6,045 research outputs found

    Correlations between cancellous bone architecture and its dynamic behaviour

    Get PDF
    Previous studies showed that in vivo evaluation of the fracture risk of cancellous bone can be assessed by identifying the relationships between its microarchitecture description extracted from clinical imaging and its mechanical properties. The mechanical properties under dynamic loadings (with and without confinement) were obtained and compared to quasi-static ones. The architectural parameters of each specimen were extracted from pQCT images and split into four groups: geometry, topology, connectivity and anisotropy. Results show that architectural parameters are strong determinants of mechanical behaviour for the different applied boundary conditions.http://icills2014.org/wp-content/uploads/2014/01/Marrianne-Prot.pd

    An overview of the proper generalized decomposition with applications in computational rheology

    Get PDF
    We review the foundations and applications of the proper generalized decomposition (PGD), a powerful model reduction technique that computes a priori by means of successive enrichment a separated representation of the unknown field. The computational complexity of the PGD scales linearly with the dimension of the space wherein the model is defined, which is in marked contrast with the exponential scaling of standard grid-based methods. First introduced in the context of computational rheology by Ammar et al. [3] and [4], the PGD has since been further developed and applied in a variety of applications ranging from the solution of the Schrödinger equation of quantum mechanics to the analysis of laminate composites. In this paper, we illustrate the use of the PGD in four problem categories related to computational rheology: (i) the direct solution of the Fokker-Planck equation for complex fluids in configuration spaces of high dimension, (ii) the development of very efficient non-incremental algorithms for transient problems, (iii) the fully three-dimensional solution of problems defined in degenerate plate or shell-like domains often encountered in polymer processing or composites manufacturing, and finally (iv) the solution of multidimensional parametric models obtained by introducing various sources of problem variability as additional coordinates

    A General Bayesian Framework for Ellipse-based and Hyperbola-based Damage Localisation in Anisotropic Composite Plates

    Get PDF
    This paper focuses on Bayesian Lamb wave-based damage localization in structural health monitoring of anisotropic composite materials. A Bayesian framework is applied to take account for uncertainties from experimental time-of-flight measurements and angular dependent group velocity within the composite material. An original parametric analytical expression of the direction dependence of group velocity is proposed and validated numerically and experimentally for anisotropic composite and sandwich plates. This expression is incorporated into time-of-arrival (ToA: ellipse-based) and time-difference-of-arrival (TDoA: hyperbola-based) Bayesian damage localization algorithms. This way, the damage location as well as the group velocity profile are estimated jointly and a priori information taken into consideration. The proposed algorithm is general as it allows to take into account for uncertainties within a Bayesian framework, and to model effects of anisotropy on group velocity. Numerical and experimental results obtained with different damage sizes or locations and for different degrees of anisotropy validate the ability of the proposed algorithm to estimate both the damage location and the group velocity profile as well as the associated confidence intervals. Results highlight the need to consider for anisotropy in order to increase localization accuracy, and to use Bayesian analysis to quantify uncertainties in damage localization.Projet CORALI

    Managing the variability of biomechanical characteristics before the preliminary design stage of a medical device

    Get PDF
    The very high level of requirements for certification procedures often limit research and development departments to innovate using increments and iterations during the design process for medical devices (MD). Instead of this semi-empirical approach, a structured procedure, a breakthrough innovation should be used when designing an articular MD (prosthesis, implant). The search for concepts can be based on functional analysis and producing behavioural models of the joint in its natural state and/or equipped with the prosthesis. This paper shows how anatomical variables can be managed and integrated using a modular design approach.This study has been realized under the two joint action projects PESSOA 14630YA and PTDC/EME-PME/112977

    Impact of Thermal Aging on the Microstructure Evolution and Mechanical Properties of Lanthanum-Doped Tin-Silver-Copper Lead-Free Solders

    Get PDF
    The authors would like to thank Ste´phanie Blanc (Electrical Engineer at Schlumberger) for her useful contribution to the project, Claude Guyomard and Olivier Naegelen (Arts et Me´tiers ParisTech) for the die design and sample casting, respectively, and Jean-Marc Raulot for his enriching discussions.An extensive study is made to analyze the impact of pure lanthanum on the microstructure and mechanical properties of Sn-Ag-Cu (SAC) alloys at high temperatures. Different compositions are tested; the temperature applied for the isothermal aging is 150 C, and aging times of 10 h, 25 h, 50 h, 100 h, and 200 h are studied. Optical microscopy with cross-polarized light is used to follow the grain size, which is refined from 8 mm to 1 mm for as-cast samples and is maintained during thermal aging. Intermetallic compounds (IMCs) present inside the bulk Sn matrix affect the mechanical properties of the SAC alloys. Due to high-temperature exposure, these IMCs grow and hence their impact on mechanical properties becomes more significant. This growth is followed by scanning electron microscopy, and energy-dispersive spectroscopy is used for elemental mapping of each phase. A significant refinement in the average size of IMCs of up to 40% is identified for the as-cast samples, and the coarsening rate of these IMCs is slowed by up to 70% with no change in the interparticle spacing. Yield stress and tensile strength are determined through tensile testing at 20 C for as-cast samples and after thermal aging at 150 C for 100 h and 200h. Both yield stress and tensile strength are increased by up to 20% by minute lanthanum doping

