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Coherent oscillation of axions or axionlike particles may give rise to long-lived clumps, called axion
stars, because of the attractive gravitational force or its self-interaction. Such a kind of configuration has
been extensively studied in the context of oscillons without the effect of gravity, and its stability can be
understood by an approximate conservation of particle number in a nonrelativistic effective field theory
(EFT). We extend this analysis to the case with gravity to clarify the EFT expansion scheme in terms of
gradient energy and Newton’s constant. Our EFT is useful to calculate the axion star configuration and its
classical lifetime without any ad hoc assumption. In addition, we derive a simple stability condition against
perturbations in the case of self-gravitating objects. Finally, we discuss the consistency of other
nonrelativistic effective field theories proposed in the literature.
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I. INTRODUCTION

Light scalar particles arise in numerous theories of
physics beyond the Standard Model. A prime example
is the axion, typically realized as a pseudo Nambu-
Goldstone boson (pNGB) of a broken Uð1Þ symmetry at
some high cosmological scale [1–3]. Such particles are
also natural candidates for the particle nature of dark
matter [4–7].
Axions are produced early in the Universe and naturally

occupy states with very high occupation numbers, which
coherently oscillate with dominant frequency ω ∼mϕ,
where mϕ is the axion mass. Such states are well described
by a classical field. Owing to the smallness of mϕ, higher-
order contributions to the oscillation frequency ωn ∼ nmϕ

are extremely rapid and are typically neglected at leading
order. There now exists a standard procedure for deriving
the low energy limit of the Klein-Gordon equation for a real
scalar field: one expands the relativistic field ϕ in a
nonrelativistic wave function ψ using the relation

ϕðt; xÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2mϕ

p ½e−imϕtψðt; xÞ þ eimϕtψ�ðt; xÞ�; ð1:1Þ

and drops any term beyond leading order in rapidly
oscillating factors e�imϕt. The resulting equation of motion,
generically a nonlinear Schrödinger equation, is both
classical and nonrelativistic.
Localized quasistable solutions to the classical, non-

relativistic equations of motion are known as oscillons
[8–10] or boson stars.1 Such objects can be supported by a
balance of attractive and repulsive forces, sometimes
including gravity. The original solutions for gravitationally
bound (but otherwise noninteracting) boson stars were
found by [13,14], though self-interactions have been
included in recent years in generic ϕ4 scalar theory
[15–17] and also in the specific case of the axion potential
[18,19]. In the latter case, configurations are referred to as
axion condensates, or more often, axion stars.
There are certain applications in which the nonrelativ-

istic limit may be insufficient. Over the last few years, a
number of procedures have appeared for organizing cor-
rections to the nonrelativistic limit, which can generically
be referred to as nonrelativistic effective field theories
(NREFTs). One such method was presented by some of the
present authors (hereafter MTY) [10], in which the scalar
field was decomposed into nonrelativistic and rapidly
oscillating parts, ϕ ¼ ϕNR þ δϕ. MTY presented a scheme
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1In this work, we will use these terms interchangeably,
although the usual terminology is that boson stars are coupled
to gravity while oscillons are not. Sometimes the term oscillaton
is used to refer to an oscillon coupled to gravity [11,12].
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for integrating out δϕ perturbatively in the self-interaction
coupling. This gave rise to corrections to the self-
interaction couplings, as well as new terms in the equations
of motion which were higher-order in spatial gradients as
well as time derivatives. The method of MTY thereby
accounted for all relevant relativistic corrections.
In this paper, we will clarify the general MTY procedure

for calculating corrections in NREFT, which was first
applied in [10]. In that paper, the focus was the lifetime
of the oscillon state; it was pointed out that some relativistic
corrections give imaginary terms in the EFT action, leading
to the decay of oscillon states [9,20–22]. The lifetime of an
oscillon can be estimated from the EFT and the result is
consistent with the classical numerical simulation [23]. In
[10], while the general procedure for calculating relativistic
corrections was outlined, it was not explained in detail. In
this sense, the present work can be thought of partly as a
guide to the application of the EFT procedure that was
already outlined in [10].
A typical boson star is dilute and weakly bound, and as a

result, relativistic corrections are extremely small. A
theoretically ideal application in which relativistic correc-
tions become important is in a dense axion star, a
configuration in which the binding energy of the axions
is large and the radius of the star is extremely small (close
to the Compton wavelength of individual axions) [24]. This
is a clear scenario in which the approximation of neglecting
rapidly oscillating terms breaks down badly, and one must
instead integrate out these modes. In [25], the leading
nontrivial corrections to the wave functions of dense axion
stars were calculated by generalizing the field operator for
the scalar to include these fast-oscillating modes. The
resulting self-interaction potential also agreed well with
the effective interactions calculated in [10] at ψ6 order.
Importantly, in the dense axion star, gravity does not play
an important role, as the self-interactions terms dominate
[22,26], and so the application of a nongravitational
NREFT was appropriate. This is not the case in a dilute
axion star, where gravity contributes at leading order. To
analyze such states in an NREFT, gravity must be taken
into account.
One practical advantage of the MTY method is that, as

we will describe here, it is straightforward to include the
effect of gravity, although in all cases it gives rise to certain
theoretical complications beyond leading order. A thorough
treatment of the gravitational interaction is especially
important for understanding relativistic corrections to many
classes of boson stars, where gravity contributes impor-
tantly at leading order. In this work, we define explicitly the
small parameters of the EFT expansion, and clarify the
requirements for higher-order corrections of a given type to
be important. In the Appendix C we also prove an
important stability relation for self-gravitating objects.
Another practical advantage of the MTY method is in

calculations involving decay processes. As the axion field

is a Hermitian (real) scalar, there is no symmetry which
protects axion stars against number changing interactions.
Nevertheless, there is an approximately conserved particle
number that renders the configuration extremely long lived
[10,20]. The NREFT presented here renders the calculation
of the classical decay rate for emission of high-energy
particles extremely straightforward. So-called quantum
decays are well captured by a perturbative EFT, and can
be analyzed using any known EFT method (see e.g. [9,21]);
however, classical decays, which depend on the global
shape of the wave function and the tail of the momentum
distribution, appear particularly clearly in the MTY method
as an imaginary term in the action. As a concrete example,
we apply this method to estimate the lifetime of dense
axion stars.
Today there exist alternative methods of calculation in

the NREFT of real scalar fields. It is relevant to understand
the consistency of the results between methods, and also to
point out any relevant advantages of one over another. Of
course, in any two consistent EFT expansions, physical
observables calculated to any given order must agree; in
that sense, different EFTs must be equivalent to one
another. A few consistency checks of this kind were already
performed in [27,28]. One way to establish the consistency
of an NREFT is to compare a numerical oscillon solution
and prediction by the EFT, which was established for the
MTY method in [10]. In this work, we discuss a compli-
mentary method to check the consistency: to compare an
exact solution and to the prediction by the EFT. There are a
few situations where an exact solution is known; one
example is spatially homogeneous ϕ4 theory, where the
exact solution is given by an elliptic function. We will
compare this exact solution with the result from the MTY
method with alternative effective field theory calculations.
The paper is organized as follows. In Sec. II, we present

the calculation of relativistic corrections in NREFT as an
expansion in the small parameters of the theory, building on
the MTY formalism of [10]. In Sec. III, we describe how to
couple this theory to gravity, and compare corrections
coming from gravity to the other expansion parameters. We
then explain how to calculate the imaginary part of the
Lagrangian, which gives rise to decay processes even in the
classical regime, in Sec. IV. Finally, we compare various
NREFT methods in Sec. V, and we conclude in Sec. VI.
The appendices contain useful supplemental informa-

tion. Appendix A contains results for a calculation in the
NREFT for a ϕ4 þ ϕ6 potential, up to third order in
expansion parameters; Appendix B 1 shows the same order
for only ϕ4, but with a detailed derivation using the
diagrammatic method of MTY as well as using the
equations of motion. In the Appendix B 2 we give a
general argument for why seemingly disparate EFTs
methods necessarily give the same result at a given order
in the expansion. Finally in Appendix C, we extend the
stability discussion previously used in Q-ball literature to
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the case of self-gravitating objects, proving a necessary and
sufficient condition for stability holds even in the gravi-
tating case.
We use natural units throughout, where ℏ ¼ c ¼ 1.

