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Multiresolution analysis generated by a seed function
F. Bagarelloa)

Dipartimento di Matematica ed Applicazioni, Fac. Ingegneria, Universita` di Palermo,
I-90128 Palermo, Italy

~Received 14 October 2002; accepted 17 December 2002!

In this paper we use the equivalence result originally proved by the author, which
relates a multiresolution analysis~MRA! of L 2(R) and an orthonormal set of
single electron wave functions in the lowest Landau level, to build up a procedure
which produces, starting with a certain square-integrable function, a MRA of
L 2(R). © 2003 American Institute of Physics.@DOI: 10.1063/1.1556193#

I. INTRODUCTION

In a series of recent papers,1–3 we have shown the existence of a relation between any
multiresolution analysis~MRA! of L 2(R) and an orthonormal~o.n.! set of functions ofL 2(R2)
which ~1! belong to the lowest Landau level~LLL !, ~2! are closed under the action of two
commuting unitary translation operators, and~3! can be used to produce a normalized trial ground
state for the gas ofN electrons. This method has been used up to now to produce different trial
ground states for the well-known fractional quantum Hall effect~FQHE!. In our previous papers
we were mainly interested in using known facts from MRA in order to get information about
FQHE. However, already in Refs. 1 and 2, we have also discussed the possibility of reversing the
construction, in order to get the coefficients of a MRA, in the sense of Refs. 6 and 7, simply
starting from a given single electron o.n. basis closed under the action of two~magnetic! transla-
tion operators. To implement this proposal we only need such a set of wave functions: then we
immediately have the coefficients of the related MRA.1,2 However, this approach is not really easy
to use, the reason being that there are not many examples of this kind of wave function in the LLL
in the literature.4,5

In this paper we consider a different possibility. We will show how a given function ofL 2(R)
satisfying some extra condition can be used to generate a set of coefficients related to a MRA of
L 2(R).6,7

The paper is organized as follows. In Sec. II we quickly review the method proposed in Refs.
1 and 2, without insisting too much on its physical aspects. In Secs. III and IV we show how to use
a seed function in order to construct a set of coefficients giving rise to a MRA. In Sec. V we
discuss some examples, and we discuss our conclusions in Sec. VI. In the Appendix we prove
some easy results on the convolution of sequences which are used in the main body of the paper,
results which we were not able to find in the existing literature.

II. THE METHOD

We begin this section with the following remark: in Refs. 2 and 3 the method originally
introduced in Ref. 1 has been generalized. This generalization, which is crucial for concrete
applications in the analysis of the FQHE, is only an unnecessary complication here and, for this
reason, will not be used.

The many-body model of the FQHE consists simply in a two-dimensional electron gas
~2DEG!—that is a gas of electrons constrained in a two-dimensional layer—in a positive uniform
background and subjected to a uniform magnetic field alongz, whose Hamiltonian~for N elec-
trons! is1

a!Electronic mail: bagarell@unipa.it
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H (N)5H0
(N)1l~HC

(N)1HB
(N)!, ~2.1!

whereH0
(N) is the sum ofN contributions:

H0
(N)5(

i 51

N

H0~ i !. ~2.2!

HereH0( i ) describes the minimal coupling of thei th electron with the magnetic field:

H05
1

2
~pI 1AI ~r !!25

1

2 S px2
y

2D 2

1
1

2 S py1
x

2D 2

. ~2.3!

HC
(N) is the canonical Coulomb interaction between charged particles,

HC
(N)5

1

2 (
iÞ j

N
1

urI i2rI j u
,

andHB
(N) is the interaction of the charges with the background, Ref. 4.

We now considerl(HC
(N)1HB

(N)) as a perturbation of the free HamiltonianH0
(N) , and we look

for eigenstates ofH0
(N) in the form of Slater determinants built up with single electron wave

functions. The easiest way to approach this problem consists in introducing the new variables

P85px2y/2, Q85py1x/2. ~2.4!

In terms ofP8 andQ8 the single electron Hamiltonian,H0 , can be written as

H05 1
2 ~Q821P82!. ~2.5!

The transformation~2.4! can be seen as a part of a canonical map from (x,y,px ,py) into
(Q,P,Q8,P8) where

P5py2x/2, Q5px1y/2. ~2.6!

These operators satisfy the following commutation relations:

@Q,P#5@Q8,P8#5 i , @Q,P8#5@Q8,P#5@Q,Q8#5@P,P8#50. ~2.7!

It is shown in Refs. 8 and 9 that a wave function in the (x,y) space is related to itsPP8 expression
by

C~x,y!5
eixy/2

2p E
2`

` E
2`

`

ei (xP81yP1PP8)C~P,P8! dP dP8, ~2.8!

which can be easily inverted:

C~P,P8!5
e2 iPP8

2p E
2`

` E
2`

`

e2 i (xP81yP1xy/2)C~x,y! dx dy. ~2.9!

The usefulness of thePP8 representation stems from the expression~2.5! of H0 . Indeed, in this
representation, the single electron Schro¨dinger equation admits eigenvectorsC(P,P8) of H0 of
the formC(P,P8)5 f (P8)h(P). Thus the ground state of~2.5! must have the formf 0(P8)h(P),
where

f 0~P8!5p21/4e2P82/2, ~2.10!
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while the functionh(P) is arbitrary, which manifests the degeneracy of the LLL, and should be
fixed by the interaction. Withf 0 as in Eq.~2.10!, formula ~2.8! becomes

c~x,y!5
eixy/2

&p3/4E2`

`

eiyPe2(x1P)2/2h~P! dP, ~2.11!

while, using~2.9!, h(P) can be written in terms ofc(x,y) as

h~P!5
e2 iPP81P82/2

2p3/4 E
2`

` E
2`

`

e2 i (xP81yP1xy/2)C~x,y! dx dy . ~2.12!

