Advances in Mathematics: Scientific Journal 8 (2019), no.1, 1-6
ISSN 1857-8365 printed version
ISSN 1857-8438 electronic version

HANKEL DETERMINANT FOR A CLASS OF ANALYTIC FUNCTIONS

MILUTIN OBRADOVIĆ AND NIKOLA TUNESKI ${ }^{1}$

Abstract. Let f be analutic in the unit disk \mathbb{D} and normalized so that $f(z)=z+a_{2} z^{2}+$ $a_{3} z^{3}+\cdots$. In this paper we give sharp bound of Hankel determinant of the second order for the class of analytic unctions satisfying

$$
\left|\arg \left[\left(\frac{z}{f(z)}\right)^{1+\alpha} f^{\prime}(z)\right]\right|<\gamma \frac{\pi}{2} \quad(z \in \mathbb{D})
$$

for $0<\alpha<1$ and $0<\gamma \leq 1$.

1. Introduction and preliminaries

Let \mathcal{A} denote the family of all analytic functions in the unit disk $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$ and satisfying the normalization $f(0)=0=f^{\prime}(0)-1$.

A function $f \in \mathcal{A}$ is said to be strongly starlike of order $\beta, 0<\beta \leq 1$ if, and only if,

$$
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|<\beta \frac{\pi}{2} \quad(z \in \mathbb{D})
$$

We denote this class by $\mathcal{S}_{\beta}^{\star}$. If $\beta=1$, then $\mathcal{S}_{1}^{\star} \equiv \mathcal{S}^{\star}$ is the well-known class of starlike functions.

In [1] the author introduced the class $\mathcal{U}(\alpha, \lambda)(0<\alpha$ and $\lambda<1)$ consisting of functions $f \in \mathcal{A}$ for which we have

$$
\left|\left(\frac{z}{f(z)}\right)^{1+\alpha} f^{\prime}(z)-1\right|<\lambda \quad(z \in \mathbb{D}) \text {. }
$$

In the same paper it is shown that $\mathcal{U}(\alpha, \lambda) \subset \mathcal{S}^{\star}$ if

$$
0<\lambda \leq \frac{1-\alpha}{\sqrt{(1-\alpha)^{2}+\alpha^{2}}}
$$

The most valuable up to date results about this class can be found in Chapter 12 from [4].

[^0]In the paper [2] the author considered univalence of the class of functions $f \in \mathcal{A}$ satisfying the condition

$$
\begin{equation*}
\left|\arg \left[\left(\frac{z}{f(z)}\right)^{1+\alpha} f^{\prime}(z)\right]\right|<\gamma \frac{\pi}{2} \quad(z \in \mathbb{D}) \tag{1.1}
\end{equation*}
$$

for $0<\alpha<1$ and $0<\gamma \leq 1$, and proved the following theorem.
Theorem A. Let $f \in \mathcal{A}, 0<\alpha<\frac{2}{\pi}$ and let

$$
\left|\arg \left[\left(\frac{z}{f(z)}\right)^{1+\alpha} f^{\prime}(z)\right]\right|<\gamma_{\star}(\alpha) \frac{\pi}{2} \quad(z \in \mathbb{D})
$$

where

$$
\gamma_{\star}(\alpha)=\frac{2}{\pi} \arctan \left(\sqrt{\frac{2}{\pi \alpha}-1}\right)-\alpha \sqrt{\frac{2}{\pi \alpha}-1}
$$

Then $f \in \mathcal{S}_{\beta}^{\star}$, where

$$
\beta=\frac{2}{\pi} \arctan \sqrt{\frac{2}{\pi \alpha}-1}
$$

2. Main result

In this paper we will give the sharp estimate for Hankel determinant of the second order for the class of analytic unctions $f \in \mathcal{A}$ which satisfied the condition (1.1).
Definition 1. Let $f \in \mathcal{A}$. Then the q th Hankel determinant of f is defined for $q \geq 1$, and $n \geq 1$ by

$$
H_{q}(n)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \ldots & a_{n+q-1} \\
a_{n+1} & a_{n+2} & \ldots & a_{n+q} \\
\vdots & \vdots & & \vdots \\
a_{n+q-1} & a_{n+q} & \ldots & a_{n+2 q-2}
\end{array}\right|
$$

