walk

route searching process at iteration 0. In the random walk scenario, travelers

set off from their origins and travel in a randomly chosen direction after arriving

at a node. However, directed cycles and u-turns are prevented. Once travelers

arrive at the destination, their travel routes become the initial travel route and

will be updated in subsequent iterations. The randomness of searching direction

and the large number of travelers will ensure the diversity of initial route choices,

which comprises the choice set on subsequent iterations.

On subsequent iterations, each traveler follows a fixed route chosen at the

end of previous iteration. Once arriving at a destination centroid, travelers

will enrich the information set with their individual knowledge while benefit-

ing from the pooled knowledge at the same time by exchanging both shortest

path and toll information with centroids. Those travelers will also bring that

updated information back to their origin and repeat the exchange process. The

information exchange mechanism is illustrated by the following graph.

As illustrated in Figure 1, suppose that the traveler originating at node 1 is

traveling from node 4 to node 5. His initial shortest path knowledge is 1-3-4-5.

Suppose the shortest path information stored at node 5 is 4-5, 3-5, 2-3-5 and

1-2-3-5, respectively from nodes 4, 3, 2 and 1. The comparison starts from the

node closest to the current node along the path chain in travelers memory and

repeats for each node on this chain until reaching the origin. After comparing

the path from node 3 to 5, the travelers path information is updated to 1-3-5

since the shortest path for this path segment proposed by the node is shorter

than that held by the traveler. Notice that this improvement has also changed

10



the shortest path from node 1 to 5 in the travelers memory. Consequently, the

node will adopt the path from node 1 proposed by the traveler since 1-3-5 is

better than 1-2-3-5. The updated path from node 1 to 5 then becomes part of the

travelers shortest path information. This information exchange mechanism will

naturally mutate the path chain and generate the most efficient route, sometimes

better than all known existing routes. Since nodes store K alternative paths,

nodes will insert the path proposed by the visitor in their information pool as

long as this path is better than the longest path stored. This information will

also be shared by those travelers visiting node 5 at subsequent steps.

After stopping at the destination node, travelers compare their travel route

determined at the end of previous iterations and shortest path learned during the

currently iteration. The path length is evaluated in dollar values by considering

their individual value of time and the toll charged by each link segment. Since

travelers have different values of time, the cost of K alternatives should be

reevaluated and sorted for each traveler. If the path suggested by the destination

node is better than their current route, the travelers have a probability to switch

to the better route that iteration. In general,

P = f (s, b, T )

to apply this model, we choose a specific form:











p = s(1 − e−γb)ifb > T

p=0otherwise

where:

b represents the potential benefit by switching routes, which is defined as

the time or money saving by choosing route proposed by the destination node

instead of sticking to the current route.

11



T is the threshold of benefit perception, which reflects both the incapability

to perceive small benefit and the inertia for people to change route.

s denotes the probability of perceiving an existing better route in a given

day, and captures the differentiation in the effectiveness of social networks.

γdefines the shape of the probability curve.

ARC simulates the day-to-day route choice behavior of travelers and this

probability curve must account for two factors: 1) the probability a traveler

perceives this better path once its information is available and 2) the probability

a traveler takes this path once it is learned. It should be noted that information

spreading costs time and not everyone learns it immediately. Travelers with

more effective social networks are more likely to be exposed to such information

and thus have a higher probability of learning the better path. Once a new

road opens, it takes weeks or even months before the flow reaches at a stable

level. Even when people learn a better alternative, route change involves a

certain switching cost preventing travelers from changing routes immediately.

Or travelers may just resist of changing because of inertia. Considering these

factors, this curve should increase as benefits increase and reach some up limit

predicted by the probability to learn. Estimation of this curve through survey

or other psychological study will enhance the empirical foundation of the model.

Figure 2 illustrated the flow chart of ARC. After travelers choose their routes

according to the aforementioned probability, link flow and link travel time will be

updated. Consequently, the cost of all possible paths stored both at nodes and

travelers will be updated without changing the choice set. Then travelers will

follow their new route and repeat the described process until an equilibrium

pattern is reached (equilibrium is defined here as link flow variance smaller

than a pre-determined threshold ε, we arbitrarily choose ε = 5). Once this

equilibrium is reached, no traveler has the incentive to change the travel route
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according to their behavior rules and available information. Thus a link flow

pattern would be reached and could be provided to other models under a more

comprehensive framework.