Let us now define the so-called magnetic translation operatorsT(aW i) for a square lattice with
basisaW 15a(1,0), aW 25a(0,1), a252p,1 by

T1ªT~aW 1!5eiaQ, T2ªT~aW 2!5eiaP. ~2.13!

We see that, due to~2.7! and to the condition on the cell of the lattice,a252p,

@T~aW 1!,T~aW 2!#5@T~aW 1!,H0#5@T~aW 2!,H0#50. ~2.14!

The action of theT’s on a generic functionf (x,y)PL 2(R2) is the following:

f m,n~x,y!ªT1
mT2

nf ~x,y!5~21!mnei ~a/2!(my2nx) f ~x1ma,y1na!. ~2.15!

This formula shows that, if for instancef (x,y) is localized around the origin, thenf m,n(x,y) is
localized around the sitea(2m,2n) of the square lattice.

Now we have all the ingredients to construct the ground state ofH0
(N) mimicking the classical

procedure. We simply start from the single electron ground state ofH0 given in ~2.11!, c(x,y).
Then we construct a set of copiescm,n(x,y) of c as in ~2.15!, with m,nPZ. All these functions
still belong to the lowest Landau level for any choice of the functionh(P) due to~2.14!. N of
these wave functionscm,n(x,y) are finally used to construct a Slater determinant for the finite
system:

c (N)~rI1 ,rI2 , . . . ,rIN!5
1

AN!U cm1 ,n1
~rI1! cm1 ,n1

~rI2! ••• cm1 ,n1
~rIN!

cm2 ,n2
~rI1! cm2 ,n2

~rI2! ••• cm2 ,n2
~rIN!

. . ••• .

. . ••• .

. . ••• .

cmN ,nN
~rI1! cmN ,nN

~rI2! ••• cmN ,nN
~rIN!

U . ~2.16!

It is known, Ref. 4, that in order to have^c (N),c (N)&51 for all N we need to have

^cmi ,ni
cmj ,nj

&5dmi ,mj
dni ,nj

. ~2.17!

Let c(x,y) be as in~2.11! and cm,n(x,y)5T1
mT2

nc(x,y)5(21)mnei (a/2)(my2nx)c(x1ma,y
1na). After few computations and again using conditiona252p, we get

cm,n~x,y!5
ei ~xy/2! 1 iamy

&p3/4 E
2`

`

dPei (y1na)P2(x1ma1P)2/2h~P!. ~2.18!

We have discussed in Ref. 1 conditions onh(P) such that equality~2.17!, or its equivalent form
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S̃m,nª^c0,0,cm,n&5dm,0dn,0 , ;m,nPZ, ~2.19!

are satisfied. With the above-given definitions we find

S̃l 1 ,l 2
5E

2`

`

dp e2 i l 2aph~p2 l 1a!h~p!, ~2.20!

which restates the problem of the orthonormality of the wave functions in terms ofh(P). In
particular we see that, form5n50, this equation implies thatc00 is normalized inL 2(R2) if and
only if h(P) is normalized inL 2(R). This reflects the unitarity of the transformation~2.8!, which,
more in general, implies that any o.n. set inL 2(R) is mapped into an o.n. set inL 2(R2).

In the above-given construction we are considering a square lattice in which all the lattice sites
are occupied by an electron. We say that thefilling factor n is equal to 1. We have seen in Ref. 1
that, in order to construct an o.n. set of functions in the LLL corresponding to a fillingn5 1

2 ~only
half of the lattice sites are occupied!, we have to replace~2.19! and ~2.20! with the following
slightly weaker condition:

Sl 1 ,l 2
5S̃l 1,2l 2

5E
2`

`

dp e22i l 2aph~p2 l 1a!h~p!5E
2`

`

dp eil 1apĥ~p22l 2a!ĥ~p!5d l 1,0d l 2,0 ,

~2.21!

for all l 1 ,l 2PZ, whereĥ(p)5 (1/A2p) *Re2 ipxh(x)dx is the Fourier transform ofh(x). If h(x)
satisfies~2.21!, then, defining

hn5
1

Aa
E

2`

`

dp e2 inxah~x!, ~2.22!

it is easily checked that

(
nPZ

hnhn12l5d l ,0 . ~2.23!

The proof of this claim, contained in Ref. 1, is based on condition~2.21! and on the use of the
Poisson summation formula~PSF!, which we write here as

(
nPZ

einxc5
2p

ucu (
nPZ

dS x2n
2p

c D . ~2.24!

It is well known that the PSF does not always hold, and conditions for its validity are given in
several papers and books, see Ref. 10, p. 298, and references therein, for instance. In this paper we
will always assume its validity, and from time to time we will check it explicitly.

Equation~2.23! shows how a functionh(x), satisfying the orthonormality condition~ONC!
~2.21!, can be used to generate, via~2.22!, a set of coefficients which are related to a MRA.6,7,11

This procedure can be extended in many ways which are not relevant here,1–3 and therefore will
not be considered in this paper. In Ref. 2 is also discussed in some detail the role of the Zak
transform in our procedure, while a detailed summary of our results can be found in Ref. 12.