II. NREFT WITHOUT GRAVITY

In this section, we explain the method of calculation in
our NREFT, building on our original work [10]. The
advantage of this method in the study of oscillons is at
least fivefold: the calculation is easy and straightforward by
using Feynman diagrams; the reason for (approximate)
stability is clear; it is easy to calculate the background
configuration; it is straightforward to include the effect
of gravity; and the lifetime can be calculated from the
imaginary part of the Lagrangian. Each of these points will
be illustrated in what follows.
We start from the following Lagrangian for a relativistic

quantum field theory of a real scalar field ϕ:

L ¼ 1

2
ð∂ϕÞ2 − 1

2
m2

ϕϕ
2 − V intðϕ2Þ; ð2:1Þ

where we assume a Z2 symmetry for representative
simplicity. The case without Z2 symmetry has been
discussed in Ref. [10], although in that work we did not
include the effect of gravity. In this section, we refine the
method and clarify the expansion scheme of our NREFT. In
Sec. III, we will explain how to include the effect of gravity.

A. Expansion scheme

We first decompose ϕ into slowly and fast oscillating
parts:

ϕðt; xÞ ¼ ½e−iωtψ1ðt; xÞ þ H:c:� þ δϕ; ð2:2Þ

where the frequency ω (≃mϕ) will be determined later.
We sometimes expand the fast oscillating parts as

δϕ≡X
n≥2

e−inωtψn þ H:c:; ð2:3Þ

where each ψn is assumed to be a slowly varying field.2

Note that this is just a Fourier decomposition and each ψn is
the mode that has a positive frequency. The goal is to derive
the EFT by assuming ψ1 is the dominant mode (in the
nonrelativistic regime) and integrating out the other highly
oscillating modes ψn>1.
It is instructive to mention the implicit limitation of the

mode expansion in Eq. (2.3) here. This expansion of the
relativistic component δϕ is useful when we compute
the classical NREFT, defined by tree-level diagrams.
Note however that this is not true if we would like to

consider quantum effects because the energy of δϕ must
be continuous in loop diagrams. For this purpose we
have to stop the decomposition of the scalar field at
ϕ ¼ ðe−iωtψ1 þ H:c:Þ þ δϕ. See Ref. [10] for the definition
of δϕ in this case. The case of quantum decay for axion
stars was also considered previously in [21].
Let us also clarify the role of ω here. In Sec. II B we

discuss how to get a stationary configuration of ψ1. There
we will take ω so that it factors out the time dependence of
ψ1. Nevertheless we sometimes keep both ∂tψ1 and ω,
since one may also take ω → mϕ and keep ∂tψ1 instead.
The latter limit is useful for computing scatterings of free
ψ1 particles as done in Ref. [28]. We emphasize that both
are equivalent after solving the equation of motion for ψ1.
We clarify that we do not need to include a time-dependent
term by hand in our EFT, as suggested in Ref. [28]. Such
terms are already taken into account in Ref. [10]. We
demonstrate the equivalence of each EFT in Sec. V by
comparing with an exact solution in the limit of ∇ψ1 → 0.
Also, in Sec. V C 3, we explicitly show that our EFT
contains the time derivative term pointed out in Ref. [28], if
one takes ω → mϕ and keeps ∂tψ1.
The EFT method is useful for the study of a clump of

oscillating scalar field, like an oscillon or axion star. In the
nonrelativistic regime, there are three possible small quan-
tities in the equation of motion:

δx ≡ j∇2ψ1j
jm2

ϕψ1j
≪ 1; ð2:4Þ

δV ≡ jV intðjψ1j2Þj
m2

ϕjψ1j2
≪ 1; ð2:5Þ

δt≡
����mϕ − ω − i ∂tψ1

ψ1

mϕ

����≪ 1: ð2:6Þ

For each of them, we can assign pseudoparameters
ϵx;V;t ¼ 1 like

j∇2ψ1j → ϵxj∇2ψ1j; ð2:7Þ

V int → ϵVV int; ð2:8Þ

ðmϕ − ωÞ → ϵtðmϕ − ωÞ: ð2:9Þ

Then, we can systematically estimate relativistic modes by
using an expansion in ϵ�. As a result, a term which is
proportional to ðϵxÞaðϵtÞbðϵVÞc in the resulting effective
Lagrangian will have relative size ðδxÞaðδtÞbðδVÞc, where a,
b, c ∈ Z are exponents of the expansion parameters. This
fact supports the validity of an expansion in ϵ�, given that δ�
are small.
There are certain oscillon solutions for which we find the

following relation:

2We use a different unit of frequency for Fourier modes and a
different normalization for ψn from those used in our previous
paper [10] so that the resulting NREFT is simpler.
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mϕðmϕ − ωÞ ∼ j∇2ψ1j
jψ1j

∼
V intðjψ1j2Þ

jψ1j2
; ð2:10Þ

which implies δt ∼ δx ∼ δV . In such a case, the resulting
effective Lagrangian can be decomposed into powers of a
single expansion parameter (ϵV for example). In general,
the EFTwill contain higher derivative terms with respect to
time, but we can use the equation of motion to remove them
(see Refs. [29,30]).
Let us illustrate how to obtain the NREFT here. Our

strategy to get the NREFT is straightforward: keep the NR
mode ψ1, and integrate out the fast oscillating parts δϕ. The
EFT action can be decomposed into kinetic, mass, and
interaction parts

SNR ¼ Skin þ Smass þ Sint: ð2:11Þ

First of all, substituting this decomposition into Eq. (2.1),
one may readily find that the kinetic term plus the mass
term become

Skin þ Smass ¼
Z
x

�
j∂tψ1 − iωψ1j2 − j∇ψ1j2 −m2

ϕjψ1j2

−
1

2
δϕð□þm2

ϕÞδϕ
�

ð2:12Þ

¼
Z
x

X
n≥1

ψ†
nð2inω∂t −m2

ϕ þ n2ω2 þ ∇2 − ∂2
t Þψn; ð2:13Þ

where
R
x ¼

R
d4x is the spacetime volume integration.