Thus, the second Hankel determinant is $H_{2}(2)=a_{2} a_{4}-a_{3}^{2}$.
Theorem 1. Let $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$ belongs to the class \mathcal{A} and satisfy the condition (1.1). Then we have the next sharp estimation:

$$
\left|H_{2}(2)\right|=\left|a_{2} a_{4}-a_{3}^{2}\right| \leq\left(\frac{2 \gamma}{2-\alpha}\right)^{2}
$$

where $0<\alpha<2-\sqrt{2}$ and $0<\gamma \leq \frac{1}{2}\left(\alpha^{2}-4 \alpha+2\right)$.
Proof. We can write the condition (1.1) in the form

$$
\begin{equation*}
\left(\frac{f(z)}{z}\right)^{-(1+\alpha)} f^{\prime}(z)=\left(\frac{1+\omega(z)}{1-\omega(z)}\right)^{\gamma}\left(=\left(1+2 \omega(z)+2 \omega^{2}(z)+\cdots\right)^{\gamma}\right) \tag{2.1}
\end{equation*}
$$

where ω is analytic in \mathbb{D} with $\omega(0)=0$ and $|\omega(z)|<1, z \in \mathbb{D}$. If we denote by L and R left and right hand side of equality (2.1), then we have

$$
\begin{aligned}
L & =\left[1-(1+\alpha)\left(a_{2} z+\cdots\right)+\binom{-(1+\alpha)}{2}\left(a_{2} z+\cdots\right)^{2}\right. \\
& \left.+\binom{-(1+\alpha)}{3}\left(a_{2} z+\cdots\right)^{3}+\cdots\right] \cdot\left(1+2 a_{2} z+3 a_{3} z^{2}+4 a_{4} z^{3}+\cdots\right)
\end{aligned}
$$

and if we put $\omega(z)=c_{1} z+c_{2} z^{2}+\cdots$:

$$
\begin{aligned}
R & =1+\gamma\left[2\left(c_{1} z+c_{2} z^{2}+\cdots\right)+2\left(c_{1} z+c_{2} z^{2}+\cdots\right)^{2}+\cdots\right] \\
& +\binom{\gamma}{2}\left[2\left(c_{1} z+c_{2} z^{2}+\cdots\right)+2\left(c_{1} z+c_{2} z^{2}+\cdots\right)^{2}+\cdots\right]^{2} \\
& +\binom{\gamma}{3}\left[2\left(c_{1} z+c_{2} z^{2}+\cdots\right)+2\left(c_{1} z+c_{2} z^{2}+\cdots\right)^{2}+\cdots\right]^{3}+\cdots .
\end{aligned}
$$

If we compare the coefficients on z, z^{2}, z^{3} in L and R, then, after some calculations, we obtain

$$
\begin{align*}
& a_{2}=\frac{2 \gamma}{1-\alpha} c_{1}, \\
& a_{3}=\frac{2 \gamma}{2-\alpha} c_{2}+\frac{2(3-\alpha) \gamma^{2}}{(1-\alpha)^{2}(2-\alpha)} c_{1}^{2}, \tag{2.2}\\
& a_{4}=\frac{2 \gamma}{3-\alpha}\left(c_{3}+\mu c_{1} c_{2}+\nu c_{1}^{3}\right),
\end{align*}
$$

where
(2.3) $\quad \mu=\mu(\alpha, \gamma)=\frac{2(5-\alpha) \gamma}{(1-\alpha)(2-\alpha)} \quad$ and $\quad \nu=\nu(\alpha, \gamma)=\frac{1}{3}+\frac{2}{3} \frac{\left(\alpha^{2}-6 \alpha+17\right) \gamma^{2}}{(1-\alpha)^{3}(2-\alpha)}$.