Several problems arise at this point.

~1! Is there any simple way to construct functionsh(x) which solve the ONC~2.21!? Of course,
any o.n. basisCn,m(x,y) arising in the analysis of the FQHE could be used to construct such
a h(x), but the literature is rather poor of these examples.4,5

~2! Equation ~2.23! is not the only condition which should be satisfied by a set of complex
numbers in order to get a MRA ofL 2(R), see Refs. 6, 7, and 11 and the following definition.
What can be said about the other conditions?
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We will consider the first point above in Sec. III. Point~2! will be analyzed in Sec. IV.
We end this section by the following.
Definition: We call relevantany sequenceh5$hn ,nPZ% which satisfies the following prop-

erties:

~r1! (
nPZ

hnhn12l5d l ,0 ;

~r2! hn5OS 1

11unu2D , n@1;

~r3! (
nPZ

hn5&;

~r4! H~v!5
1

&
(
nPZ

hne2 ivnÞ0, ;vPF2
p

2
,
p

2 G .
The role of relevant sequences in connection with MRA is explained in Refs. 6, 7, and 11, for

instance, and will not be discussed here.

III. THE SEED FUNCTION, PART ONE

In this section we will show how to find, under very general assumptions, sequences satisfying
condition~r1! by making use of the approach outlined in Sec. II. In particular we will show how,
starting with a givenseed function hPL 2(R), we can obtain another functionH satisfying the
ONC ~2.21! and, as a consequence, a set of coefficients defined as in~2.22! which satisfies
condition ~r1!. As will appear evident, a crucial role is played by formulas~2.8! and ~2.12!.

Let h(P) be a generic square integrable function. Using formula~2.8! we get a function

Ch~x,y!5
eixy/2

&p3/4E2`

`

eiyPe2(x1P)2/2h~P! dP,

which belongs to the LLL independently of the choice ofh(P). UsingT1 andT2 we define other
functions, still belonging to the LLL, as in~2.15!:

Fh, lI~rI !5T1
l 1T2

2l 2Ch~x,y!5e2 i /2(X̃lIy2ỸlIx)Ch~rI2R̃I lI!, ~3.1!

where we use the notationlI5( l 1 ,l 2), and we have definedR̃I lI5(X̃lI ,ỸlI)52a( l 1,2l 2). Notice
that, since we are considering even powers ofT2 , we obtain a set of normalized wave functions
of the LLL corresponding to a fillingn5 1

2 which are mutually orthogonal whenever the seed
functionh(P) satisfies the ONC~2.21!,1 and, via~2.22! also a set of coefficientshn satisfying~r1!.
However, in general,h(P) does not satisfy~2.21!. We want to show here the way in which a
function H(P) satisfying the ONC can be obtained starting from this originalh. The function
H(P) will be used to define some coefficients as shown in~2.22!.

First of all we use the setIF5$Fh, lI , lIPZ2% to construct another set of functions, still be-
longing to the LLL, by considering the following superposition:

xnI ~rI !5 (
lIPZ2

f lIFh, lI1nI ~rI !, ~3.2!

wherenI 5(n1 ,n2). The setIx5$xnI ,nI PZ2% shares withIF the property of being closed under the
action of the magnetic translations:
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xnI ~rI !5T1
n1T2

n2x0I ~rI !. ~3.3!

For this reason we can considerx0I (rI ) as a function in the LLL obtained from aH(P), different
from the seed functionh, via the same transformation~2.8!, x0I (rI )5fH(rI ), so thatH(P) can be
obtained fromx0I (rI ) by considering the inverse transformation~2.12!. The coefficientsf lI will now
be fixed by requiring that the setIx is made of o.n. functions:

^xnI ,x0I &5dnI ,0I 5dn1,0dn2,0 , ~3.4!

for all integersn1 andn2 . Using ~3.2! and the following equality,

SlI1nI
(h) 5^Fh, lI1nI ,Fh,0I &5^Fh, lI ,Fh,2nI &, ~3.5!

which follows from the unitarity ofTi and from~3.3!, the orthonormality constraint~3.4! becomes

(
lI,sIPZ2

f lI f sISlI1nI 2sI
(h) 5dnI ,0I . ~3.6!

Incidentally we recall thatSlI
(h) can be rewritten in terms of the seed function as in~2.21!. We use

hereSlI
(h) instead of the simplestSlI to emphasize the role of the seed functionh. Introducing the

following functions:

F~pI !5 (
nPZ2

f nI e
ipI •nI , S(h)~pI !5 (

nPZ2
SnI

(h)eipI •nI , ~3.7!

Eq. ~3.6! can be rewritten asuF(pI )u2S(h)(pI )51, whose solution is

F~pI !5
eiw(pI )

AS(h)~pI !
, ~3.8!

w(pI ) being a generic real function. To simplify the treatment, we will putw(pI )50 from now on.
We will comment on this choice at the end of Sec. V. Notice that since the coefficientsSnI

(h) satisfy
the relationSnI

(h)5S2nI
(h) , thenS(h)(pI ) is a real function, which is surely non-negative. In order to

avoid problems with possible divergences arising whenS(h)(pI )50, we will try to consider in the
following only those seed functions for whichS(h)(pI ) is strictly positive.