Note here that there are no cross terms among different n of
ψn. This is because the ψns are slowly oscillating by
assumption, meaning that their time dependence is weak
compared to the exponential prefactor. To make this point
clear, let us consider the cross term of ψ†

n0 and ψn for n ≠ n0.
There, we expect terms proportional to eiðn0−nÞωtψ†

n0ψn.
If ψn and ψn0 are time independent, then the integral of
such a term over time is proportional to a delta function
δððn0 − nÞωÞ, which is nonzero only if n0 ¼ n. A weak
dependence on time effectively shifts this delta function,
but in such a way that its argument is never zero, and so
such terms integrate to zero in this case as well. Hence, all
the terms must appear in a pair of ψ†

n and ψn.
Then we move on to the interaction term. To make our

discussion concrete, let us consider the following potential
as an example:

Vint ¼
λ4
4!
ϕ4: ð2:14Þ

The fact that ψns are slowly varying compared to e−iωt is
also essential for rewriting the interaction term by means of
our decomposition. Taking this into account, one can
decompose the interaction term into two parts:

Sint ¼ −
Z
x

λ4jψ1j4
4

þ δS½ψ1; δϕ�; ð2:15Þ

with

δS≡ −
Z
x

�
λ4
3!
ψ3
1e

−3iωtδϕþ 3λ4
2 · 3!

ðψ2
1e

−2iωtδϕ2 þ jψ1j2δϕ2Þ þ λ4
3!
ψ1e−iωtδϕ3

�
þ H:c: ð2:16Þ

−
Z
x

λ4
4!
δϕ4 ð2:17Þ

¼−
Z
x

�
λ4
3!
ψ3
1ψ−3þ

3λ4
3!

�
ψ2
1

X
j≥4

ψ−jψ j−2þ jψ1j2
X
j≥2

jψ jj2
�
þ λ4
3!
ψ1

X
i;j;k≠�1
iþjþk¼−1

ψ iψ jψk

�
þH:c: ð2:18Þ

−
Z
x

λ4
4!

X
i;j;k;l≠�1
iþjþkþl¼0

ψ iψ jψkψ l: ð2:19Þ

Here we have adopted the notation ψ−n ¼ ψ†
n. The second term, δS, represents the interaction between the NR mode ψ1 and

the relativistic modes contained in δϕ. In the second equality, we have used the mode expansion of δϕ given in Eq. (2.3)
which is useful to derive the NREFT in the classical case. Terms with uncompensated e�inωt prefactors, e.g. e−4iωtψ4

1, all
integrate to zero, because of the slow time dependence of ψn [see the discussion surrounding Eq. (2.13)].
Now we are in a position to integrate out the relativistic mode δϕ. The only diagram that contributes up to ϵ2V is depicted

in Fig. 1, namely a 3-to-3 process mediated by one relativistic particle:

ðFig: 1Þ ¼ −
Z
x

λ24
ð3!Þ2 ψ

†
1
3 1

9ω2 −m2
ϕ þ 6iω∂t þ ∇2 − ∂2

t þ iϵ
ψ3
1 þ Oðϵ3V; ϵ2Vϵt; ϵ2VϵxÞ ð2:20Þ

¼ −
Z
x

λ24
8ð3!Þ2

jψ1j6
m2

ϕ

þ ðimaginary partÞ þ Oðϵ3V; ϵ2Vϵt; ϵ2VϵxÞ: ð2:21Þ
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Note that the propagator for the internal line is off-shell,
and can be read off from the expression of Eq. (2.13). Also,
note that there exists a cut contribution that represents the
production of relativistic particles. We will come back to
this point in Sec. IV later, but for now just recognize that we
have an imaginary part in our EFT.
To sum up, the resulting EFT for ψ1 takes the form of

SNR ¼
Z
x
½j∂tψ1 − iωψ1j2 − j∇ψ1j2 −m2

ϕjψ1j2

− Veffðjψ1j;ωÞ − iΓ½ψ1�; �; ð2:22Þ

where Γ½ψ1� represents the imaginary part of the action,
which is responsible for the lifetime of clumps; this will be
discussed in Sec. IV. Note that each term of the resulting
EFT must contain the same number of ψ1 and ψ†

1. This,
again, owes to the slow oscillation of ψ1 compared to eiωt: a
vertex like ψn0

1 ðψ†
1Þne−iωðn

0−nÞt integrates to zero unless
n ¼ n0.3 Consequently, the final result just depends on jψ1j.
For example, if the original interaction term is given by

Eq. (2.14), the effective potential is

Veffðjψ1j;ωÞjϵ2V ¼ λ4
ð2!Þ2 jψ1j4 þ

1

8

λ24
ð3!Þ2m2

ϕ

jψ1j6; ð2:23Þ

up to ϵ2V . As there are no corrections of the orders of ϵVϵx or
ϵVϵt, the corrections involving ϵt or ϵx start from ϵ2Vϵt
or ϵ2Vϵx:

Veffðjψ1j;ωÞjϵ2Vϵt;ϵ2Vϵx ¼
1

8

λ24
ð3!Þ2m2

ϕ

ψ�3
1 D3ψ

3
1; ð2:24Þ

where we defined derivative operators as

Dn ≡ −
∇2

ðn2 − 1Þm2
ϕ

þ n2

ðn2 − 1Þ
�
m2

ϕ − ω2

m2
ϕ

�

þ −2nωi∂t þ ∂2
t

ðn2 − 1Þm2
ϕ

: ð2:25Þ

The corrections up to ϵ3x;V;t is calculated in the Appendix A.
Before leaving this section, we would like to emphasize

that the calculation of the effective potential in this method
is extremely straightforward. One can derive the EFT
corrections directly using Feynman diagrams, or by con-
sidering the ψn>1 as perturbations on the equation of
motion for ψ1; both formulations give identical results.
We illustrate the calculation procedure more fully in the
Appendix B 1, where we compute the effective potential
at Oðϵ3Þ.

B. Stable configuration

If we neglect the imaginary part of the action, there is a
global Uð1Þ symmetry and the particle number of the field
ψ1 is conserved. In Ref. [31], Coleman showed that there is
a stable configuration in such a complex scalar field theory
with a Uð1Þ symmetry under some conditions. The stable
solution is known as a Q-ball. Therefore scalar clumps in a
real scalar field theory, like oscillon and axion star, can be
understood as a projection of aQ-ball by the decomposition
of Eq. (2.2). That is, neglecting higher-order modes which
give rise to decay, the NR oscillon field is

ϕNR ¼ 2Re½e−iωtψ1�; ð2:26Þ
which is the projection on the real axis of the Uð1Þ-
symmetric Q-ball [32].
Suppose that the number of particles in a system is given

by Q, defined as

Q ¼ i
Z
x
½ψ†

1ð∂t − iωÞψ1 − ψ1ð∂t þ iωÞψ†
1�: ð2:27Þ

The most stable and energetically favorable configuration
of the scalar field ψ1 can be calculated by minimizing the
energy with its number fixed. Hence we should minimize

S̃NR ¼
Z
x
½j∂tψ1 − iωψ1j2 þ j∇ψ1j2

þm2
ϕjψ1j2 þ Veffðjψ1j;ωÞ�

þ ω0
�
Q − i

Z
x
½ψ†

1ð∂t − iωÞψ1 − ψ1ð∂t þ iωÞψ†
1�
�
;

ð2:28Þ
where ω0 is a Lagrange multiplier. This can be rewritten as

S̃NR ¼
Z
x
½j∂tψ1j2 þ j∇ψ1j2 þ ðm2

ϕ − ω2Þjψ1j2

þ Veffðjψ1j;ωÞ� þ ωQ; ð2:29Þ

FIG. 1. The leading order diagram at ϵ2V for the λ4ϕ4 interaction
is shown. A thick line represents the relativistic mode, whose off-
shell propagator is the inverse of the operator in parentheses
in Eq. (2.13).

