21,064 research outputs found

    High resolution analysis

    Get PDF
    The possibilities for the use of high spectral resolution analysis in the field of hydrology and water resources are examined. Critical gaps in scientific knowledge that must be filled before technology can be evaluated involve the spectral response of water, substances dissolved and suspended in water, and substances floating on water. The most complete mapping of oil slicks can be done in the ultraviolet region. A mean of measuring the ultraviolet reflection at the surface from satellite altitudes needs to be determined. The use of high spectral resolution sensors in a reasonable number of narrow bands may be able to sense the reflectance or emission characteristics of water and its contained materials that can be correlated with commonly used water quality variables. Technological alternative available to experiment with problems of sensing water quality are to use existing remote sensing instrumentation in an empirical mode and to develop instruments for either testing hypoteses or conducting empirical experiments

    Multi-resolution analysis for ENO schemes

    Get PDF
    Given an function, u(x), which is represented by its cell-averages in cells which are formed by some unstructured grid, we show how to decompose the function into various scales of variation. This is done by considering a set of nested grids in which the given grid is the finest, and identifying in each locality the coarsest grid in the set from which u(x) can be recovered to a prescribed accuracy. This multi-resolution analysis was applied to essentially non-oscillatory (ENO) schemes in order to advance the solution by one time-step. This is accomplished by decomposing the numerical solution at the beginning of each time-step into levels of resolution, and performing the computation in each locality at the appropriate coarser grid. An efficient algorithm for implementing this program in the 1-D case is presented; this algorithm can be extended to the multi-dimensional case with Cartesian grids

    Multi-resolution analysis generated by a seed function

    Get PDF
    In this paper we use the equivalence result originally proved by the author which relates a multi-resolution analysis (MRA) of L2(R)L^2(R) and an orthonormal set of single electron wave-functions in the lowest Landau level, to build up a procedure which produces, starting with a certain square-integrable function, a MRA of $L^2(R)

    High resolution analysis of satellite gradiometry

    Get PDF
    Satellite gravity gradiometry is a technique now under development which, by the middle of the next decade, may be used for the high resolution charting from space of the gravity field of the earth and, afterwards, of other planets. Some data analysis schemes are reviewed for getting detailed gravity maps from gradiometry on both a global and a local basis. It also presents estimates of the likely accuracies of such maps, in terms of normalized spherical harmonics expansions, both using gradiometry alone and in combination with data from a Global Positioning System (GPS) receiver carried on the same spacecraft. It compares these accuracies with those of current and future maps obtained from other data (conventional tracking, satellite-satellite tracking, etc.), and also with the spectra of various signals of geophysical interest

    Multi-Resolution Analysis and Fractional Quantum Hall Effect: an Equivalence Result

    Get PDF
    In this paper we prove that any multi-resolution analysis of \Lc^2(\R) produces, for some values of the filling factor, a single-electron wave function of the lowest Landau level (LLL) which, together with its (magnetic) translated, gives rise to an orthonormal set in the LLL. We also give the inverse construction. Moreover, we extend this procedure to the higher Landau levels and we discuss the analogies and the differences between this procedure and the one previously proposed by J.-P. Antoine and the author.Comment: Submitted to Journal Mathematical Physisc

    Seven-fluorochrome mouse M-FISH for high-resolution analysis of interchromosomal rearrangements

    Get PDF
    The mouse has evolved to be the primary mammalian genetic model organism. Important applications include the modeling of human cancer and cloning experiments. In both settings, a detailed analysis of the mouse genome is essential. Multicolor karyotyping technologies have emerged to be invaluable tools for the identification of mouse chromosomes and for the deciphering of complex rearrangements. With the increasing use of these multicolor technologies resolution limits are critical. However, the traditionally used probe sets, which employ 5 different fluorochromes, have significant limitations. Here, we introduce an improved labeling strategy. Using 7 fluorochromes we increased the sensitivity for the detection of small interchromosomal rearrangements (700 kb or less) to virtually 100%. Our approach should be important to unravel small interchromosomal rearrangements in mouse models for DNA repair defects and chromosomal instability. Copyright (C) 2003 S. Karger AG, Basel
    • …
    corecore