

HANKEL DETERMINANT FOR A CLASS OF ANALYTIC FUNCTIONS

MILUTIN OBRADOVIĆ AND NIKOLA TUNESKI¹

ABSTRACT. Let f be analutic in the unit disk \mathbb{D} and normalized so that $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots$. In this paper we give sharp bound of Hankel determinant of the second order for the class of analytic unctions satisfying

$$\left| \arg \left[\left(\frac{z}{f(z)} \right)^{1+\alpha} f'(z) \right] \right| < \gamma \frac{\pi}{2} \qquad (z \in \mathbb{D}),$$

for $0 < \alpha < 1$ and $0 < \gamma \leq 1$.

1. INTRODUCTION AND PRELIMINARIES

Let \mathcal{A} denote the family of all analytic functions in the unit disk $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$ and satisfying the normalization f(0) = 0 = f'(0) - 1.

A function $f \in A$ is said to be *strongly starlike of order* β , $0 < \beta \leq 1$ if, and only if,

$$\left|\arg \frac{zf'(z)}{f(z)}\right| < \beta \frac{\pi}{2} \qquad (z \in \mathbb{D}).$$

We denote this class by S^{\star}_{β} . If $\beta = 1$, then $S^{\star}_{1} \equiv S^{\star}$ is the well-known class of *starlike functions*.

In [1] the author introduced the class $\mathcal{U}(\alpha, \lambda)$ ($0 < \alpha$ and $\lambda < 1$) consisting of functions $f \in \mathcal{A}$ for which we have

$$\left| \left(\frac{z}{f(z)} \right)^{1+\alpha} f'(z) - 1 \right| < \lambda \qquad (z \in \mathbb{D}).$$

In the same paper it is shown that $\mathcal{U}(\alpha, \lambda) \subset \mathcal{S}^{\star}$ if

$$0 < \lambda \le \frac{1 - \alpha}{\sqrt{(1 - \alpha)^2 + \alpha^2}}.$$

The most valuable up to date results about this class can be found in Chapter 12 from [4].

¹corresponding author

²⁰⁰⁰ Mathematics Subject Classification. 30C45, 30C50.

Key words and phrases. analytic, univalent, Hankel determinant.

In the paper [2] the author considered univalence of the class of functions $f \in \mathcal{A}$ satisfying the condition

(1.1)
$$\left| \arg\left[\left(\frac{z}{f(z)} \right)^{1+\alpha} f'(z) \right] \right| < \gamma \frac{\pi}{2} \qquad (z \in \mathbb{D})$$

for $0<\alpha<1$ and $0<\gamma\leq$ 1, and proved the following theorem.

Theorem A. Let $f \in A$, $0 < \alpha < \frac{2}{\pi}$ and let

$$\left| \arg\left[\left(\frac{z}{f(z)} \right)^{1+\alpha} f'(z) \right] \right| < \gamma_{\star}(\alpha) \frac{\pi}{2} \qquad (z \in \mathbb{D}),$$

where

$$\gamma_{\star}(\alpha) = \frac{2}{\pi} \arctan\left(\sqrt{\frac{2}{\pi\alpha} - 1}\right) - \alpha \sqrt{\frac{2}{\pi\alpha} - 1}.$$

Then $f \in \mathcal{S}^{\star}_{\beta}$, where

$$\beta = \frac{2}{\pi} \arctan \sqrt{\frac{2}{\pi \alpha} - 1}.$$

2. MAIN RESULT

In this paper we will give the sharp estimate for Hankel determinant of the second order for the class of analytic unctions $f \in A$ which satisfied the condition (1.1).

Definition 1. Let $f \in A$. Then the qth Hankel determinant of f is defined for $q \ge 1$, and $n \ge 1$ by

$$H_q(n) = \begin{vmatrix} a_n & a_{n+1} & \dots & a_{n+q-1} \\ a_{n+1} & a_{n+2} & \dots & a_{n+q} \\ \vdots & \vdots & & \vdots \\ a_{n+q-1} & a_{n+q} & \dots & a_{n+2q-2} \end{vmatrix}.$$

Thus, the second Hankel determinant is $H_2(2) = a_2 a_4 - a_3^2$.

Theorem 1. Let $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots$ belongs to the class A and satisfy the condition (1.1). Then we have the next sharp estimation:

$$|H_2(2)| = |a_2a_4 - a_3^2| \le \left(\frac{2\gamma}{2-\alpha}\right)^2$$

where $0 < \alpha < 2 - \sqrt{2}$ and $0 < \gamma \leq \frac{1}{2}(\alpha^2 - 4\alpha + 2)$.