3As long as the decay rate is suppressed, the frequency is
sharply peaked and we expect this separation works well. As we
will see in Sec. IV, the decay rate is strongly suppressed when
ω ≃mϕ. On the other hand, when ω ≪ mϕ, the modes are no
longer widely separated.
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where we set ω ¼ ω0. The first term is positive definite, so
that it is minimized when ∂tψ1ðx; tÞ ¼ 0. In other words, in
the stable configuration we define ω so that ∂tψ1ðt;xÞ ¼ 0.
Assuming spherical symmetry, we can determine the

spatial dependence of ψ1 by the following equation of
motion:

∂2ψ1

∂r2 þ 2

r
∂ψ1

∂r − ðm2
ϕ − ω2Þψ1 −

∂Veff

∂ψ†
1

¼ 0; ð2:30Þ

where r ¼ jxj is the radial coordinate. The boundary
condition is ψ1 ¼ 0 for r → ∞ and ∂rψ1 ¼ 0 at r ¼ 0.
The condition for a solution to exist is as follows [31]:

−
∂2Veff

ð∂ψ1Þð∂ψ�
1Þ
ð0Þ < m2

ϕ − ω2 < −Minψ1

�
Veffðjψ1j;ωÞ

jψ1j2
�
;

ð2:31Þ

where Minψ1
½Veff=jψ1j2� represents the minimum of

Veff=jψ1j2 as a function of jψ1j. The solution of
Eq. (2.30) is referred to as a Q-ball in the literature.
Given ∂tψ1 ¼ 0, the frequency ω and the particle

number Q are related by

Q ¼
Z
x
2ωjψ1j2: ð2:32Þ

We can easily show that (see e.g. [33])

∂E
∂Q ¼ ω; ð2:33Þ

which means that the chemical potential inside of the
Q-ball is equal to ω. Therefore, if ω < mϕ, the Q-ball is
stable compared with the free particle state. In addition, the
stability condition against small perturbations is simply
given by [34–36]

ω

Q
dQ
dω

< 0: ð2:34Þ

This condition was previously derived for Q-balls without
gravity, but remarkably, as we show in the Appendix C, the
same relation holds even when gravitational interactions are
included.
Remembering Eq. (2.2), we can understand the oscillon

configuration as a projection of a Q-ball, whose stability is
guaranteed by a particle-number conservation. Note that we
can determine the configuration of clumps from Eq. (2.30),
which can be solved numerically by using the shooting
method. The condition for the existence of clumps is also
clear through Eq. (2.31). These are some of the advantages
of our EFT compared with others used in the literature in
the context of bound states of scalars.

III. NREFT INCLUDING THE EFFECT
OF GRAVITY

A. Effect of gravity on the scalar field

Here we discuss the inclusion of gravity on the oscillon.
The starting point is to promote the spacetime derivatives in
the equation of motion to covariant derivatives,

□ϕ −m2
ϕϕ −

∂V int

∂ϕ ¼ 0; ð3:1Þ

where □ϕ ¼ gμν∂μ∂νϕ − gμνΓσ
μν∂σϕ is the covariant

d’Alembertian operating on ϕ. Since we are interested in
a spherically symmetric configuration, the metric around
the oscillon can be written as

ds2¼Aðt;rÞdt2−Bðt;rÞdr2−r2ðdθ2þsin2θdφ2Þ; ð3:2Þ

where Aðt; rÞ and Bðt; rÞ are functions determined by the
Einstein equation.
The energy-momentum tensor of the (relativistic) scalar

field is given by

Tμν ¼ ∂μϕ∂νϕ −
1

2
gμνgρσ∂ρϕ∂σϕ − gμνV intðϕÞ: ð3:3Þ

The action of the scalar field is then given by

SðgravÞ ¼
Z
x

ffiffiffiffiffiffi
−g

p �
1

2
gμν∂μϕ∂νϕ −

1

2
m2

ϕϕ
2 − VðϕÞ

�
ð3:4Þ

¼
Z

dt dr4πr2
ffiffiffiffiffiffiffi
AB

p �
1

2A
ð∂tϕÞ2 −

1

2B

�∂ϕ
∂r
�

2

−
1

2
m2

ϕϕ
2 − V intðϕÞ

�
: ð3:5Þ

The EFT action for ψ1 takes the form of

SðgravÞNR ¼
Z

dt dr4πr2
ffiffiffiffiffiffiffi
AB

p �
1

A
j∂tψ1 − iωψ1j2 −

1

B

���� ∂ψ1

∂r
����2

−m2
ϕjψ1j2 − Veffðjψ1j; A; B;ωÞ − iΓ½ψ1�

�
: ð3:6Þ

The effective potential Veff is calculated as in the previous
section, but now depends on the gravitational metric
functions A and B. The gravitational corrections appear
as a result of the factors of A and B in Eq. (3.6).
We can write the energy-momentum tensor of the scalar

field in the form of

Tμ
ν ¼ diagðρ;−pr;−p⊥;−p⊥Þ; ð3:7Þ

where ρ is the energy density, pr is the radial pressure, and
p⊥ is the tangential pressure [14], which in general are
understood to be functions of the radial coordinate r as well
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as time t. The tt and rr components of Einstein’s equations
lead to [37]

Aðt; rÞ ¼ exp

�
−2G

Z
∞

r

dr0

r02
ðMðt; r0Þ

þ 4πprr03Þ
�
1 −

2GMðt; r0Þ
r0

�
−1
�
; ð3:8Þ

Bðt; rÞ ¼
�
1 −

2GMðt; rÞ
r

�
−1
; ð3:9Þ

Mðt; rÞ≡
Z

r

0

dr04πr02ρ: ð3:10Þ

where G ¼ MP
−2 is the Newtonian gravitational constant

and MP is the Planck mass. The θθ and φφ components of
Einstein’s equations are automatically satisfied when the
above equations and the equation of motion of the scalar
field are satisfied.