Once the functionF(pI ) is known, obtaining the coefficientsf sI is quite straightforward:

f sI5
1

~2p!2 E
0

2pE
0

2p

d2pI
e2 ipI •sI

AS(h)~pI !
. ~3.9!

It is not difficult to explicitly check this result: if we use~3.9! in the expansion~3.2!, we recover
^xnI ,x0I &5dnI ,0I , as expected. In the proof of this statement the PSF has to be used.

The coefficientsf sI and Eq.~3.2! produce a functionx0I (rI ) which, together with its magnetic
translatedxnI 5T1

n1T2
2n2x0I , gives rise to an o.n. set in the LLL, forn5 1

2. By making use of Eq.
~2.12! we obtain a square integrable functionH(P) which, as a consequence of this fact, satisfies
the ONC~2.21!:

H~P!5
e2 iPP81P82/2

2p3/4 (
lIPZ2

f lIE
2`

` E
2`

`

e2 i (xP81yP1xy/2)Fh, lI~x,y! dx dy.

After some minor computation and using the integral expression forFh, lI , we get
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H~P!5 (
lIPZ2

f lIh~P2al1!e22iaPl2. ~3.10!

In other words, we conclude that, given a seed functionh(P), the functionH(P) as defined
earlier, with the coefficientsf lI given in ~3.9!, satisfies the following ONC:

E
2`

`

H~P!H~P2al1!e22iaPl2 dP5E
2`

`

H~P!H~P1X̃lI!e
iPỸlI dP5d l 1,0d l 2,0 . ~3.11!

We can now useH(P) to find the coefficients of the MRA as in~2.22!:

Hn5
1

Aa
E

2`

`

dp e2 inxaH~x!5AaĤ~na!, ~3.12!

whereĤ(p) is the Fourier transform of the functionH(x). These coefficients, for what has been
discussed in Sec. II, automatically satisfy condition~r1!:

(
nPZ

HnHn12l5d l ,0 , ~3.13!

simply as a consequence of~3.11!. Introducing the Fourier transform of the functionh(x), ĥ(p),
the integral in~3.12! can be written as

Hn5Aa (
lIPZ2

f lIĥ~~n12l 2!a!, ~3.14!

which is the expression of the coefficients in terms of the seed function. Making use of the PSF
this expression can be further simplified. In fact, summing overl 1 , we get

Hn5Aa(
sPZ

csĥ~~n12s!a!, ~3.15!

where we have defined the new coefficientscs as follows:

cs5
1

2p E
0

2p e2 ips dp

AS(h)~0,p!
. ~3.16!

Remark: In the above-mentioned procedure we have made essentially no requirement on
h(x). In particular, we have not assumed thath satisfies the ONC~2.21! from the very beginning,
but we have askedS(h)(0,p) to be nonzero in@0,2p@. This is the reason why we had to construct,
starting fromh, a new functionH which does satisfythe ONC. It is interesting to remark that,
wheneverh is already a solution of condition~2.21!, H(x) coincides withh(x). In fact, under this
assumption,SlI

(h)5d lI,0I , so thatS(h)(pI )51. Thereforef lI5d lI,0I and, see~3.10!, H(P)5h(P). This
will happen, for instance, in Examples 1 and 2 in the following.

Before going on to consider the other requirements of the relevant sequences, we give the
following summation rules, which can be deduced from the above-given definitions and from the
PSF. We have

(
r 1PZ

Sr 1 ,r 2

(h) 5a (
r 1PZ

ĥ~ar1!ĥ~~r 122r 2!a!, for all fixed r 2PZ, ~3.17!
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(
r 2PZ

Sr 1 ,r 2

(h) 5
a

2 (
r 2PZ

hS ar2

2 DhS a

2
(r 222r 1) D , for all fixed r 1PZ, ~3.18!

(
rIPZ2

SrI
(h)5a (

rIPZ2
ĥ~ar1!ĥ~~r 122r 2!a!5

a

2 (
rIPZ2

hS ar2

2 DhS a

2
~r 222r 1! D5S(h)~0I !,

~3.19!

(
sPZ

ucsu25
1

2p E
0

2p dp

uS(h)~0,p!u
, ~3.20!

(
sPZ

cs5
1

AS(h)~0I !
. ~3.21!

The proofs of all these equalities are trivial and will not be given here.

IV. THE SEED FUNCTION, PART TWO

In the following we move our attention to the conditions that a seed functionh(x) must satisfy
in order to produce, via formula~3.15!, a set of coefficients$Hn% which satisfies conditions
~r2!–~r4! of Sec. II. This will conclude the construction of our relevant sequences.

A. On the asymptotic behavior of Hn

We are interested here in finding conditions onh(x) which implies condition~r2!. Before
considering this problem, it may be interesting to observe that, due to definition~3.12!, there exists
an easy way to characterize the situation which produces a finite sequence of coefficientsHn :
using the same notations as in Ref. 13 we say thatH5$Hn ,nPZ% belongs tof , the set of all the
complex sequences with only a finite number of nonzero entries, if and only ifĤ(p) is compactly
supported. Unfortunately, the analysis of the support ofĤ(p) could be a hard problem, so that this
result is of little practical use. More useful is to approach this problem within the framework of
convolutions of sequences. We refer to the Appendix for some results on this topic which will be
used here. In fact, it is not hard to check that formula~3.15! can be rewritten in terms of
convolutions. Defining two sequences related toĥ(na) as