Proof. We can write the condition (1.1) in the form

(2.1)
$$\left(\frac{f(z)}{z}\right)^{-(1+\alpha)} f'(z) = \left(\frac{1+\omega(z)}{1-\omega(z)}\right)^{\gamma} \left(= (1+2\omega(z)+2\omega^2(z)+\cdots)^{\gamma}\right)$$

where ω is analytic in \mathbb{D} with $\omega(0) = 0$ and $|\omega(z)| < 1$, $z \in \mathbb{D}$. If we denote by L and R left and right hand side of equality (2.1), then we have

$$L = \left[1 - (1 + \alpha)(a_2 z + \dots) + \binom{-(1 + \alpha)}{2}(a_2 z + \dots)^2 + \binom{-(1 + \alpha)}{3}(a_2 z + \dots)^3 + \dots\right] \cdot (1 + 2a_2 z + 3a_3 z^2 + 4a_4 z^3 + \dots)$$

2

and if we put $\omega(z) = c_1 z + c_2 z^2 + \cdots$:

$$R = 1 + \gamma \left[2(c_1 z + c_2 z^2 + \dots) + 2(c_1 z + c_2 z^2 + \dots)^2 + \dots \right]$$

+ $\binom{\gamma}{2} \left[2(c_1 z + c_2 z^2 + \dots) + 2(c_1 z + c_2 z^2 + \dots)^2 + \dots \right]^2$
+ $\binom{\gamma}{3} \left[2(c_1 z + c_2 z^2 + \dots) + 2(c_1 z + c_2 z^2 + \dots)^2 + \dots \right]^3 + \dots$

If we compare the coefficients on z, z^2, z^3 in L and R, then, after some calculations, we obtain

(2.2)
$$a_{2} = \frac{2\gamma}{1-\alpha}c_{1},$$
$$a_{3} = \frac{2\gamma}{2-\alpha}c_{2} + \frac{2(3-\alpha)\gamma^{2}}{(1-\alpha)^{2}(2-\alpha)}c_{1}^{2},$$
$$a_{4} = \frac{2\gamma}{3-\alpha}\left(c_{3} + \mu c_{1}c_{2} + \nu c_{1}^{3}\right),$$

where

(2.3)
$$\mu = \mu(\alpha, \gamma) = \frac{2(5-\alpha)\gamma}{(1-\alpha)(2-\alpha)}$$
 and $\nu = \nu(\alpha, \gamma) = \frac{1}{3} + \frac{2}{3}\frac{(\alpha^2 - 6\alpha + 17)\gamma^2}{(1-\alpha)^3(2-\alpha)}$

By using the relations (2.2) and (2.3), after some simple computations, we obtain

$$H_2(2) = \frac{4\gamma^2}{(1-\alpha)(3-\alpha)} \left(c_1 c_3 + \mu_1 c_1^2 c_2 + (\frac{1}{3} - \nu_1) c_1^4 - \frac{(1-\alpha)(3-\alpha)}{(2-\alpha)^2} c_2^2 \right),$$

where

$$\mu_1 = \frac{2\gamma}{(2-\alpha)^2}, \quad \nu_1 = \frac{(\alpha^2 - 10\alpha + 13)\gamma^2}{3(1-\alpha)^2(2-\alpha)^2},$$

and from here

(2.4)
$$|H_{2}(2)| \leq \frac{4\gamma^{2}}{(1-\alpha)(3-\alpha)} \left(|c_{1}||c_{3}| + \mu_{1}|c_{1}|^{2}|c_{2}| + \left|\frac{1}{3} - \nu_{1}\right| |c_{1}|^{4} + \frac{(1-\alpha)(3-\alpha)}{(2-\alpha)^{2}} |c_{2}|^{2} \right).$$

For the function $\omega(z) = c_1 z + c_2 z^2 + \dots$ (with $|\omega(z)| < 1, z \in \mathbb{D}$) the next relations is valid (see, for example [3, p.128, expression (13)]):

(2.5)
$$|c_1| \le 1, |c_2| \le 1 - |c_1|^2, |c_3(1 - |c_1|^2) + \overline{c_1}c_2^2| \le (1 - |c_1|^2)^2 - |c_2|^2.$$

We may suppose that $a_2 \ge 0$, which implies that $c_1 \ge 0$ and instead of relations (2.5) we have the next relations