4 Numerical experiments

Numerical experiments are conducted on the Sioux Falls network, a widely-used

testing network for travel demand modeling. The Sioux Falls network contains

24 nodes and 76 links, and there are 336,400 daily trips according to Bar-Gera

(2001). The number of trips between OD pairs has been rounded to integers.

The value of time is an important characteristic of travelers and can be

derived from survey data. This study assumes that value of time follows a

normal distribution with a mean of 10$/hour and a standard error of 2$/hour.

We then generate our traveler agents by randomly assigning this characteristic

subject to the chosen distribution.

Travelers route choice decisions regarding benefits generated from route

switching is the behavioral foundation of ARC. It is crucial to decide the overall

performance of our traffic assignment model. A route switching probability in-

sensitive to potential benefits leads to premature convergence, which is far-from

user equilibrium and generates unrealistic flow distribution among links. In this

case, the final flow pattern is primarily determined by the initial route choice

of travelers. However, an overly sensitive probability will lead travelers jump-

ing between alternative paths. This flip-flop phenomenon prevents the model

from approaching equilibrium and the flow pattern is also unrealistic. A fea-

sible distribution of route choice should follow in between and can be derived

from survey or more ideally, from experiment conducted in the field. After test-

ing different parameter combination, we choose the values (γ = 1 , T = 0.1

and s = 0.3̄ uniform for all travelers) ensuring fast convergence and accuracy
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equivalent to UE assignments.

4.1 Comparison to UE and SUE assignments

UE assignment (Frank-Wolfe algorithm) and SUE assignment (Dial’s algorithm

with a θ of 1 and standard MSA) are common practices in transportation studies.

Despite starting from a different modeling philosophy, ARC should be able

to generate results consistent with those classical assignment problems with

reasonable computing time to validate its applicability in practice. To make

these models comparable, we assume the tolls on all links equal zero, keeping

other attributes such as capacity and free flow travel time the same as Bar-Gera’s

network (Bar-Gera, 2001). We also adopted BPR function as our flow-cost

function. It takes 35 iterations for ARC to reach equilibrium when simulating

336,400 daily trips on Sioux Falls network. Three models have been coded in

Java and applied on an Apple PowerMac G5 2.7GHz.

[Table 1 about here]

Table 1 summarizes the difference in link flow compared to the best-known

result proposed by Bar-Gera (according to UE principle) and corresponding

running time. This comparison indicates that the macroscopic link flow pattern

emerging from the individual decision-making process modeled in this study is

very close to the UE link flow pattern. Since both SUE and ARC assume the

existence of perception error and probability in route choice, it is not a surprise

to observe that ARC generates a flow pattern very similar to that of SUE,

which further implies that our assumption in term of route switch probability

is reasonable. Therefore, if we incorporate tolls on links and assume static

condition, we could expect a link flow pattern close to a UE or SUE assignment

based on generalized cost.

Although the running time of ARC looks much longer than that of UE and
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SUE, we must realize that ARC generates much more information at the expense

of running time. Actually, we could trace the route choices of individual traveler

over time and generate various statistics (e.g. average value of time) of users

at different level (such as link, path, zone, and network), which enable study

of questions such as equity or market differentiation. Moreover, ARC is more

sensitive to the number of travelers than the scale of the network. Noting that

the real network contains many more nodes and links but slightly more trips

comparing to the simplified SiouxFalls network, ARC shows advantages when

applied in practice, which will be demonstrated in the following section.

4.2 Sensitivity Analysis

There are several variables in the model that may affect the results. Sensitivity

tests are conducted on these variables: size of information set, sensitivity to

route switching, and perception threshold. These are discussed in turn for both

the Sioux Falls and Chicago networks.

The size of information sets kept on centroids, or the number of alternative

paths (K), reflects the diversity of path information available and the extent of

peoples information processing capability when making the route choice. Some

destinations, such as downtown transportation hubs, are able to provide more

choices than others because of their affluence of information. They are also the

most frequently visited nodes. This model assumes a uniform size of choice set

through the whole network for simplicity and the network performance with

different sizes is summarized in Table 2. A larger K means more alternatives

are available when making a route choice and consequently it results in an as-

signment more comparable to the UE assignment, with other factors controlled.