ĥk
(even)5ĥ~2ka!, ĥk

(odd)5ĥ~~2k11!a!, ~4.1!

which share withĥ the same asymptotic behavior, we can writeHn5Aa(sPZ csĥ((n12s)a) as
follows:

H2n5Aa~ c̄* ĥ(even)!n ,

H2n115Aa~ c̄* ĥ(odd)!n ,
~4.2!

where we have used thatc̄s5c2s and we have defined (a* b)n5(sPZ asbn2s .
We see from~4.2! thatHn has the same behavior for largen as (c̄* ĥ)n , whereĥn5ĥ(na). In

order to get information about the asymptotic behavior ofHn , we therefore have to consider the
behavior of the sequences$cn% and$ĥn%. In particular, the decay features ofĥn are given by the
explicit expression of the seed functionh(x) and of its Fourier transformĥ(p). The situation is
not so simple for the coefficientscn , whose definition~3.16! refers to the function

s~p!5
1

AS(h)~0,p!
,
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and, via ~~2.21!,~3.7!!, to the seed function itself. The asymptotic behavior of thecn can be
deduced using standard techniques in the Fourier series theory: whenevers(p) hasn21 continu-
ous derivatives and thenth derivative has a finite number of discontinuities in@0,2p@, then thecs

goes like 1/usun11. Of course, this hypothesis is satisfied wheneverS(h)(0,p) is n-times differen-
tiable and is strictly positive forpP@0,2p@ . Instead of finding conditions on the seed function for
this hypothesis to be satisfied we mention here a class ofgoodexamples which will be discussed
in more detail in the next section, together with many other examples.

Let k be a natural number and letĥk(p) be defined as follows;

ĥk~p!5H 1

A~2k11!a
, pP@0,~2k11!a@

0 otherwise,

~4.3!

then the related coefficientsHn
(k) satisfy condition~r1! for all values ofk and decrease faster than

any inverse power ofunu, so that they also satisfy condition~r2!. This follows from the compact
support ofĥk(p) and from theC` nature of the functions(p) generated byĥk(p).

B. About the condition (n«Z HnÄ&

Here we want to find conditions on the seed functionh(x) which ensures the validity of
condition~r3!. Again, we will make use several times of the PSF, which will be assumed to hold.

Under this assumption it is not difficult to prove that
Proposition:The set of coefficients~3.15! satisfies condition~r3! if and only if

(
nPZ

ĥ~na!5A2

a
S(h)~0I !. ~4.4!

Proof: From the definition~3.15! we see that~r3! is satisfied whenever(s,nPZcsĥ((n
12s)a)5A2/a. Introducing the integerm5n12s and using Eq.~3.21!, we get equality~4.4!.
The converse is straightforward.

Another result related to this is the following.
Corollary: Whenever the PSF can be applied, a necessary condition for~r3! to hold is that

(
n,mPZ

ĥ~na!@ ĥ~ma!22ĥ~~n22m!a!#50 ~4.5!

is satisfied. Furthermore, ifĥ(p) has a finite support inR, then the above-given condition reads

(
nPN

~21!nĥ~na!50. ~4.6!

Proof: The first statement directly follows from the previous proposition and from Eq.~3.19!.
Formula~4.6! follows from ~4.5! and from a direct computation, assuming thatĥ(p) is equal to
zero outside a given interval@2N1a,N2a@ , for anyN1 ,N250,1,2,3, . . . . Under these conditions
it is easy to check that

(
n,mPZ

ĥ~na!@ ĥ~ma!22ĥ~~n22m!a!#52U(
nPZ

~21!nĥ~na!U2

,

so that~4.6! follows.
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C. About the condition H„v…Å0, ;v«†À pÕ2 , pÕ2‡

Let H(v) be defined as in~r4!,

H~v!5
1

&
(
nPZ

Hne2 ivn, ~4.7!

with Hn as in ~3.15!. Then we can rewriteH(v) as follows:

H~v!5Aa

2
K~2v!H~2v!,

where

K~v!5 (
sPZ

cse
ivs, H~v!5 (

sPZ
ĥ~sa! ivs. ~4.8!

Due to the equalityc2s5 c̄s we can check thatK is a real function. Moreover, we can also check
that K(2v)Þ0 for all vP@2 p/2 , p/2# or, equivalently, thatK(n2p)Þ0 for all nP@0,2p#.
The proof of this statement follows again from the PSF. In particular we can check that

K~n2p!55
1

AS(h)~0,n1p!
if 0<n,p

1

AS(h)~0,n2p!
if p<n<2p,

~4.9!

and for this reasonH(v) is different from 0 in @2 p/2 , p/2# if and only if H(v)Þ0 in
@2 p/2 , p/2#, condition which is easier to verify since it is directly linked to the seed function
ĥ(p). In the next section we will discuss examples of seed functions satisfying this condition.

Remarks:~1! One can think that analogous results could be obtained in a completely different
~and, maybe, more natural! way, that is by starting from a givenseed sequence$hn , nPZ%,
normalized inl 2(Z), and by defining a new sequenceHn5(sPZ cshn1s . The problem should be
now finding conditions oncs such that properties~r1!–~r4! are satisfied. It is not very hard to
check that, even if this approach does not seem to be very different from what we have done, it is
quite difficult to obtain reasonable conditions oncs : what is missing, from our point of view, is
the possibility of mapping the problem into complete different settings, in which the requirement
(nPZ HnH̄n12l5d l ,0 can be considered simply as an orthonormality requirement between wave
functions in a certain subspace ofL 2(R2).

