1,422 research outputs found

    Surface Oscillations in Overdense Plasmas Irradiated by Ultrashort Laser Pulses

    Full text link
    The generation of electron surface oscillations in overdense plasmas irradiated at normal incidence by an intense laser pulse is investigated. Two-dimensional (2D) particle-in-cell simulations show a transition from a planar, electrostatic oscillation at 2ω2\omega, with ω\omega the laser frequency, to a 2D electromagnetic oscillation at frequency ω\omega and wavevector k>ω/ck>\omega/c. A new electron parametric instability, involving the decay of a 1D electrostatic oscillation into two surface waves, is introduced to explain the basic features of the 2D oscillations. This effect leads to the rippling of the plasma surface within a few laser cycles, and is likely to have a strong impact on laser interaction with solid targets.Comment: 9 pages (LaTeX, Revtex4), 4 GIF color figures, accepted for publication in Phys. Rev. Let

    Order, Disorder and Confinement

    Full text link
    Studying the order of the chiral transition for Nf=2N_f=2 is of fundamental importance to understand the mechanism of color confinement. We present results of a numerical investigation on the order of the transition by use of a novel strategy in finite size scaling analysis. The specific heat and a number of susceptibilities are compared with the possible critical behaviours. A second order transition in the O(4) and O(2) universality classes are excluded. Substantial evidence emerges for a first order transition. Results are in agreement with those found by studying the scaling properties of a disorder parameter related to the dual superconductivity mechanism of color confinement.Comment: 7 pages, 11 figures. Talk given at the International Workshop on Quantum Chromodynamics: QCD@Work 2005, Conversano, Italy, 16-20 June 200

    A finite temperature investigation of dual superconductivity in the modified SO(3) lattice gauge theory

    Full text link
    We study the SO(3) lattice gauge theory in 3+1 dimensions with the adjoint Wilson action modified by a Z2\mathbb{Z}_2 monopole suppression term and by means of the Pisa disorder operator. We find evidence for a finite temperature deconfinement transition driven by the condensation of U(1) magnetic charges. A finite-size scaling test shows consistency with the critical exponents of the 3D Ising model.Comment: 14 pages, 4 figures. Layout changed, figures, text and references added. To appear on Physics Letters

    Tunnelling rates for the nonlinear Wannier-Stark problem

    Get PDF
    We present a method to numerically compute accurate tunnelling rates for a Bose-Einstein condensate which is described by the nonlinear Gross-Pitaevskii equation. Our method is based on a sophisticated real-time integration of the complex-scaled Gross-Pitaevskii equation, and it is capable of finding the stationary eigenvalues for the Wannier-Stark problem. We show that even weak nonlinearities have significant effects in the vicinity of very sensitive resonant tunnelling peaks, which occur in the rates as a function of the Stark field amplitude. The mean-field interaction induces a broadening and a shift of the peaks, and the latter is explained by analytic perturbation theory

    Improved high-temperature expansion and critical equation of state of three-dimensional Ising-like systems

    Full text link
    High-temperature series are computed for a generalized 3d3d Ising model with arbitrary potential. Two specific ``improved'' potentials (suppressing leading scaling corrections) are selected by Monte Carlo computation. Critical exponents are extracted from high-temperature series specialized to improved potentials, achieving high accuracy; our best estimates are: γ=1.2371(4)\gamma=1.2371(4), ν=0.63002(23)\nu=0.63002(23), α=0.1099(7)\alpha=0.1099(7), η=0.0364(4)\eta=0.0364(4), β=0.32648(18)\beta=0.32648(18). By the same technique, the coefficients of the small-field expansion for the effective potential (Helmholtz free energy) are computed. These results are applied to the construction of parametric representations of the critical equation of state. A systematic approximation scheme, based on a global stationarity condition, is introduced (the lowest-order approximation reproduces the linear parametric model). This scheme is used for an accurate determination of universal ratios of amplitudes. A comparison with other theoretical and experimental determinations of universal quantities is presented.Comment: 65 pages, 1 figure, revtex. New Monte Carlo data by Hasenbusch enabled us to improve the determination of the critical exponents and of the equation of state. The discussion of several topics was improved and the bibliography was update

    The order of the Roberge-Weiss endpoint (finite size transition) in QCD

    Full text link
    We consider the endpoint of the Roberge-Weiss (RW) first order transition line present for imaginary baryon chemical potentials. We remark that it coincides with the finite size transition relevant in the context of large NcN_c QCD and study its order in the theory with two degenerate flavors. The RW endpoint is first order in the limit of large and small quark masses, while it weakens for intermediate masses where it is likely in the Ising 3d universality class. Phenomenological implications and further speculations about the QCD phase diagram are discussed.Comment: 5 pages, 8 figures. Version accepted for publication in Physical Review D (R

    Color confinement and dual superconductivity in full QCD

    Get PDF
    We report on evidence that confinement is related to dual superconductivity of the vacuum in full QCD, as in quenched QCD. The vacuum is a dual superconductor in the confining phase, whilst the U(1) magnetic symmetry is realized a la Wigner in the deconfined phase.Comment: 4 pages, 4 eps figure

    Single-Producer/Single-Consumer Queues on Shared Cache Multi-Core Systems

    Full text link
    Using efficient point-to-point communication channels is critical for implementing fine grained parallel program on modern shared cache multi-core architectures. This report discusses in detail several implementations of wait-free Single-Producer/Single-Consumer queue (SPSC), and presents a novel and efficient algorithm for the implementation of an unbounded wait-free SPSC queue (uSPSC). The correctness proof of the new algorithm, and several performance measurements based on simple synthetic benchmark and microbenchmark, are also discussed

    Large-N phase transition in lattice 2-d principal chiral models

    Full text link
    We investigate the large-N critical behavior of 2-d lattice chiral models by Monte Carlo simulations of U(N) and SU(N) groups at large N. Numerical results confirm strong coupling analyses, i.e. the existence of a large-N second order phase transition at a finite βc\beta_c.Comment: 12 pages, Revtex, 8 uuencoded postscript figure

    Efficient formation of deeply bound ultracold molecules probed by broadband detection

    Full text link
    Using a non-selective broadband detection scheme we discovered an efficient mechanism of formation of ultracold Cs2_2 molecules in deeply bound levels (v=1−9v=1-9) of their electronic ground state X1Σg+^1 \Sigma_g^+. They are formed by a one-photon photoassociation of ultracold cesium atoms in a manifold of excited electronic states, followed by a two-step spontaneous emission cascade. We were able to form about 105−10610^5-10^6 molecules per second in these low vibrational levels of the ground state. This detection scheme could be generalized to other molecular species for the systematic investigation of cold molecule formation mechanisms.Comment: 4 page
    • …
    corecore