B. NR EFT with gravity corrections

In principle, Eq. (3.6) along with Eq. (3.8) and Eq. (3.9),
can be used to calculate higher-order gravitational correc-
tions in the NREFT. The relevant small parameter control-
ling these corrections is

δg ≡GMðrÞ
r

≪ 1: ð3:11Þ

The parameter controlling the size of gravity corrections is
Newton’s gravitational constant, so we introduce a pseu-
doparameter ϵg ¼ 1 via

G → ϵgG; ð3:12Þ

as we did with the other corrections. A straightforward way
to organize these corrections would be to expand ϕ, A, and
B in terms of ϵg corrections as

ϕ ¼ ϕ0 þ ϵgϕ1 þ ϵ2gϕ2 þ � � � ; ð3:13Þ

A ¼ 1 − ϵgΨ1 − ϵ2gΨ2 − � � � ; ð3:14Þ

B ¼ 1þ ϵgΦ1 þ ϵ2gΦ2 þ � � � : ð3:15Þ

Then one could calculate the ϕi, Ψi, and Φi functions
iteratively using the general expressions above expanded to
the appropriate order in ϵg.
This quickly becomes very complicated. Unlike the

other EFT expansion terms we described in the previous
section, gravitational corrections give rise to nonlocal
operators through integrals over the wave function (in
addition to the ordinary derivatives) in the equations of
motion. As we will point out below, for a system which has
an important gravitational interaction at leading order,

relativistic corrections to e.g. the kinetic energy (through
δx terms) will be matched by gravitational corrections
(through δg) at the same order. Thus, all corrections need to
be calculated together self-consistently. As a result, a full
analysis of higher-order gravitational corrections is itself a
difficult undertaking and is left for future work.
For now, we assume that the effect of gravity is small

and provide an expansion scheme. Though we do not
calculate higher-order corrections, we may observe some
general features of such an expansion and thus lay the
ground for a future analysis. At leading order, we write
AðrÞ ¼ 1 − 2ΨðrÞ and BðrÞ ¼ 1þ 2ΦðrÞ, When we
define ρ and pr by Eq. (3.7), they are determined by
the scalar field as

ρ ¼ ω2jψ1j2 þ
���� ∂ψ1

∂r
����2 þm2

ϕjψ1j2 þ Veff

¼ 2m2
ϕjψ1j2 × ½1þ Oðϵx;V;tÞ�; ð3:16Þ

pr ¼ ω2jψ1j2 þ
���� ∂ψ1

∂r
����2 −m2

ϕjψ1j2 − Veff

¼ m2
ϕjψ1j2 × Oðϵx;V;tÞ: ð3:17Þ

From Eqs. (3.8) and (3.9), the gravitational potentials
Φ and Ψ are determined as

Ψðt; rÞ ¼ G
Z

∞

r

dr0

r02
ðMðt; r0Þ þ 4πprr03Þ; ð3:18Þ

Φðt; rÞ ¼ GMðt; rÞ
r

; ð3:19Þ

at the leading order in ϵg.
4 At the leading order in ϵg;x;t,

the effective action and Lagrangian is simply given by

S ¼
Z

dt drð4πr2ÞLeff ; ð3:20Þ

Leff ¼ j∂tψ j2 −
���� ∂ψ∂r

����2 −m2
ϕð1 − 2ΨÞjψ j2 − Veffðjψ j;ωÞ

−
1

8πG

�∂Ψ
∂r
�

2

; ð3:21Þ

where ψ ≡ e−iωtψ1 and we impose a boundary condition
Ψðr → ∞Þ ¼ 0. The equations of motion of this system
are given by

4The tangential pressure p⊥ is relevant in the θθ component
of the Einstein equation, but it can be obtained from the
combination of Eqs. (3.18) and (3.19), and the equation of
motion. So we do not need to write down the θθ component of the
Einstein equation [38].
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∂2
tψ −

∂2ψ

∂r2 −
2

r
∂ψ
∂r þm2

ϕð1 − 2ΨÞψ þ ∂Veff

∂ψ† ¼ 0; ð3:22Þ

1

4πG

�∂2Ψ
∂r2 þ 2

r
∂Ψ
∂r
�

¼ −2m2
ϕjψ j2: ð3:23Þ

Note that the time derivative part equivalent to the one
obtained from a free field theory, and the conserved
charge Q is defined as usual by Eq. (2.27).
The way to obtain a Q-ball (or an axion star) configu-

ration is as follows. For a given ω, we can define three
dimensional action

S3ðωÞ≡
Z
x
j∇ψ j2 þ ðm2

ϕð1 − 2ΨÞ − ω2Þjψ j2 þ Veffðjψ j2Þ

þ ð∇ΨÞ2
8πG

: ð3:24Þ

Then, the bounce solution ψðxÞ of S3ðωÞ corresponds to the
Q-ball solution e−iωtψðxÞ. S3ðωÞ can be regarded as a three
dimensional action for two coupled scalar fields ψ and Ψ
which have canonical kinetic terms, and the potential is
given by

VS3 ¼ ðm2
ϕð1 − 2ΨÞ − ω2Þjψ j2 þ Veffðjψ j2Þ: ð3:25Þ

The existence of the bounce solution is ensured by the
following three conditions (see [39] for more details):

(i) The potential VS3 is non-negative in an open
neighborhood which includes the origin ψ , Ψ ¼ 0.

(ii) The potential VS3 becomes negative for some ψ , Ψ.
(iii) The effective potential Veffðjψ jÞ satisfies

limjψ j→∞
Veff
jψ j6 ≥ 0.

In general, the solution with the minimal action is ensured
to be Oð3Þ symmetric in space even when there are a lot
of fields. The first condition is satisfied if and only if
mϕ − ω > 0. The second condition is automatically sat-
isfied because in the large Ψ limit, the potential becomes
negative. The third condition is satisfied as long as the
potential is not so pathological. Note that these conditions
do not ensure the validity of the perturbative analysis.
For example, the obtained solution may have a large
Ψ ∼ δg ∼ Oð1Þ. We need to check the validity of perturba-
tions separately.
The relevant question here is whether the obtained

solution is stable against small perturbations or not.
Even with the gravitational interaction, stability is ensured
provided that

ω

Q
dQ
dω

< 0; ð3:26Þ

which is both a necessary and sufficient condition. We
prove this condition in the Appendix C. Note that ω is still
given by Eq. (2.33).

C. Discussion about expansion parameters

We may roughly estimate the small parameters of the
EFT as5

δx ∼
ð∇ϕÞ2
m2

ϕϕ
2
∼

1

ðmϕRÞ2
; ð3:27Þ

δV ∼
jλ4jϕ4

m2
ϕϕ

2
∼
jλ4jϕ2

m2
ϕ

; ð3:28Þ

δg ∼Ψ ∼
1

MP
2

Z m2
ϕϕ

2

r
d3r ∼

m2
ϕϕ

2

MP
2
R2; ð3:29Þ

where R is the size of the oscillon, and we took the self-
interaction potential from Eq. (2.14). The total oscillon
mass can be estimated as M ∼m2

ϕϕ
2R3, which implies

δx ∼
1

ðmϕRÞ2
; δV ∼

λ4M
m4

ϕR
3
; δg ∼

M
MP

2R
: ð3:30Þ

The size of these parameters determines which EFT
corrections become important.
We can build intuition about this by looking at stable

bound states. Suppose λ4 < 0 (attractive force). Then a
bound state can be supported by a balance of the kinetic
pressure against the gravitational and self-interaction terms
in the equation of motion (this is the standard picture of a
boson star). If δV ≪ δx ∼ δg, then kinetic pressure supports
the state against gravity. In this regime we have

M ∼
�
MP

mϕ

�
2 1

R
; ðgravitatingÞ ð3:31Þ

which is the standard mass-radius relation for a boson star
with no self-interactions [13,14,40]. On the other hand, if
δg ≪ δV ∼ δx, then we have

M ∼
m2

ϕ

jλ4j
R; ðself-interactingÞ ð3:32Þ

which is the mass-radius relation for nongravitating boson
stars [16,17]. These noninteracting (nongravitating) states
are stable (unstable) under perturbations. If all three terms
are of similar order δx ∼ δV ∼ δg, we have a transition
region which includes a critical (maximum) mass at