~2! It may be useful to remark also that the generic use of the sentencewhenever the PSF
holdsis related to the fact that several inequivalent hypotheses could be checked in order to ensure
the validity of the PSF. For instance, multiplying formula~2.24! for a functionw(x) and integrat-
ing overR, we know that the equality holds for instance~1! if w belongs toS or ~2! if w belongs
to L 1(R) and is continuous and with bounded variation or~3! if w is continuous and if
supxPR(uw(x)u1uŵ(x)u)(11uxu)11e,`. Moreover, we will find in the next section other situa-
tions in which none of these conditions are satisfied but, nevertheless, the validity of the PSF can
be explicitly proved. In conclusion, we find that the most economical way to handle with the PSF
is simply to check its validity whenever it is needed.

V. EXAMPLES

This section is devoted to an analysis of several applications of the construction outlined in
Secs. III and IV.

Example 1:Let us consider the following function, defined in the momentum space:

1528 J. Math. Phys., Vol. 44, No. 4, April 2003 F. Bagarello

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.42.202.150 On: Sun, 23 Nov 2014 01:00:29



ĥ~p!5H 1

Aa
, pP@0,a@

0 otherwise.

~5.1!

This is a normalized function inL 2(R), and the coefficientsSlI
(h) , defined as in~2.21!, are all zero

but when l 15 l 250: SlI
(h)5d lI,0I . ThereforeS(h)(pI )51 and, as a consequence of~3.16!, cs

5ds,0 . ThereforeHn5Aaĥ(na)5dn,0 , which clearly satisfies~r1!, ~r2!, and ~r4! but does not
satisfy condition~r3!. Furthermore, it is easy to check that all the sum rules given in Sec. III are
satisfied. For instance, it is straightforward to check explicitly Eq.~3.21!. This shows that the PSF
can be applied also for a functions(p)51, which does not fit any of the hypotheses given before.

Example 2:Let us consider the following function, defined again in the momentum space:

ĥ~p!5H 1

A2a
, pP@0,2a@

0 otherwise.

~5.2!

As before we findSlI
(h)5d lI,0I , S(h)(pI )51 andcs5ds,0 . Therefore,Hn5Aaĥ(na)5 (1/&) (dn,0

1dn,1). We have therefore obtained the coefficients of the Haar MRA: all the properties~r1!–~r4!
are obviously satisfied, as well as all the sum rules given before.

We want to remark that in both these examples the ONC~2.21! was already satisfied by the
seed function itself, and for this reason it is not a surprise that the new functionH in ~3.10!
coincides withh.

Example 3:Let us consider

h~x!5H 1

Ada
, pP@0,da@

0 otherwise,

~5.3!

whered51,2,3,... . This time the seed function has compact support in the position space, so that
ĥ(p) decayes rather slowly.S(h)(0,p) is, in general, different from 1 but is independent ofp, so
that cs is again proportional tods,0 . Moreover an explicit computation shows thatĥ(na) is
different from zero only ifn50, so thatHn turns out to be nonzero only ifn50. Therefore, even
if the seed function is quite different from that of Example 1, the resulting coefficients essentially
coincide with those obtained there. The sum rules again are verified.

Example 4:Let us define now

ĥ~p!5H 1

A3a
, pP@0,3a@

0 otherwise.

~5.4!

We get easilySrI
(h)5d r 1,0@d r 2,01

1
3(d r 2,11d r 2 ,21)#, which implies thatS(h)(pI )511 2

3 cos(p2). We
see thatS(h)(0,p) is always positive in@0,2p# and infinitely differentiable. We can deduce, there-
fore, that thecs’s decay faster than any inverse power ofusu. Sinceĥ(p) is different from zero
only in the finite set@0,3a@ we can use the result of the Proposition given in the Appendix,
statement~1!, to conclude that the sequenceHn in ~3.15! satisfies conditions~r1! and ~r2!. How-
ever, since~4.4! is not verified, we do not expect condition~r3! to hold. All the sum rules can be
explicitly checked.

Example 5:Let h(x)5 (1/p1/4) e2x2/2. Its Fourier transform isĥ(p)5 (1/p1/4) e2p2/2. Using

formula ~2.21! we find SrI
(h)5e2 (p/2)(r 1

2
14r 2

2), which implies that S(h)(0,p)
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5( r 1PZe2 (p/2) r 1
2
( r 2PZe22pr 2

2
eipr 2. The sum inr 1 can be performed numerically and it gives

( r 1PZe2 (p/2) r 1
2
51.4195. Using now the usual techniques outlined earlier and in the Appendix we

can easily deduce that, not only condition~r1! but also conditions~r2! and~r4! are automatically
satisfied, the reason being the very fast decay properties of bothcs andĥ. However, condition~r3!
is not verified since equality~4.4! does not hold. On the contrary, all the sum rules deduced in Sec.
III are verified.

Let us work out this example in more detail. Since the explicit computation ofS(h)(0,p) is
difficult, we consider here a perturbative computation. We will show that already a very crude
approximation gives interesting results, and that a slightly better approximation makes the result
almost exact. The main difficulty consists in the computation ofcs in ~3.16!. Using the expansion

1

A11x
512

1

2
x1

3

8
x21¯ ,

and observing that( r 251
` e22pr 2

2
.0.001 86, we can proced as follows:

1

AS(h)~0,p!
5

1

A1.4195

1

A112( r 251
` e22pr 2

2
cos~pr2!