However, more alternatives may lead to more trial-and-error cycles and conse-

quently it may take more iterations to achieve the convergence. As illustrated
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by Table 2, the difference is less significant when K is larger than 4. We may

conclude that four alternatives for each OD is a large enough choice set on the

Sioux Falls network. However, whether this conclusion still holds on a larger

network is still an open question and needs further tests.

[Table 2 about here]

The changing of route imposes some costs and thus travelers may ignore

those routes bringing trivial reduction in travel cost. This reluctance to switch

routes is captured by the perception threshold (T) in the model. Outcomes

under different threshold choices are summarized in Table 3. A larger threshold

means travelers are more reluctant to switch route and the model will conse-

quently converge faster. However, since UE assignment assumes perfect travel

cost perception and absolute equilibrium, a larger threshold will also lead to a

more significant deviation from UE assignments. Experiments reveal that link

flows with a threshold larger than T = 0.2 are significantly different than those

generated by UE assignment.

[Table 3 about here]

4.3 Demonstration on larger network

Although ARC tracks the decisions of individual traveler, it is still tractable on

large real network. A demonstration has been conducted on the Chicago Sketch

network (CHS), a fairly realistic yet aggregated representation of the Chicago

region developed by the Chicago Area Transportation Study (CATS). As an

agent-based model, ARC does not deal with fractional demand. Consequently,

the original OD table provided by Bar-Gera (2001) has been rounded. In this

study, ARC simulates decision-making process of 1.13 million traveler agents

on a network with 387 centroids, 933 nodes, and 2950 links. To evaluate the

emerging pattern predicted by ARC, the same OD has been assigned using
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Origin Based Algorithm (OBA) developed by Bar-Gera and Boyce (2003) and

this assignment is taken as the best known assignment according to Wardrop’s

principle. All of the three models, ARC, UE (Frank-Wolfe), and SUE (Dial’s

algorithm with a θ of 1 and MSA), have been coded in Java and run on the

same computer for 100 iterations each. The link flow comparison is summarized

in Table 4.

[Table 4 about here]

As indicated in Table 4, ARC generates a flow pattern with a smaller dis-

crepancy compared to the OBA assignment than the alternatives, while UE and

SUE have very similar results. Figure 4 and Figure 5 further illustrate that the

flow on most links are very consistent with the best-known assignment generated

by OBA. This comparison suggests that ARC has very good performance on

large networks and this advantage is more significant if we consider the details

ARC can provide and the solider behavior foundation. Figure 3 illustrates how

maximum link flow difference between consecutive iterations, the convergence

criterion adopted in this research, evolves over time for three assignment algo-

rithms. Although the difference compared to the other two algorithm decreases

over iterations, ARC converges much faster at the first few iterations and ex-

hibits more stable flow pattern. This is partly due to the behavior assumptions

such as information spreading speed and inertia of changing route assumed in

ARC, which is more consistent with the real world. Table 5 shows the com-

parison in computational efficiency on different networks. Although ARC still

costs more time compared to UE and SUE, the difference reduces rapidly as the

scale of network increases. However, we must indicate that this running time for

ARC is based on the simplification of uniform traveler characteristics in order to

be comparable with UE or SUE. If we consider heterogeneity in travelers, each

iteration of ARC consumes 5.5 minutes and it takes 85 iterations to converge,
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according to a criterion that the maximum relative link flow error between two

consecutive iterations should be less than 6 vehicles.

[Table 5 about here]

5 Application

The introduction of toll road and price setting is a comprehensively debated

topic. One concern about toll roads is the potential inequity. It is intuitive

to think that travelers with higher value of time would take toll roads, while

poorer travelers select roads without or with fewer tolls. While this is a common

argument when people discuss the toll road, the extent of the differentiation

on large networks is seldom studied. Because of its capacity to model each

individual traveler, ARC has advantages in revealing the relationship between

toll rates and traveler differentiation. This paper only illustrates this idea with

a simple network, containing only one OD and two alternative routes (A and B).

The demand is assumed 2000 veh/h and each alternative route has a capacity of

800 veh/h. We assume route B is toll free and travelers reactions with different

toll rate on route A are studied.

[Table 6 about here]

As illustrated in Table 6, if we charge a higher toll rate on route A, travelers

exhibit more significant differentiation: fewer travelers would take route A and

those users have a higher value of time. While route B is more congested and

serves those travelers with a lower value of time. The extent of differentiation

depends on the toll rate charged on route B and the distribution of value of

time among travelers.

