3,636 research outputs found

    Differential Inequalities and Univalent Functions

    Get PDF
    Let M{\mathcal M} be the class of analytic functions in the unit disk \ID with the normalization f(0)=f(0)1=0f(0)=f'(0)-1=0, and satisfying the condition \left |z^2\left (\frac{z}{f(z)}\right )''+ f'(z)\left(\frac{z}{f(z)} \right)^{2}-1\right |\leq 1, \quad z\in \ID. Functions in M\mathcal{M} are known to be univalent in \ID. In this paper, it is shown that the harmonic mean of two functions in M{\mathcal M} are closed, that is, it belongs again to M{\mathcal M}. This result also holds for other related classes of normalized univalent functions. A number of new examples of functions in M\mathcal{M} are shown to be starlike in \ID. However we conjecture that functions in M\mathcal{M} are not necessarily starlike, as apparently supported by other examples.Comment: 10 pages; To appear in Lobachevskii Journal of Mathematic

    Should particle trajectories comply with the transverse momentum distribution?

    Full text link
    The momentum distributions associated with both the wave function of a particle behind a grating and the corresponding Bohmian trajectories are investigated and compared. Near the grating, it is observed that the former does not depend on the distance from the grating, while the latter changes with this distance. However, as one moves further apart from the grating, in the far field, both distributions become identical.Comment: 10 pages, 7 figure

    Generalized Arago-Fresnel laws: The EME-flow-line description

    Full text link
    We study experimentally and theoretically the influence of light polarization on the interference patterns behind a diffracting grating. Different states of polarization and configurations are been considered. The experiments are analyzed in terms of electromagnetic energy (EME) flow lines, which can be eventually identified with the paths followed by photons. This gives rise to a novel trajectory interpretation of the Arago-Fresnel laws for polarized light, which we compare with interpretations based on the concept of "which-way" (or "which-slit") information.Comment: 14 pages, 6 figure

    Hankel determinant for a class of analytic functions

    Get PDF
    Let ff be analutic in the unit disk D\mathbb D and normalized so that f(z)=z+a2z2+a3z3+f(z)=z+a_2z^2+a_3z^3+\cdots. In this paper we give sharp bound of Hankel determinant of the second order for the class of analytic unctions satisfying arg[(zf(z))1+αf(z)]<γπ2(zD), \left|\arg \left[\left(\frac{z}{f(z)}\right)^{1+\alpha}f'(z) \right] \right|<\gamma\frac{\pi}{2} \quad\quad (z\in\mathbb D), for 0<α<10<\alpha<1 and 0<γ10<\gamma\leq1

    Description of classical and quantum interference in view of the concept of flow line

    Full text link
    Bohmian mechanics, a hydrodynamic formulation of quantum mechanics, relies on the concept of trajectory, which evolves in time in compliance with dynamical information conveyed by the wave function. Here this appealing idea is considered to analyze both classical and quantum interference, thus providing an alternative and more intuitive framework to understand the time-evolution of waves, either in terms of the flow of energy (for mechanical waves, sound waves, electromagnetic waves, for instance) or, analogously, the flow of probability (quantum waves), respectively. Furthermore, this procedure also supplies a more robust explanation of interference phenomena, which currently is only based on the superposition principle. That is, while this principle only describes how different waves combine and what effects these combinations may lead to, flow lines provide a more precise explanation on how the energy or probability propagate in space before, during and after the combination of such waves, without dealing with them separately (i.e., the combination or superposition is taken as a whole). In this sense, concepts such as constructive and destructive interference, typically associated with the superposition principle, physically correspond to more or less dense swarms of (energy or probability) flow lines, respectively. A direct consequence of this description is that, when considering the distribution of electromagnetic energy flow lines behind two slits, each one covered by a differently oriented polarizer, it is naturally found that external observers' information on the slit crossed by single photons (understood as energy parcels) is totally irrelevant for the existence of interference fringes, in striking contrast with what is commonly stated and taught.Comment: 15 pages, 3 figure

    Coherence loss and revivals in atomic interferometry: A quantum-recoil analysis

    Full text link
    The coherence effects induced by external photons coupled to matter waves inside a Mach-Zehnder three-grating interferometer are analyzed. Alternatively to atom-photon entanglement scenarios, the model considered here only relies on the atomic wave function and the momentum shift induced in it by the photon scattering events. A functional dependence is thus found between the observables, namely the fringe visibility and the phase shift, and the transversal momentum transfer distribution. A good quantitative agreement is found when comparing the results obtained from our model with the experimental data.Comment: 18 pages, 4 figure

    Understanding interference experiments with polarized light through photon trajectories