By using the relations (2.2) and (2.3), after some simple computations, we obtain

$$
H_{2}(2)=\frac{4 \gamma^{2}}{(1-\alpha)(3-\alpha)}\left(c_{1} c_{3}+\mu_{1} c_{1}^{2} c_{2}+\left(\frac{1}{3}-\nu_{1}\right) c_{1}^{4}-\frac{(1-\alpha)(3-\alpha)}{(2-\alpha)^{2}} c_{2}^{2}\right),
$$

where

$$
\mu_{1}=\frac{2 \gamma}{(2-\alpha)^{2}}, \quad \nu_{1}=\frac{\left(\alpha^{2}-10 \alpha+13\right) \gamma^{2}}{3(1-\alpha)^{2}(2-\alpha)^{2}}
$$

and from here

$$
\begin{align*}
\left|H_{2}(2)\right| & \leq \frac{4 \gamma^{2}}{(1-\alpha)(3-\alpha)}\left(\left|c_{1}\right|\left|c_{3}\right|+\mu_{1}\left|c_{1}\right|^{2}\left|c_{2}\right|\right. \tag{2.4}\\
& \left.+\left|\frac{1}{3}-\nu_{1}\right|\left|c_{1}\right|^{4}+\frac{(1-\alpha)(3-\alpha)}{(2-\alpha)^{2}}\left|c_{2}\right|^{2}\right)
\end{align*}
$$

For the function $\omega(z)=c_{1} z+c_{2} z^{2}+\ldots$ (with $|\omega(z)|<1, z \in \mathbb{D}$) the next relations is valid (see, for example [3, p.128, expression (13)]):

$$
\begin{equation*}
\left|c_{1}\right| \leq 1,\left|c_{2}\right| \leq 1-\left|c_{1}\right|^{2},\left|c_{3}\left(1-\left|c_{1}\right|^{2}\right)+\overline{c_{1}} c_{2}^{2}\right| \leq\left(1-\left|c_{1}\right|^{2}\right)^{2}-\left|c_{2}\right|^{2} \tag{2.5}
\end{equation*}
$$

We may suppose that $a_{2} \geq 0$, which implies that $c_{1} \geq 0$ and instead of relations (2.5) we have the next relations

$$
\begin{equation*}
0 \leq c_{1} \leq 1,\left|c_{2}\right| \leq 1-c_{1}^{2},\left|c_{3}\right| \leq 1-c_{1}^{2}-\frac{\left|c_{2}\right|^{2}}{1+c_{1}} \tag{2.6}
\end{equation*}
$$

By using (2.6) for c_{1} and c_{3}, from (2.4) we have

$$
\begin{align*}
\left|H_{2}(2)\right| & \leq \frac{4 \gamma^{2}}{(1-\alpha)(3-\alpha)}\left[c_{1}\left(1-c_{1}^{2}\right)+\left(\frac{(1-\alpha)(3-\alpha)}{(2-\alpha)^{2}}-\frac{c_{1}}{1+c_{1}}\right)\left|c_{2}\right|^{2}\right. \tag{2.7}\\
& \left.+\mu_{1} c_{1}^{2}\left|c_{2}\right|+\left|\frac{1}{3}-\nu_{1}\right| c_{1}^{4}\right]
\end{align*}
$$

Since for $0<\alpha<2-\sqrt{2}$ we have $\frac{(1-\alpha)(3-\alpha)}{(2-\alpha)^{2}} \geq \frac{1}{2} \geq \frac{c_{1}}{1+c_{1}}$, then by using $\left|c_{2}\right| \leq 1-c_{1}^{2}$, from (2.7) after some calculations we obtain

$$
\begin{equation*}
\left|H_{2}(2)\right| \leq \frac{4 \gamma^{2}}{(1-\alpha)(3-\alpha)} F\left(c_{1}\right) \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
F\left(c_{1}\right)=\frac{(1-\alpha)(3-\alpha)}{(2-\alpha)^{2}}+A c_{1}^{2}+B c_{1}^{4} \tag{2.9}
\end{equation*}
$$

where

$$
A=\frac{2 \gamma-\left(\alpha^{2}-4 \alpha+2\right)}{(2-\alpha)^{2}}, B=\left|\frac{1}{3}-\nu_{1}\right|-\frac{2 \gamma+1}{(2-\alpha)^{2}}
$$