18



6 Conclusion and Discussion

Starting from theory about how spatial knowledge is generated, refined and

communicated among travelers, the Agent-based Route Choice (ARC) model

differs from previous research by generating a route choice set using a behavioral

framework. Parameters describe how travelers perceive the available informa-

tion and make route choice decisions. Upon estimation and calibration of those

parameters, a fully behavior based traffic assignment model can be established.

ARC simulates how travelers make route choice decisions over time and how the

product of those individual decisions evolves into a static (and near-equilibrium)

pattern if network conditions hold constant. Numerical experiments suggest

that ARC is realistic, and also feasible even on large networks.

Compared to a traditional UE or SUE assignment, the advantage of ARC

relies on its ability to track evolutionary decisions made by heterogeneous trav-

elers, particularly on networks with differentiated levels of service provided by

tolls. It is highly likely that travelers with higher value of time will take those

paths with higher tolls but lower congestion level, while those less wealthy trav-

elers prefer free public routes. Therefore, this model permits the investigation

of issues involving traveler differentiation, such as equity, marketing and toll

and investment strategies.

Adopting the evolutionary modeling approach and focusing on behavioral

solidity, ARC can account for the presence of exogenous information or non-

static network condition, in which case the equilibrium modeling paradigm may

not apply, since no equilibrium exists in these cases.

More importantly, ARC provides a new modeling platform based on ac-

quisition and processing of spatial information, which is behaviorally sounder

than modeling based on shortest path searching. Following the same agent-

based modeling paradigm and focusing on the travel behavior, we could revisit
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the problems of travel demand modeling, including residential, job, and non-

work location choice, mode choice, activity generation, and departure time and

scheduling. Since we deal with individual travelers, the same traveler agent in

also these models can carry identical personal characteristics and preferences.

Thus, this modeling framework exhibits the potential to solve the travel demand

and routing problems consistently, which has long been proposed by researchers.
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Table 1: Comparison between link flows on Sioux Falls Network
Best-known
Assginment
(veh/day)

UE SUE ARC

Abs. Rela. Abs. Rela. Abs. Rela.
mean 11547 40 0.30% 1080 2.10% 1043 1.60%

maximum 15333 151 1% 251 7% 181 6.80%
running time < 2s < 2s 80s

Table 2: Comparison between link flows on Sioux Falls Network

K Iterations Max link flow error(veh) Mean link flow error(veh)
1 64 7943 1598
2 82 1496 329
4 105 1212 252
6 124 1375 271
10 119 1202 268

Table 3: Network performance with different perception thresholds

T Iterations Max link flow error(veh) Mean link flow error(veh)
0.1 105 1212 252
0.2 105 1225 261
0.5 75 1831 344

Table 4: Comparison of link flow pattern on Chicago Sketch Network
Best-known
Assginment
(veh/day)

UE (FW) SUE ARC

Abs. Rela. Abs. Rela. Abs. Rela.
mean 2383 170 7% 170 7% 108 4.50%

maximum 22365 2906 13% 2906 13% 2967 13%
running time 702s 1038s 4012s

Table 5: Network Scale and Running Time Comparison
Links Centroids Nodes Trips Computing time (sec)

UE SUE ARC
SiouxFalls 76 24 24 336400 2 2 80

Chicago Sketch 2950 387 933 1133783 702 1038 4012
Ratio 38.8 16.1 38.9 3.36 351 519 50

25



Table 6: Link flows and Users average value of time with different toll rate
Toll on A Overall value of time (vot) Route A Route B

($) Mean ($/h) Variance Flow vot in $ Flow vot in $
0 10 5 987 0.168 1013 0.171

0.15 10 5 980 0.168 1020 0.171
0.3 10 5 932 0.169 1068 0.17
0.5 10 5 786 0.175 1214 0.166
1 10 5 591 0.184 1409 0.163
2 10 5 321 0.229 1679 0.158
2 20 5 535 0.345 1465 0.332

26



1

2

3

4

5

1

2

3

4

5

i Vertices

5 Centroids

Traveler's Knowledge

Node's Knowledge

Exchanging Information

Figure 1: Information Exchange Mechanism
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Figure 2: Flow Chart of Agent-based Route Choice Model
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