Mc ∼
MPffiffiffiffiffiffiffijλ4j
p ; ð3:33Þ

corresponding to a radius of

5We will ignore δt for the purposes of this section.
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Rc ∼
ffiffiffiffiffiffiffijλ4j

p
MP

m2
ϕ

; ð3:34Þ

reproducing the standard results [16,19].
This raises another important point about the EFT. When

we compute corrections at some order in ϵx;V;t, this
corresponds to corrections of size δx;V;t at this order. If
δg is as large as the other small parameters in the problem
(as in a stable boson star), then it is not consistent to neglect
corrections at higher order in δg. Another way to say this is
that, if gravity contributes in the equation of motion, then
post-Newtonian corrections proportional to Ψ2 in the
equations will be as important as those proportional to
∇4ϕ, λ24, etc., which are the ones calculated in all for-
mulations of scalar EFT we have been discussing
[10,25,27,41]. The application of these EFTs beyond
leading order, in a system where gravity contributes in
an important way in the equations of motion, is not correct.
Therefore, we need to compute corrections coming from
the gravity effect ϵg up to the same order with ϵx if we
consider the case where the clump forms due to the
gravitational interaction. We leave a full analysis of
higher-order gravitational corrections to future work.

D. Numerical results

Here we show a numerical result for an axion star, where
the interaction potential is given by a relativistic periodic
potential minus the mass term,

VaðϕÞ ¼m2
ϕf

2
a

�
1− cos

�
ϕ

fa

��
−
m2

ϕ

2
ϕ2 ≈

λ4
4!
ϕ4 þ λ6

6!m2
ϕ

ϕ6:

ð3:35Þ
In general, such a potential will have contributions at every
even power of the field ϕ, but for simplicity we will
truncate at ϕ6. This is the minimal axion potential for which
a dense axion star solution exists [26]. The coefficients are
λ4 ¼ −

ffiffiffiffiffi
λ6

p ¼ −ðmϕ=faÞ2, where fa is an axion decay
constant. In this section, we use the EFT contributions from
the ϕ6 potential, which we calculate in the Appendix A, and
we take into account ϵ2V as well as ϵg corrections, but
neglect higher orders in ϵx and ϵt.
In order to perform numerical simulations, it is conven-

ient to rescale variables and fields such that they are
dimensionless. We adopt the following rescaling:

ψðrÞ ¼ m2
ϕ

MPjλ4j
ϕ̄ðr̄Þ; ð3:36Þ

r ¼
ffiffiffiffiffiffiffijλ4j

p
MP

m2
ϕ

r̄; ð3:37Þ

Q ¼ MP

mϕ

ffiffiffiffiffiffiffijλ4j
p Q̄; ð3:38Þ

ΨðrÞ ¼ gfðr̄Þ þ 1

2

�
1 −

ω2

m2
ϕ

�
; ð3:39Þ

where we define

g≡ m2
ϕ

M2
Pjλ4j

¼
�
fa
MP

�
2

: ð3:40Þ

The equations of motion are given by

ϕ̄″ þ 2

r
ϕ̄0 þ 2fϕ̄þ 1

2
ϕ̄3 −

3g
32

ϕ̄5 ¼ 0; ð3:41Þ

f″ þ 2

r
f0 þ 8πϕ̄2 ¼ 0; ð3:42Þ

where the prime denotes the derivative with respect to r̄.
The boundary conditions are now given by

ϕ̄0ð0Þ ¼ 0; ϕ̄ð∞Þ ¼ 0; ð3:43Þ

f0ð0Þ ¼ 0; fð∞Þ ¼ 1

2g

�
ω2

m2
ϕ

− 1

�
: ð3:44Þ

We numerically solve the equations of motion (3.41) and
(3.42) with various initial conditions. Then we calculate the
total charge (i.e., the total particle numberQ) and the radius
R of the configuration. Note that we define the radius as the
one at which 90% of the energy is enclosed. The resulting
phase diagram is shown in Fig. 2, where we take g ¼ 10−4

and 10−6. In the plot, we show the rescaled quantities R̄ and
Q̄, defined by the rescaling of Eqs. (3.37) and (3.38).
For a large radius, the gravity effect dominates and we

obtain R ∝ 1=Q, which is consistent with Eq. (3.31). This
branch is shown as thick lines in Fig. 2. As R̄ decreases and
reaches to Oð1Þ [see Eq. (3.34)], the oscillon enters into the
regime of dQ=dω > 0 and becomes unstable. This is
shown as dashed lines in the figure. There is another stable
branch in the phase diagram, shown as thin solid lines,
where the radius is of the order of (but is still larger than)
m−1

ϕ . The solution in this regime has been well studied in
the context of oscillons, where the gravity effect is
negligible. In the context of axion clumps, it is sometimes
called a dense axion star [24] or axiton [42]. A typical
radius of an axion star can be estimated as R̄ ∼

ffiffiffiffiffiffiffiffiffi
g=δx

p
from

the dimensional analysis. For the dense axion star, δx is
smaller but not much smaller by many orders of magnitude
than unity. Therefore we expect R̄ ∼ ffiffiffi

g
p

for the dense axion
star, which is consistent with our numerical results.
If gravity is absent, the condition for the existence of

axion star solutions is given by Eq. (2.31). We find that it
cannot be satisfied unless mϕ − ω is not so suppressed;
near the right endpoint of Fig. 2,6 the expansion parameters

6Strictly speaking, we can find a solution for an arbitrary large
Q. In the limit of Q → ∞, the frequency ω approaches to some
constant value [43]. We denote the endpoint referring to this
constant ω.
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are not small and the nonrelativistic expansion may not be a
good approximation. It is not directly clear how next-to-
leading order corrections would affect the endpoint of
axion star solutions. In addition, the decay rate in this
regime is not suppressed, as we will see in the next section.
Our numerical results show that it becomes difficult to find
a long-lived dense axion star solution if we take smaller g.
Our results are broadly consistent with the ones in

previous literature, as in most works the authors ignore
ϵx and ϵt corrections (as we did in this section) [24,44,45].
A leading-order analysis of the first nontrivial harmonic in
a dense axion star was performed in [22], whereas all
leading-order relativistic corrections were taken into
account in [25]. Here we have taken into account the
leading order relativistic corrections at Oðϵ2VÞ and our
calculation can be applicable to relatively large ψ1, which
is the case for the dense axion star branch with a large Q̄. Of
course, any leading-order analysis will break down for the
very strongly bound regime of dense axion stars, where
mϕ − ω is no longer small. In our analysis, stability against
small perturbations is also confirmed in both dilute and

dense branches, as seen in the lower panel of Fig. 2, which
is in very good agreement with the stability analysis of [25].