Further, by using the assumptions of the theorem that $0<\alpha<2-\sqrt{2}$ and $0<\gamma \leq$ $\frac{1}{2}\left(\alpha^{2}-4 \alpha+2\right)$, we easily conclude that $A \leq 0$, while

$$
0<\nu_{1}=\frac{\left(\alpha^{2}-10 \alpha+13\right) \gamma^{2}}{3(1-\alpha)^{2}(2-\alpha)^{2}} \leq \frac{\left(\alpha^{2}-10 \alpha+13\right)\left(\alpha^{2}-4 \alpha+2\right)^{2}}{12(1-\alpha)^{2}(2-\alpha)^{2}}<\frac{13}{12}
$$

If we have that $B \leq 0$, then from (2.9) we obtain that

$$
F\left(c_{1}\right) \leq \frac{(1-\alpha)(3-\alpha)}{(2-\alpha)^{2}}
$$

and if $B>0$, then

$$
F\left(c_{1}\right) \leq \max \{F(0), F(1)\}=\max \left\{\frac{(1-\alpha)(3-\alpha)}{(2-\alpha)^{2}},\left|\frac{1}{3}-\nu_{1}\right|\right\}=\frac{(1-\alpha)(3-\alpha)}{(2-\alpha)^{2}},
$$

since

$$
\begin{equation*}
\frac{(1-\alpha)(3-\alpha)}{(2-\alpha)^{2}}>\left|\frac{1}{3}-\nu_{1}\right| \tag{2.10}
\end{equation*}
$$

when $0<\alpha<2-\sqrt{2}$ and $0<\gamma \leq \frac{1}{2}\left(\alpha^{2}-4 \alpha+2\right)$ (proven later). It means that in both cases we have that

$$
F\left(c_{1}\right) \leq \frac{(1-\alpha)(3-\alpha)}{(2-\alpha)^{2}}
$$

which by (2.8) implies

$$
\left|H_{2}(2)\right| \leq\left(\frac{2 \gamma}{2-\alpha}\right)^{2}
$$

We need to prove the inequality (2.10) for appropriate α and γ. First, if $\frac{1}{3}-\nu \leq 0$, i.e. if $0<\nu_{1} \leq \frac{1}{3}$, then , since $0<\alpha<2-\sqrt{2}$, we have

$$
\frac{(1-\alpha)(3-\alpha)}{(2-\alpha)^{2}}>\frac{1}{2}>\frac{1}{3}-\nu_{1},
$$

which implies that (2.10) is true. In case $\nu_{1}>\frac{1}{3}$, we have that inequality (2.10) is equivalent to

$$
\frac{(1-\alpha)(3-\alpha)}{(2-\alpha)^{2}}>\frac{\left(\alpha^{2}-10 \alpha+13\right) \gamma^{2}}{3(1-\alpha)^{2}(2-\alpha)^{2}}-\frac{1}{3} .
$$

The last inequality is equivalent with

$$
\gamma^{2}<\frac{(1-\alpha)^{2}\left(4 \alpha^{2}-16 \alpha+13\right)}{\alpha^{2}-10 \alpha+13}
$$

Since for $0<\alpha<2-\sqrt{2}$ we have $\gamma \leq \frac{1}{2}\left(\alpha^{2}-4 \alpha+2\right)$, then for such α we have

$$
\gamma^{2} \leq \frac{1}{4}\left(\alpha^{2}-4 \alpha+2\right)^{2}
$$

and from (2.10) it is sufficient to prove that

$$
\begin{equation*}
\frac{1}{4}\left(\alpha^{2}-4 \alpha+2\right)^{2} \leq \frac{(1-\alpha)^{2}\left(4 \alpha^{2}-16 \alpha+13\right)}{\alpha^{2}-10 \alpha+13} \tag{2.11}
\end{equation*}
$$

for $0<\alpha<2-\sqrt{2}$. The inequality (2.11) is equivalent to
(2.12) $\quad(\phi(\alpha):=) 4(1-\alpha)^{2}\left(4 \alpha^{2}-16 \alpha+13\right)-\left(\alpha^{2}-4 \alpha+2\right)^{2}\left(\alpha^{2}-10 \alpha+13\right) \geq 0$,
where $0<\alpha<2-\sqrt{2}$. Let's put $\alpha^{2}-4 \alpha+2=t$. Then $0<t<2$ and $\alpha=2-\sqrt{2+t}$ and from (2.11) we have

$$
\phi_{1}(t):=\phi(2-\sqrt{2+t})=\frac{1}{4}(2+t)\left[30+19 t-t^{2}-(20+6 t) \sqrt{2+t}\right] .
$$