    Get PDF
    Bohmian mechanics allows to visualize and understand the quantum-mechanical behavior of massive particles in terms of trajectories. As shown by Bialynicki-Birula, Electromagnetism also admits a hydrodynamical formulation when the existence of a wave function for photons (properly defined) is assumed. This formulation thus provides an alternative interpretation of optical phenomena in terms of photon trajectories, whose flow yields a pictorial view of the evolution of the electromagnetic energy density in configuration space. This trajectory-based theoretical framework is considered here to study and analyze the outcome from Young-type diffraction experiments within the context of the Arago-Fresnel laws. More specifically, photon trajectories in the region behind the two slits are obtained in the case where the slits are illuminated by a polarized monochromatic plane wave. Expressions to determine electromagnetic energy flow lines and photon trajectories within this scenario are provided, as well as a procedure to compute them in the particular case of gratings totally transparent inside the slits and completely absorbing outside them. As is shown, the electromagnetic energy flow lines obtained allow to monitor at each point of space the behavior of the electromagnetic energy flow and, therefore, to evaluate the effects caused on it by the presence (right behind each slit) of polarizers with the same or different polarization axes. This leads to a trajectory-based picture of the Arago-Fresnel laws for the interference of polarized light.Comment: 36 pages, 6 figure

    Trajectory-based interpretation of Young's experiment, the Arago-Fresnel laws and the Poisson-Arago spot for photons and massive particles

    Full text link
    We present a trajectory based interpretation for Young's experiment, the Arago-Fresnel laws and the Poisson-Arago spot. This approach is based on the equation of the trajectory associated with the quantum probability current density in the case of massive particles, and the Poynting vector for the electromagnetic field in the case of photons. Both the form and properties of the evaluated photon trajectories are in good agreement with the averaged trajectories of single photons observed recently in Young's experiment by Steinberg's group at the University of Toronto. In the case of the Arago-Fresnel laws for polarized light, the trajectory interpretation presented here differs from those interpretations based on the concept of "which-way" (or "which-slit") information and quantum erasure. More specifically, the observer's information about the slit that photons went through is not relevant to the existence of interference; what is relevant is the form of the electromagnetic energy density and its evolution, which will model consequently the distribution of trajectories and their topology. Finally, we also show that the distributions of end points of a large number of evaluated photon trajectories are in agreement with the distributions measured at the screen behind a circular disc, clearly giving rise to the Poisson-Arago spot.Comment: 8 pages, 5 figure

    On Wheeler's delayed-choice Gedankenexperiment and its laboratory realization

    Get PDF
    Here, we present an analysis and interpretation of the experiment performed by Jacques et al. (2007 Science 315, 966), which represents a realization of Wheeler's delayed-choice Gedankenexperiment. Our analysis is based on the evolution of the photon state, since the photon enters into the Mach-Zehnder interferometer with a removable beam-splitter until it exits. Given the same incident photon state onto the output beam-splitter, BS_output, the photon's state at the exit will be very different depending on whether BS_output is on or off. Hence, the statistics of photon counts collected by the two detectors, positioned along orthogonal directions at the exit of the interferometer, is also going to be very different in either case. Therefore, it is not that the choice of inserting (on) or removing (off) a beam-splitter leads to a delayed influence on the photon behavior before arriving at the beam-splitter, but that such a choice influences the photon state at and after BS_output, i.e., after it has exited from the Mach-Zehnder interferometer. The random on/off choice at BS_output has no delayed effect on the photon to behave as a wave or a corpuscle at the entrance and inside the interferometer, but influences the subsequent evolution of the photon state incident onto BS_output.Comment: 7 pages, 4 figure

    On the influence of resonance photon scattering on atom interference

    Get PDF
    Here, the influence of resonance photon-atom scattering on the atom interference pattern at the exit of a three-grating Mach-Zehnder interferometer is studied. It is assumed that the scattering process does not destroy the atomic wave function describing the state of the atom before the scattering process takes place, but only induces a certain shift and change of its phase. We find that the visibility of the interference strongly depends on the statistical distribution of transferred momenta to the atom during the photon-atom scattering event. This also explains the experimentally observed (Chapman et al 1995 Phys. Rev. Lett. 75 2783) dependence of the visibility on the ratio d_p/\lambda_i = y'_{12} (2\pi/kd\lambda_i), where y'_{12} is distance between the place where the scattering event occurs and the first grating, k is the wave number of the atomic center-of-mass motion, dd is the grating constant and \lambda_i is the photon wavelength. Furthermore, it is remarkable that photon-atom scattering events happen experimentally within the Fresnel region, i.e. the near field region, associated with the first grating, which should be taken into account when drawing conclusions about the relevance of "which-way" information for the interference visibility.Comment: 9 pages, 1 figur
    corecore