IV. CLASSICAL DECAY RATE

The number conservation is approximate and is violated
by relativistic particle production, which leads to a finite
lifetime for these localized clumps. Their lifetime can
therefore be estimated from the imaginary part of the
Lagrangian in the EFT, which is calculated by cutting
relativistic propagators as done in Ref. [10].7 We revisit this
part of the calculation here for completeness, and also to
emphasize the straightforward nature of the decay calcu-
lation in the MTY method. As we discuss below, the
imaginary part of the action which gives rise to such decay
appears as an essential singularity, and thus it is not
accessible at any perturbative order in any EFT; thus, it
is nontrivial and interesting that one can still calculate it
using the MTY method. It would be interesting to see
whether the alternative EFT approaches are able to repro-
duce these classical decay processes, as they were not
discussed in previous works [27,41].
Let us first confirm that the imaginary part Γ of the action

breaks the charge conservation. Taking a time derivative of
Eq. (2.32), we readily obtain

_Q ¼ 2ω

Z
x
ð _ψ†

1ψ1 þ ψ†
1 _ψ1Þ ð4:1Þ

≃
Z
x

�
ψ†
1

δΓ
δψ†

1

þ H:c:

�
; ð4:2Þ

which clearly shows that Γ breaks the approximate number
conservation. Note that there is no time dependence on ψ1

for the stable configuration if we neglect Γ.
Now we are in a position to evaluate how Γ depends on

ψ1. Since we focus on a classical NREFT, the relevant
cutting diagrams which yield Γ must be tree level. (We will
comment on quantum loop diagrams shortly.) Motivated by
this observation, we consider an n to n process mediated by
one relativistic particle. See also Fig. 3. To be concrete, we
consider a potential of the form

VnðϕÞ ¼
λnþ1

ðnþ 1Þ!mn−3
ϕ

ϕnþ1; ð4:3Þ

in the original relativistic theory. After using the EFT
expansion of Eq. (2.2), this term gives

L ⊃
λnþ1

n!mn−3
ϕ

ψn
1e

−inωtδϕþ H:c:; ð4:4Þ
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FIG. 2. Plots for the radius (upper panel) and mϕ − ω (lower
panel) as a function of charge for the axion star with g ¼ 10−4

(blue line) and 10−6 (yellow line). The thick lines represent the
dilute axion star, the thin lines represent the dense axion star, and
the dashed lines represent the unstable transition branch of
solutions.

7An analysis of quantum decay for axion stars was performed
by [21].
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where δϕ represents relativistic modes collectively.
Classical decays of this type were first considered in the
context of axion stars in [20].
The imaginary part appears when the relativistic propa-

gator hits the pole of

Z
x

λ2nþ1

ðn!mn−3
ϕ Þ2 ψ

n
1

1

n2ω2 þ ∇2 −m2
ϕ þ iϵ

ψ†
1
n; ð4:5Þ

where we have taken ∂tψ1 ¼ 0 for the stable configu-
ration, and we use the Feynman boundary condition for
the relativistic propagator.8 It is clear that, if ψ1 is
homogeneous, there is no pole and hence no imaginary
part. Thus, the decay rate strongly depends on how ψ1

localizes in space. This is why we first discuss the profile
of ψ1 by neglecting Γ. This procedure can be justified
a posteriori if the decay from Γ is much slower than the
typical formation time scale of classical lumps. In other
words, if this is the case, one may assume that the scalar
field can track the stable solution during the course of its
slow decay. Note in addition that this is a fully relativistic
phenomenon which cannot be captured by any finite
expansion in terms of spatial derivatives of the propagator
in Eq. (4.5).
To see the structure more clearly, we move to the Fourier

space. Then the imaginary part of the action Γ gives rise to a

decay rate Γn→1 ¼
R
d3xΓ. Then Eq. (4.2) from this

particular diagram can be evaluated as

iΓn→1 ¼ −πi
λ2nþ1

ðn!mn−3
ϕ Þ2 jψ̄1j2n

×
Z
p
jjnðpÞj2δðp2 − n2ω2 þm2

ϕÞ; ð4:7Þ

_Qn→1 ¼ 2nΓn→1; ð4:8Þ

which was computed in detail in [10] (though we have
chosen a different normalization for the interaction term).
We have factorized a typical amplitude of the profile as
ψ1ðxÞ ¼ ψ̄1jðxÞ, and defined

jnðpÞ≡
Z
x
e−ip·x½jðxÞ�n: ð4:9Þ

Now it is obvious that the classical decay rate is nonzero

if jnðpÞ has a nonzero value for p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ω2 −m2

ϕ

q
,

which originates from a spatial gradient of the loca-
lized lump.
We can calculate _Qn→1 numerically by taking a

Fourier transformation for the configuration of clump
derived from Eq. (2.30). One may assume that the profile
is approximated by the Gaussian:

ψ1ðxÞ ¼ ψ̄1e−r
2=2R2

; ð4:10Þ

in which case we can analytically calculate Eq. (4.9):

jnðpÞ ¼
�
2πR2

n

�
3=2

e−R
2p2=2n: ð4:11Þ

Substituting this into Eq. (4.8), we can evaluate the
decay rate:

_Qn→1 ¼ −ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − ðmϕ=ωÞ2

q
32π5λ2nþ1

n2ðn!Þ2 ðmϕRÞ6
�jψ̄1j
mϕ

�
2n

× exp

�
−
n2 −m2

ϕ=ω
2

n
ðRωÞ2

�
: ð4:12Þ

One can clearly see that the rate is suppressed for Rω ≃
Rmϕ ≫ 1 which is nothing but the nonrelativistic condition
Eq. (2.4). Thus, our treatment is justified a posteriori. For a
larger n, it is not easy to produce the relativistic particles
because we need more energy to hit the pole. This is the
case of the Gaussian profile, but it is possible to use other
profiles to calculate the decay rate. Importantly, the decay
rate depends on the tail of the momentum distribution, and
so a compact function will give an incorrect result. It is not
difficult to use the exact numerical solution of Eq. (2.30)
for the oscillon profile; this was what was done in [20].

FIG. 3. The n to n process mediated by one relativistic particle
is shown. The off-shell propagator for the internal line is
determined by Eq. (2.13).

8Strictly speaking, we would like to study the dynamics of ψ1

and hence it is more appropriate to take the closed-time-path
formalism. Then this term looks like

Z
x

λ2nþ1

2ðn!mn−3
ϕ Þ2 ðψ

n
1
ðþÞ − ψn

1
ð−ÞÞ 1

ðnωþ iϵÞ2 þ ∇2 −m2
ϕ

1

2

× ðψ†
1
nðþÞ þ ψn

1
ð−ÞÞ þ H:c:; ð4:6Þ

where� denotes the fields residing on the upper/lower contour in
the closed-time-path formalism as mentioned in Ref. [10]. The
equation of motion for ψ1 can be derived by taking a derivative
with respect to ψ1 and then ψ ðþÞ

1 ¼ ψ ð−Þ
1 . See Ref. [10] for more

details. Although the propagator for the relativistic mode here is
the retarded one, one can show that the result coincides with
Eq. (4.5) for vacuum of the relativistic mode where Gret ¼ GFyn
holds. Here Gret=Fyn represents the retarded/Feynman propagator.
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The result is parametrically similar to what we have
estimated in Eq. (4.12) using the Gaussian ansatz.9