The function ϕ_{1} is continuous function in the interval [0,2]. It is easily to check that

$$
\phi_{1}^{\prime}(t)=\frac{1}{4}\left[68+34 t-3 t^{2}-(42+15 t) \sqrt{2+t}\right]
$$

and

$$
\phi_{1}^{\prime \prime}(t)=\frac{1}{8}\left[68-12 t-45 \sqrt{2+t}-\frac{12}{\sqrt{2+t}}\right] .
$$

iN $\phi_{1}^{\prime \prime}$, the second and the third expression reach their minimum on the segment $[0,2]$ for $t=0$, while the last expression for $t=2$. Thus

$$
\phi_{1}^{\prime \prime}(t)<\frac{1}{8}\left(68-12 \cdot 0-45 \sqrt{2+0}-\frac{12}{\sqrt{2+2}}\right)=\frac{1}{8}(62-45 \sqrt{2})=-0.20 \ldots<0
$$

i.e, ϕ_{1}^{\prime} is an decreasing function from $\phi_{1}^{\prime}(0)=17-10.5 \sqrt{2}=2.15 \ldots>0$ to $\phi_{1}^{\prime}(2)=-5<$ 0 , which implies that the function ϕ attains its maximum in the interval $(0,2)$, so that

$$
\phi_{1}(t) \geq \min \left\{\phi_{1}(0), \phi_{1}(2)\right\}=\min \{15-10 \sqrt{2}, 0\}=0 .
$$

This means that the inequality given by (2.12) is true.
The result of Theorem 1 is the best possible as the functions f_{2}, defined with

$$
\left(\frac{z}{f_{2}(z)}\right)^{1+\alpha} f_{2}^{\prime}(z)=\left(\frac{1+z^{2}}{1-z^{2}}\right)^{\gamma}
$$

shows. In this case we have that $c_{2}=1, c_{j}=0$ when $j \neq 2$, and consequently, $a_{2}=a_{4}=$ $0, a_{3}=\frac{2 \gamma}{2-\alpha}$ and $H_{2}(2)=a_{2} a_{4}-a_{3}^{2}=-\frac{4 \gamma^{2}}{(2-\alpha)^{2}}$.

References

[1] M. Obradović: A class of univalent functions, Hokkaido Math. J. 27(2) (1998), 329-335.
[2] M. Obradović: Univalence of a certain class of analytic functions, Math. Montisnigri 12 (2000), 57-62.
[3] D.V. Prokhorov, J. SzynAl: Inverse coefficients for (α, β)-convex functions, Ann. Univ. Mariae CurieSkłodowska Sect. A 35 (1981), 125-143 (1984).
[4] D.K. Thomas, N. Tuneski, A. Vasudevarao: Univalent Functions: A Primer, De Gruyter Studies in Mathematics 69, De Gruyter, Berlin, Boston, 2018.

Department of Mathematics
Faculty of Civil Engineering
University of Belgrade
Bulevar Kralja Aleksandra 73
11000, Belgrade, Serbia
E-mail address: obrad@grf.bg.ac.rs
Department of Mathematics and Informatics
Faculty of Mechanical Engineering
Ss. Cyril and Methodius University in Skopje
Karpoš II b.b., 1000 SkopJe
Republic of North Macedonia
E-mail address: nikola.tuneski@mf.edu.mk

[^0]: ${ }^{1}$ corresponding author
 2000 Mathematics Subject Classification. 30C45, 30C50.
 Key words and phrases. analytic, univalent, Hankel determinant.