.
1

A1.4195
S 12 (

r 251

`

e22pr 2
2
cos~pr2!D .

1

A1.4195

considering the crudest approximation~the rest is only 2/1000 of the main contribution!!. In this
way we getcs. ds,0 /A1.4195, and thereforeHn. (21/4/A1.4195)e2pn2

. It is clear that both~r2!
and ~r4! are satisfied. As for the~r1!, a numerical computation shows that(nPZ Hn

2.0.999 992,
(nPZ HnHn62.0.001 86, and(nPZHnHn62l is even smaller foru l u larger than 1. We see that this
is already a good approximation of~2.23!. Better results can be obtained simply considering the
next contribution in the previous expansion, which means considering also the term withr 251 in
the above-given sum. In this case we getcs. (1/A1.4195) (ds,02

1
2(ds,11ds,21)), and

Hn.
21/4

A1.4195
Fe2pn2

2
1

2
e22p~e2p(n12)21e2p(n22)2!G .

We find now that(nPZ Hn
2.0.999 992, while(nPZ HnHn62.1028, which is much smaller than

before. As for~r3!, a numerical computation gives(nPZHn.1.0844Þ&, as expected. Again, all
the sum rules are satisfied.

Example 6:This example generalizes Example 2, in the sense that we still requireĥ(p) to be
zero outside@0,2a@ but we do not fix the analytic expression ofĥ inside @0,2a@ . Without going
into all the details we just want to remark that also nowcs is proportional tods,0 , so thatHn is
proportional toĥ(na). More in detail we find

Hn5
1

Auĥ~0!u21uĥ~a!u2
~ ĥ~0!dn,01ĥ~a!dn,1!.

It is clear that conditions~r1!, ~r2!, and~r4! are automatically satisfied, while~r3! holds whenever
ĥ(p) is such that

1530 J. Math. Phys., Vol. 44, No. 4, April 2003 F. Bagarello

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.42.202.150 On: Sun, 23 Nov 2014 01:00:29



ĥ~0!1ĥ~a!

Auĥ~0!u21uĥ~a!u2

5&.

Example 7:This example can be considered as a generalization of Examples 1 and 4 and was
already mentioned in Sec. IV. Letk be a fixed natural:k50,1,2,..., and let

ĥk~p!5H 1

A~2k11!a
, pP@0,~2k11!a@

0 otherwise.

~5.5!

Obviously,k50 returns Example 1, whilek51 gives Example 4. Computing the integral in~2.21!
we find

S(hk)~0,p!511~12dk,0!
2

2k11 (
j 50

k21

~2 j 11!cos~p~k2 j !!,

which turns out to be strictly positive for all values ofk. This claim was analytically and numeri-
cally checked for many values ofk. For k increasing it is possible to see that the function
S(hk)(0,p) approaches more and more zero, but, at least fork<100, it is always strictly positive.
We guess that this same positivity also holds fork bigger than 100, but an analytical control is
quite difficult in this case and it is not very relevant here. Incidentally, this is the reason why the
seed functionĥk(p) is defined on, say, odd intervals. For even ones, in fact, (pP@0,2ka@), it is
easy to check thatS(hk)(0,p) has a zero inside@0,2p@ , and the integral definingcs may diverge.

It is now clear that, for any fixedk, the function 1/S(hk)(0,p) is in C`, so thatcs decays faster
than any inverse power ofusu. Now, sinceĥ(p) is different from zero only in a finite interval, it
is also clear that for the asymptotic behavior of the coefficientsHn5Aa(sPZ csĥ((n12s)a) we
can apply the Proposition given in the Appendix, statement~1!, so that we conclude thatHn

Ps, wheres is defined in the Appendix. Condition~r3! does not hold since Eq.~4.4! is not
verified.

Example 8:Let us fix l PN and define

hl~x!50HA 2

la
, xPF0,

la

2 F
0 otherwise.

~5.6!

This class of seed functions is interesting because it produces, after the usual procedure, a set of
coefficientscs which are always zero but ifs50. Therefore we obtain

Hn5A a

S(hl )~0I !
ĥl~na!.

Wheneverl is even the situation is not very interesting, since we getHn}dn,0 . On the contrary, if
l is odd, l 52k11, we find that

ĥ2k11~na!55
A2k11

2a
, n50

0, n562,64,66, . . .

A 2

inaApa~2k11!
, n561,63,65, . . . .
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We therefore see that, even if~r1! is satisfied,~r2! is not. Also~r3! does not hold since Eq.~4.4!
is not verified.

Example 9:As a final example here we consider the following seed function

ĥ~p!5
2

a~11p2!
,

which produces the following coefficients

SrI
(h)5

e2ur 1ua

112pr 2
2

and the following functionS(h)(pI ):

S(h)~pI !5
11e2a

12e2a
w~p2! with w~p2!5 (

r 2PZ

eip2r 2

112pr 2
2 .

It is an easy estimate to check thatw(p2)Þ0 in @0,2p@ . However, we cannot use the same
arguments as for Example 5 to conclude thatw(p2) belongs toC`, the reason being that the
Fourier coefficients (1/112pr 2

2) of w do not decay very fast. For this reason it is not difficult to
understand that condition~r2! is not satisfied whereas conditions~r1! and ~r3! hold. In particular
this last condition can be controlled by checking directly Eq.~4.4!.

