81,796 research outputs found

    Ab-inito study on different phases of ferromagnetic CeMnNi4

    Get PDF
    Using first-principles density functional calculations, we study the possible phases of CeMnNi4_{4} and show that the ground state is ferromagnetic. We observed the hexagonal phase to be lowest in energy whereas experimentally observed cubic phase lies slightly higher in energy. We optimized the structure in both phases and in all different magnetic states to explore the possibility of the structural and magnetic phase transitions at ground state. We do not find any phase transitions between the magnetic and non-magnetic phases. The calculated structural, magnetic properties of cubic phase are in excellent agreement with experiments. Further, we do not observe half metallic behavior in any of the phases. However, the cubic phase does have fewer density of states for down-spin component giving a possibility of forming half metallic phase artificially, introducing vacancies, and disorder in lattice

    A challenge for critical point of spin glass in ground state

    Get PDF
    We show several calculations to identify the critical point in the ground state in random spin systems including spin glasses on the basis of the duality analysis. The duality analysis is a profound method to obtain the precise location of the critical point in finite temperature even for spin glasses. We propose a single equality for identifying the critical point in the ground state from several speculations. The equality can indeed give the exact location of the critical points for the bond-dilution Ising model on several lattices and provides insight on further analysis on the ground state in spin glasses.Comment: 7 pages, 2 figures, to appear in Proceedings of 4th YSM-SPIP (Sendai, 14-16 December 2012

    Statistical Mechanical Formulation and Simulation of Prime Factorization of Integers

    Get PDF
    We propose a new formulation of the problem of prime factorization of integers. With replica exchange Monte Carlo simulation, the behavior which is seemed to indicate exponential computational hardness is observed. But this formulation is expected to give a new insight into the computational complexity of this problem from a statistical mechanical point of view.Comment: 5 pages, 5figures, Proceedings of 4th YSM-SPIP (Sendai, 14-16 December 2012

    Degenerate ground state in the classical pyrochlore antiferromagnet Na3_3Mn(CO3_3)2_2Cl

    Get PDF
    In an ideal classical pyrochlore antiferromagnet without perturbations, an infinite degeneracy at a ground state leads to absence of a magnetic order and spin-glass transition. Here we present Na3_3Mn(CO3_3)2_2Cl as a new candidate compound where classical spins are coupled antiferromagnetically on the pyrochlore lattice, and report its structural and magnetic properties.The temperature dependences of the magnetic susceptibility and heat capacity, and the magnetization curve are consistent with those of an SS = 5/2 pyrochlore lattice antiferromagnet with nearest-neighbor interactions of 2 K. Neither an apparent signature of a spin-glass transition nor a magnetic order is detected in magnetization and heat capacity measurements, or powder neutron diffraction experiments. On the other hand, an antiferromagnetic short-range order from the nearest neighbors is evidenced by the QQ-dependence of the diffuse scattering which develops around 0.85 \AA1^{-1}. A high degeneracy near the ground state in Na3_3Mn(CO3_3)2_2Cl is supported by the magnetic entropy estimated as almost 4 J K2^{-2} mol1^{-1} at 0.5 K.Comment: 9 pages, 7 figures, accepted to PR

    Classical Nonrelativistic Effective Field Theory and the Role of Gravitational Interactions

    Get PDF
    Coherent oscillation of axions or axion-like particles may give rise to long-lived clumps, called axion stars, because of the attractive gravitational force or its self-interaction. Such a kind of configuration has been extensively studied in the context of oscillons without the effect of gravity, and its stability can be understood by an approximate conservation of particle number in a non-relativistic effective field theory (EFT). We extend this analysis to the case with gravity to discuss the longevity of axion stars and clarify the EFT expansion scheme in terms of gradient energy and Newton's constant. Our EFT is useful to calculate the axion star configuration and its classical lifetime without any ad hoc assumption. In addition, we derive a simple stability condition against small perturbations. Finally, we discuss the consistency of other non-relativistic effective field theories proposed in the literature.Comment: 37 pages, 3 figure

    A Wide and Deep Exploration of Radio Galaxies with Subaru HSC (WERGS). II. Physical Properties derived from the SED Fitting with Optical, Infrared, and Radio Data