(2.6)
$$0 \le c_1 \le 1, \ |c_2| \le 1 - c_1^2, \ |c_3| \le 1 - c_1^2 - \frac{|c_2|^2}{1 + c_1}$$

By using (2.6) for c_1 and c_3 , from (2.4) we have

(2.7)
$$|H_2(2)| \le \frac{4\gamma^2}{(1-\alpha)(3-\alpha)} \left[c_1(1-c_1^2) + \left(\frac{(1-\alpha)(3-\alpha)}{(2-\alpha)^2} - \frac{c_1}{1+c_1} \right) |c_2|^2 + \mu_1 c_1^2 |c_2| + \left| \frac{1}{3} - \nu_1 \right| c_1^4 \right].$$

Since for $0 < \alpha < 2 - \sqrt{2}$ we have $\frac{(1-\alpha)(3-\alpha)}{(2-\alpha)^2} \ge \frac{1}{2} \ge \frac{c_1}{1+c_1}$, then by using $|c_2| \le 1 - c_1^2$, from (2.7) after some calculations we obtain

(2.8)
$$|H_2(2)| \le \frac{4\gamma^2}{(1-\alpha)(3-\alpha)}F(c_1),$$

where

(2.9)
$$F(c_1) = \frac{(1-\alpha)(3-\alpha)}{(2-\alpha)^2} + Ac_1^2 + Bc_1^4,$$

where

$$A = \frac{2\gamma - (\alpha^2 - 4\alpha + 2)}{(2 - \alpha)^2}, B = \left|\frac{1}{3} - \nu_1\right| - \frac{2\gamma + 1}{(2 - \alpha)^2},$$

Further, by using the assumptions of the theorem that $0 < \alpha < 2 - \sqrt{2}$ and $0 < \gamma \le \frac{1}{2}(\alpha^2 - 4\alpha + 2)$, we easily conclude that $A \le 0$, while

$$0 < \nu_1 = \frac{(\alpha^2 - 10\alpha + 13)\gamma^2}{3(1 - \alpha)^2(2 - \alpha)^2} \le \frac{(\alpha^2 - 10\alpha + 13)(\alpha^2 - 4\alpha + 2)^2}{12(1 - \alpha)^2(2 - \alpha)^2} < \frac{13}{12}$$

If we have that $B \leq 0$, then from (2.9) we obtain that

$$F(c_1) \le \frac{(1-\alpha)(3-\alpha)}{(2-\alpha)^2},$$

and if B > 0, then

$$F(c_1) \le \max\{F(0), F(1)\} = \max\left\{\frac{(1-\alpha)(3-\alpha)}{(2-\alpha)^2}, \left|\frac{1}{3} - \nu_1\right|\right\} = \frac{(1-\alpha)(3-\alpha)}{(2-\alpha)^2},$$

since

(2.10)
$$\frac{(1-\alpha)(3-\alpha)}{(2-\alpha)^2} > \left|\frac{1}{3} - \nu_1\right|$$

when $0 < \alpha < 2 - \sqrt{2}$ and $0 < \gamma \le \frac{1}{2}(\alpha^2 - 4\alpha + 2)$ (proven later). It means that in both cases we have that

$$F(c_1) \le \frac{(1-\alpha)(3-\alpha)}{(2-\alpha)^2},$$

which by (2.8) implies

$$|H_2(2)| \le \left(\frac{2\gamma}{2-\alpha}\right)^2$$

We need to prove the inequality (2.10) for appropriate α and γ . First, if $\frac{1}{3} - \nu \leq 0$, i.e. if $0 < \nu_1 \leq \frac{1}{3}$, then , since $0 < \alpha < 2 - \sqrt{2}$, we have

$$\frac{(1-\alpha)(3-\alpha)}{(2-\alpha)^2} > \frac{1}{2} > \frac{1}{3} - \nu_1,$$

which implies that (2.10) is true. In case $\nu_1 > \frac{1}{3}$, we have that inequality (2.10) is equivalent to

$$\frac{(1-\alpha)(3-\alpha)}{(2-\alpha)^2} > \frac{(\alpha^2-10\alpha+13)\gamma^2}{3(1-\alpha)^2(2-\alpha)^2} - \frac{1}{3}.$$

The last inequality is equivalent with

$$\gamma^2 < \frac{(1-\alpha)^2(4\alpha^2 - 16\alpha + 13)}{\alpha^2 - 10\alpha + 13}$$