    Consideration of residual stress and geometry during heat treatment to decrease shaft bending

    Get PDF
    In automotive industry, heat treatment of components is implicitly related to distortion. This phenomenon is particularly obvious in the case of gearbox parts because of their typical geometry and precise requirements. Even if distortion can be anticipated to an extent by experience, it remains complex to comprehend. Scientific literature and industrial experience show that the whole manufacturing process chain has an influence on final heat treatment distortions. This paper presents an approach to estimate the influence of some factors on the distortion, based on the idea of a distortion potential taking into account not only geometry but also the manufacturing process history. Then the idea is developed through experiments on an industrial manufacturing process to understand the impact of residual stress due to machining on shaft bending and teeth distortion during heat treatment. Instead of being measured, residual stress is being neutralized. By comparing lots between each other, connections between gear teeth geometry and manufacturing steps before heat treatment are obtained. As a consequence, geometrical nonconformities roots can be determined more easily thanks to this diagnosis tool, and corrective actions can be applied. Secondly, the influence of product geometry on bending is experimentally considered. Moreover, metallurgical observations enable to explain the influence of workpieces geometry on shaft bending. Thanks to the obtained results, process and product recommendations to decrease shafts bending are proposed

    Nonlinear Discrete Observer for Flexibility Compensation of Industrial Robots

    Get PDF
    This paper demonstrates the solutions of digital observer implementation for industrial applications. A nonlinear high-gain discrete observer is proposed to compensate the tracking error due to the flexibility of robot manipulators. The proposed discrete observer is obtained by using Euler approximate discretization of the continuous observer. A series of experimental validations have been carried out on a 6 DOF industrial manipulator during a Friction Stir Welding process. The results showed good performance of discrete observer and the observer based compensation has succeed to correct the positioning error in real-time implementation.ANR COROUSS

    Control Strategies for Open-End Winding Drives Operating in the Flux-Weakening Region

    Get PDF
    This paper presents and compares control strategies for three-phase open-end winding drives operating in the flux-weakening region. A six-leg inverter with a single dc-link is associated with the machine in order to use a single energy source. With this topology, the zero-sequence circuit has to be considered since the zero-sequence current can circulate in the windings. Therefore, conventional over-modulation strategies are not appropriate when the machine enters in the flux-weakening region. A few solutions dealing with the zero-sequence circuit have been proposed in literature. They use a modified space vector modulation or a conventional modulation with additional voltage limitations. The paper describes the aforementioned strategies and then a new strategy is proposed. This new strategy takes into account the magnitudes and phase angles of the voltage harmonic components. This yields better voltage utilization in the dq frame. Furthermore, inverter saturation is avoided in the zero-sequence frame and therefore zero-sequence current control is maintained. Three methods are implemented on a test bed composed of a three-phase permanent-magnet synchronous machine, a six-leg inverter and a hybrid DSP/FPGA controller. Experimental results are presented and compared for all strategies. A performance analysis is conducted as regards the region of operation and the machine parameters.Projet SOFRACI/FU

    Monitoring and simulations of hydrolysis in epoxy matrix composites during hygrothermal aging

    Get PDF
    In this paper, we studied the water transport in thermoset matrices. We used Fourier Transform Infrared analysis (FTIR) during sorption/desorption experiments to investigate the interaction between sorbed water and the epoxy network. Our results demonstrated that the polymer matrix undergoes hydrolysis. We found that the chemical species involved in the reaction process was the residual anhydride groups. These results support the physical basis of the three-dimensional (3D) diffusion/reaction model. We finally showed that this model is able to reproduce multi-cycle sorption/desorption experiment, as well as water uptake in hybrid metal/epoxy samples. We simulated the 3D distributions of the diffusing water and the reacted water

    About the nature of Kansei information, from abstract to concrete

    Get PDF
    Designer’s expertise refers to the scientific fields of emotional design and kansei information. This paper aims to answer to a scientific major issue which is, how to formalize designer’s knowledge, rules, skills into kansei information systems. Kansei can be considered as a psycho-physiologic, perceptive, cognitive and affective process through a particular experience. Kansei oriented methods include various approaches which deal with semantics and emotions, and show the correlation with some design properties. Kansei words may include semantic, sensory, emotional descriptors, and also objects names and product attributes. Kansei levels of information can be seen on an axis going from abstract to concrete dimensions. Sociological value is the most abstract information positioned on this axis. Previous studies demonstrate the values the people aspire to drive their emotional reactions in front of particular semantics. This means that the value dimension should be considered in kansei studies. Through a chain of value-function-product attributes it is possible to enrich design generation and design evaluation processes. This paper describes some knowledge structures and formalisms we established according to this chain, which can be further used for implementing computer aided design tools dedicated to early design. These structures open to new formalisms which enable to integrate design information in a non-hierarchical way. The foreseen algorithmic implementation may be based on the association of ontologies and bag-of-words.AN
    corecore