    Get PDF
    We present physical properties of radio galaxies (RGs) with f1.4GHz>f_{\rm 1.4 GHz} > 1 mJy discovered by Subaru Hyper Supreme-Cam (HSC) and VLA Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) survey. For 1056 FIRST RGs at 0<z1.70 < z \leq 1.7 with HSC counterparts in about 100 deg2^2, we compiled multi-wavelength data of optical, near-infrared (IR), mid-IR, far-IR, and radio (150 MHz). We derived their color excess (E(BV)E (B-V)_{*}), stellar mass, star formation rate (SFR), IR luminosity, the ratio of IR and radio luminosity (qIRq_{\rm IR}), and radio spectral index (αradio\alpha_{\rm radio}) that are derived from the SED fitting with CIGALE. We also estimated Eddington ratio based on stellar mass and integration of the best-fit SEDs of AGN component. We found that E(BV)E (B-V)_{*}, SFR, and IR luminosity clearly depend on redshift while stellar mass, qIRq_{\rm IR}, and αradio\alpha_{\rm radio} do not significantly depend on redshift. Since optically-faint (iAB21.3i_{\rm AB} \geq 21.3) RGs that are newly discovered by our RG survey tend to be high redshift, they tend to not only have a large dust extinction and low stellar mass but also have high SFR and AGN luminosity, high IR luminosity, and high Eddington ratio compared to optically-bright ones. The physical properties of a fraction of RGs in our sample seem to differ from a classical view of RGs with massive stellar mass, low SFR, and low Eddington ratio, demonstrating that our RG survey with HSC and FIRST provides us curious RGs among entire RG population.Comment: 30 pages, 20 figures, and 4 tables, accepted for publication in ApJS. The catalog and SED template of radio galaxies will be accessible through an online servic

    Final-State Interactions in e^+e^- -> t\bar{t} -> b l^+ \nu \bar{b} W^- Near Top Quark Threshold

    Get PDF
    We calculate final-state interaction corrections to the energy-angular distribution of l^+ in semi-leptonic top quark decay, where the parent top quark is produced via e^+e^- -> t\bar{t} near threshold. These are the corrections due to gluon exchange between t and \bar{b} (\bar{t} and b) and between b and \bar{b}. Combining with previously known other corrections, we explicitly write down the l^+ energy-angular distribution including the full O(alpha_s)=O(beta) corrections near t\bar{t} threshold. Numerical analyses of the final-state interaction corrections are given. We find that they deform the l^+ distribution typically at the 10% level. We also find that all qualitative features of the numerical results can be understood from intuitive pictures. The mechanisms of various effects of the final-state interactions are elucidated. Finally we define an observable which is proper to the decay process of the top quark (dependent only on d\Gamma_{t -> b l^+ \nu}/ dE_l d\Omega_l of a free polarized top quark) near t\bar{t} threshold. Such a quantity will be useful in extracting the decay property of the top quark using the highly polarized top quark samples.Comment: Section 6 is enlarged substantially and a paragraph is added to Section 8 correspondingly. Reference list is also improved. (27 pages including figures, LaTeX

    Chiral phase transition at high temperature in the QCD-like gauge theory

    Get PDF
    The chiral phase transition at high temperature is investigated using the effect ive potential in the framework of the QCD-like gauge theory with a variational a pproach. We have a second order phase transition at Tc=136T_c=136MeV. We also investigate numerically the temperature dependence of condensate, fπf_\pi a nd a2(T)a_2(T)(coefficient of the quadratic term in the effective potential) and es timate the critical exponents of these quantities.Comment: 12 pages,7 figure

    Optical probe of carrier doping by X-ray irradiation in organic dimer Mott insulator κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2]_{2}]Cl

    Get PDF
    We investigated the infrared optical spectra of an organic dimer Mott insulator κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Cl, which was irradiated with X-rays. We observed that the irradiation caused a large spectral weight transfer from the mid-infrared region, where interband transitions in the dimer and Mott-Hubbard bands take place, to a Drude part in a low-energy region; this caused the Mott gap to collapse. The increase of the Drude part indicates a carrier doping into the Mott insulator due to irradiation defects. The strong redistribution of the spectral weight demonstrates that the organic Mott insulator is very close to the phase border of the bandwidth-controlled Mott transition.Comment: 4 pages, 4 figure

    Orbital Liquid in Perovskite Transition-Metal Oxides

    Get PDF
    We study the effects of the degeneracy of the ege_g orbitals as well as the double exchange interaction with t2gt_{2g} spins in perovskite transition-metal oxides. In addition to the spin field Si{\vec S}_i, the isospin field Ti{\vec T}_i is introduced to describe the orbital degrees of freedom. The isospin is the quantum dynamical variable, and is represented by the boson with a constraint. The dispersion of this boson is flat along (π/a,π/a,kz)(\pi/a,\pi/a,k_z) (aa: lattice constant) and the other two equivalent directions. This enables the orbital disordered phase down to low temperatures. We interpret some of the anomalous experiments, i.e., optical absorption and d.c. resistivity, in the low temperature ferromagnetic phase of La1x_{1-x}Srx_xMnO3_3 with x>0.2x > 0.2 in terms of this orbital liquid picture.Comment: 4 pages, RevTex and 1 Postscript figur
    corecore