Let us now go back to Eq.~3.8!, where the phasew(pI ) was chosen to be equal to zero. We
want to show here that this is really a very special choice. In fact, the following two simple
examples point out that a different choice ofw(pI ) produces coefficientsHn which can be signifi-
cantly different from the ones we get ifw(pI )50.

First we remark that the expression forcs must be a little bit modified. Instead of~3.16! we
have

cs5
1

2p E
0

2p e2 ips1 iw(0,p) dp

AS(h)~0,p!
. ~5.7!

A first application of this formula consists in choosingw(0,p)5pK0 , K0 being a fixed integer. If
we consider, for instance, Example 2, we see that the only difference, in this case is that, instead
of havingcs5ds,0 , we find cs5ds,K0

, so thatHn5(1/&) (dn,K0
1dn,K011). More interesting is

the situation ifw is not linear. Let us consider herew(0,p)5gp2, gPR. Restricting ourselves
again to Example 2, for whichS(h)(0I )51, we can still compute analytically the coefficientscs ,
which turn out to be

cs5
21

4p
A p

2 ig
e2 ~ is2/4gS FS i ~4pg2s!

2A2 ig
D 1FS is

2A2 ig
D D ,

whereF is the erf function.14 Using its well-known asymptotic behavior, we find thatcs decays as
usu21, which is a very slow behavior when compared with that obtained forw50.

VI. CONCLUSIONS

We have shown how to use the relation between the FQHE and the MRA recently established
by the author in order to construct a set of coefficients which produce a MRA ofL 2(R). The
examples given show that while it is essentially automatic to obtain a sequence satisying condition
~r1!, more care must be used to find a seed function which produces a relevant sequence. Condi-
tions on the seed function for the set$Hn ,nPZ% to be relevant are discussed.
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APPENDIX: CONVOLUTIONS OF SEQUENCES

In this appendix we prove some results concerning the asymptotic behavior of convolutions in
view of applications. We wish to stress that these results are given here since, though being quite
reasonable, they were not found by the author in the existing literature.

We use here the same notation as in Ref. 13:f , s, andl p are well-known spaces of sequences,
the first containing all thefinite sequences, that is, those sequences which are zero outside of a
finite set of indexes. The other sets are defined as follows:

s5$a: lim
unu,`

unupan50, ;pPN%, l p5H a:iaip5S (
pPZ

uanupD 1/p

,`J . ~A1!

Given two sequencesa,b we define a third sequencec5a* b as cn5(sPZ asbn2s

5(sPZ an2sbs . We have the following.
Proposition:Let a,b, andc be as above. Then the following statements hold:

~1! if aP f then the asymptotic behavior ofc is the same of that ofb;
~2! if aP l 1 andbP l p thencP l p , for all 1<p,`;
~3! if a,bPs thencPs.

Proof:
~1! This is clear becausean50 but for a finite number of indexesn. Of course the same result

can be obtained simply by exchanging the roles ofa andb.
~2! The proof of this statement follows from well-known properties of the convolutions of

functions. We start defining two functions, defined inR, as follows:

a~x!5uasu, xP@s,s11@ , b~x!5ubsu, xP@s,s11@ , sPZ.

It is clear thata(x)PL 1(R), while b(x)PL p(R). Then it is well known thata* bPL p(R),
where (a* b)(x)5*Ra(y)b(x2y)dy. In order to conclude thatcP l p we consider that

c~x!5E
R
a~y!b~x2y!dy5 (

sPZ
E

s

s11

a~y!b~x2y!dy5 (
sPZ

uasu E
s

s11

b~x2y!dy.

Using now the definition ofb(x) it is easy to check that, for all integersl and for 0<a,1, we
have

c~ l 1a!5 (
sPZ

uasu~~12a!ubl 2s21u1aubl 2su!5~12a!dl 211adl , ~A2!

where we have defineddl5(sPZuasbl 2su>0, for all l PZ. The conclusion now follows from the
fact that c(x) belongs toL p(R) and from the inequality (g11g21¯1gn)p>g1

p1g2
p1¯

1gn
p , which holds wheneverg j>0 and for allp>1. In fact we have

`.E
R
uc~x!updx5(

l PZ
E

l

l 11

uc~x!updx5(
l PZ

E
0

1

uc~ l 1x!updx5(
l PZ

E
0

1

~~12a!dl 211adl !
pda

>
2

p11 (
l PZ

dl
p>

2

p11 (
l PZ

cl
p ,
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which proves thatcP l p .
~3! From the definitioncn5(sPZ asbn2s we easily get the following equality between func-

tions: C(p)5A(p)B(p), where A(p)5(sPZase
isp, B(p)5(sPZbse

isp, and C(p)
5(sPZcse

isp. The coefficientscl can now be found simply by

cl5
1

2p E
0

2p

C~p!e2 ipl dp5
1

2p E
0

2p

A~p!B~p!e2 ipl dp, ~A3!

which is the starting point of our asymptotic analysis. In fact, due to the fact thata, bPs, the
functionsA(p) andB(p) belong toC`, and so their product does. This implies, using well-known
fact about the Fourier series, that the coefficientscl in ~A3! decay faster than every inverse power
of u l u, so thatcPs.

Remark: It is clear that statement~2! is not enough to ensure validity of~r2!, which is
satisfied, on the contrary, ifa andb are both ins or if, e.g.,a is in f andb decays like 1/n2.
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