Since for $0 < \alpha < 2 - \sqrt{2}$ we have $\gamma \leq \frac{1}{2}(\alpha^2 - 4\alpha + 2)$, then for such α we have

$$\gamma^2 \le \frac{1}{4}(\alpha^2 - 4\alpha + 2)^2$$

and from (2.10) it is sufficient to prove that

(2.11)
$$\frac{1}{4}(\alpha^2 - 4\alpha + 2)^2 \le \frac{(1-\alpha)^2(4\alpha^2 - 16\alpha + 13)}{\alpha^2 - 10\alpha + 13}$$

for $0 < \alpha < 2 - \sqrt{2}$. The inequality (2.11) is equivalent to

(2.12)
$$(\phi(\alpha) :=) 4(1-\alpha)^2 (4\alpha^2 - 16\alpha + 13) - (\alpha^2 - 4\alpha + 2)^2 (\alpha^2 - 10\alpha + 13) \ge 0,$$

where $0 < \alpha < 2 - \sqrt{2}$. Let's put $\alpha^2 - 4\alpha + 2 = t$. Then 0 < t < 2 and $\alpha = 2 - \sqrt{2+t}$ and from (2.11) we have

$$\phi_1(t) := \phi(2 - \sqrt{2+t}) = \frac{1}{4}(2+t) \left[30 + 19t - t^2 - (20+6t)\sqrt{2+t} \right].$$

The function ϕ_1 is continuous function in the interval [0, 2]. It is easily to check that

$$\phi_1'(t) = \frac{1}{4} \left[68 + 34t - 3t^2 - (42 + 15t)\sqrt{2 + t} \right]$$

and

$$\phi_1''(t) = \frac{1}{8} \left[68 - 12t - 45\sqrt{2+t} - \frac{12}{\sqrt{2+t}} \right].$$

iN ϕ_1'' , the second and the third expression reach their minimum on the segment [0, 2] for t = 0, while the last expression for t = 2. Thus

$$\phi_1''(t) < \frac{1}{8} \left(68 - 12 \cdot 0 - 45\sqrt{2+0} - \frac{12}{\sqrt{2+2}} \right) = \frac{1}{8} (62 - 45\sqrt{2}) = -0.20 \dots < 0,$$

i.e, ϕ'_1 is an decreasing function from $\phi'_1(0) = 17 - 10.5\sqrt{2} = 2.15... > 0$ to $\phi'_1(2) = -5 < 0$, which implies that the function ϕ attains its maximum in the interval (0, 2), so that

 $\phi_1(t) \ge \min\{\phi_1(0), \phi_1(2)\} = \min\{15 - 10\sqrt{2}, 0\} = 0.$

This means that the inequality given by (2.12) is true.

The result of Theorem 1 is the best possible as the functions f_2 , defined with

$$\left(\frac{z}{f_2(z)}\right)^{1+\alpha} f_2'(z) = \left(\frac{1+z^2}{1-z^2}\right)^{\gamma}$$

shows. In this case we have that $c_2 = 1$, $c_j = 0$ when $j \neq 2$, and consequently, $a_2 = a_4 = 0$, $a_3 = \frac{2\gamma}{2-\alpha}$ and $H_2(2) = a_2a_4 - a_3^2 = -\frac{4\gamma^2}{(2-\alpha)^2}$.

References

- [1] M. OBRADOVIĆ: A class of univalent functions, Hokkaido Math. J. 27(2) (1998), 329–335.
- [2] M. OBRADOVIĆ: Univalence of a certain class of analytic functions, Math. Montisnigri 12 (2000), 57–62.
- [3] D.V. PROKHOROV, J. SZYNAL: Inverse coefficients for (α, β)-convex functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 125–143 (1984).
- [4] D.K. THOMAS, N. TUNESKI, A. VASUDEVARAO: Univalent Functions: A Primer, De Gruyter Studies in Mathematics 69, De Gruyter, Berlin, Boston, 2018.

M. OBRADOVIĆ AND N. TUNESKI

DEPARTMENT OF MATHEMATICS FACULTY OF CIVIL ENGINEERING UNIVERSITY OF BELGRADE BULEVAR KRALJA ALEKSANDRA 73 11000, BELGRADE, SERBIA *E-mail address*: obrad@grf.bg.ac.rs

DEPARTMENT OF MATHEMATICS AND INFORMATICS FACULTY OF MECHANICAL ENGINEERING SS. CYRIL AND METHODIUS UNIVERSITY IN SKOPJE KARPOŠ II B.B., 1000 SKOPJE REPUBLIC OF NORTH MACEDONIA *E-mail address*: nikola.tuneski@mf.edu.mk

6