One nontrivial example is the case when the profile is
rather flat [43]. In such a case, jnðpÞ can become zero at a
certain radius. As a result, the configuration stays almost all
time at the point where the lowest jn, becomes zero since
the decay rate is highly suppressed at that point [10]. Note
in addition that the decay rate is proportional to
exp½−Oðδ−1x Þ� and such effects cannot be realized by any
order of ϵ (or δ) expansions. In this sense, this decay
process can be regarded as a kind of nonperturbative one.
Here, let us estimate a typical time scale due to this

classical decay by using a Gaussian profile. In that case we
have δx ≡ 1=ðmϕRÞ2 ≪ 1, where R is the radius parameter
in the Gaussian profile. The total number of particles is
given by 2Q ≃ 4π

ffiffiffi
π

p
R3mϕjψ̄1j2. In addition, we define

δVn
≡ λnþ1jψ̄1jnþ1

ðnþ 1Þ!mn−3
ϕ

·
1

m2
ϕjψ̄1j2

≪ 1; ð4:13Þ

where we used the potential Vn of Eq. (4.3). Note that
δx ≳ δVn

is expected from the equation of motion. Then, we
have the following expression for the typical time scale for
decay:

1=T typ ≡
���� _QQ
����
n→1

≃
4π4

n2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − 1

π

r ffiffiffiffiffiffiffi
δVn

p �
δVn

δx

�
3=2

× exp

�
−
n2 − 1

nδx

�
×mϕ: ð4:14Þ

If δx is not so suppressed, this decay process may determine
the fate of the configuration.
Now we shall consider the axion star, which is numeri-

cally calculated in Sec. III D. In this case, the typical value
of δx can be estimated from the top panel of Fig. 2 because

δx ∼
1

ðmϕRÞ2
ð4:15Þ

¼ λ4M2
P

ðmϕR̄Þ2
¼ g

R̄2
: ð4:16Þ

Using δx ∼ δt ¼ jmϕ − ωj=mϕ, one can also read it from the
bottom panel of the figure. In the dense axion star branch, it
is easy to see that δt is of order 0.1–1 and hence by
examining Eq. (4.14), we expect that these objects would

decay before the present epoch. This was concluded also in
the analysis of [20,22]. On the other hand, in the dilute
axion branch, δt is many orders of magnitude smaller. We
can see in Fig. 2 that the ratio of δt in the dilute branch
compared to that of the dense branch is smaller than
g ¼ ðfa=MPÞ2. Since we expect g ∼ 10−6 for the GUT-
scale axion or g ∼ 10−14 for the (standard) QCD axion, the
lifetime of the dilute axion star is much longer than the
present age of the universe because of the exponential
factor in the decay rate. Therefore we conclude that dilute
axion stars can survive until the present, if they formed in
the early universe. The decay rate can be significantly
larger when g is larger, as in models of fuzzy dark
matter [46].
Finally, we comment on quantum decay of oscillons. In

this work, we have discussed the classical decay of
oscillons via relativistic corrections, where the gradient
term hits the pole of the propagator in the tree-level
diagram. One may calculate loop diagrams to take into
account quantum corrections in the EFT. Then there are
some corrections to the imaginary term of the EFT from the
cutting diagrams, which represent quantum decay of
oscillon. If the decay rate is sufficiently small, it can be
roughly estimated as the elementary decay rate of the scalar
field times the number of particles inside the oscillon.
However, if the decay rate is sufficiently large, the statistics
of daughter particles may become relevant. If the daughter
particle is fermionic and obeys Fermi-Dirac statistics, its
production rate from the surface of the oscillon has an
upper bound by the Pauli exclusion principle [47,48]. If the
decay rate is saturated, it is proportional to the number of
degrees of freedom for particles that interact with the
oscillon.
On the other hand, if the daughter particle is bosonic and

obeys Bose-Einstein statistics, its production rate may be
enhanced by the Bose-enhancement effect [9,49]. The latter
effect may lead to an interesting observable effect for axion
stars [50]. The classical decay discussed in this paper could
in principle have been affected by the Bose-enhancement
effect. However, the effect is relevant only if the production
rate is sufficiently larger than the escape rate of daughter
particles. Therefore this enhancement effect is not impor-
tant for the classical decay via the self-interaction.

V. COMPARISON WITH OTHER WORKS

A different method for constructing the NREFT of a real
scalar field was performed by Braaten, Mohapatra, and
Zhang (hereafter BMZ) [41], who matched relativistic
scattering amplitudes at high energies to effective opera-
tors in the low energy theory, giving rise to modified
self-interaction couplings. The original work of BMZ
did not take into account higher-order gradients, which
give important contributions at the same order in the
EFT expansion as the self-interaction corrections they
calculated. In a recent update [28], they have presented

9In [20], the expansion parameter was taken to be

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2=m2

ϕ

q
∝ δt, and the resulting decay rate was propor-

tional to a factor of exp ð−1=ΔÞ. With the approximate relation
δx ∼ ðRmϕÞ−2 ∼ ðRωÞ−2 and δt ∼ δx from the equation of motion,
one finds the same exponential dependence exp ð−1=δtÞ in
Eq. (4.12). Because this term dominates the behavior of the
decay rate, we take this level of agreement to be sufficient.
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a more complete NREFT which includes these corrections
as well.
Very recently, yet another method was presented by

Namjoo, Guth, and Kaiser (hereafter NGK) [27]. In this
work, NGK defined the relativistic field using a nonlocal
operator which generalized Eq. (1.1), then expanded the
wave function ψ and its conjugate ψ� as a tower of
oscillating modes with frequencies �nmϕ. The equation
of motion for the lowest order mode, taken to have
frequency þmϕ, was determined by integrating out the
other modes.10

In this section we will discuss these other methods for
calculating relativistic corrections in NREFT. We begin by
outlining the primary differences in the MTY formalism
and that of BMZ and NGK. A number of consistency
checks have already been performed in previous works; for
example, it has been shown that, under appropriate field
redefinitions, the methods of MTY, BMZ, and NGK give
rise to matching elements in the low-energy S-matrix at ψ6

order [27] and in the T-matrix at ψ8 order [28]. We will
check the consistency using a different approach; namely,
we compare the results of each EFT to a case where the
exact solution is known. In this way we show that the
seemingly distinct methods give equivalent results at any
finite order in the EFT expansion.

A. Method proposed by Namjoo, Guth, and Kaiser

In Ref. [27], NGK proposed an EFT by defining the
scalar field with a nonlocal operator, giving rise to an
equation of motion with only first-order time derivatives.
In this case, the denominator of the propagator is linear in
the energy, resulting in propagation which is only forward
in time. In other words, in their EFT one integrates out part
of the nonrelativistic mode with frequency ∼ −mϕ. On the
other hand, our EFT contains the second-order time
derivatives and integrates out only modes with high
frequencies >jmϕj. Though the results agree at the level
of T- and S-matrix elements [27,28], our method has the
advantage of increased computational efficiency and
smaller corrections beyond the leading order. In this
section, we consider a polynomial potential with ϕ4 and
ϕ6 order terms, although in [27] only ϕ4 was considered.
For the purposes of comparison, the relevant ϕ6 corrections
in the MTY method of the EFT are shown in the
Appendix A.

1. Canonical transformation

The Hamiltonian of the relativistic theory (A1) is
given by

H ¼ 1

2
π2 þ 1

2
ð∇ϕÞ2 þ 1

2
m2

ϕϕ
2 þ λ4

4!
ϕ4 þ λ6

6!m2
ϕ

ϕ6; ð5:1Þ

where π is the canonical momentum. The canonical
variables are ϕ and π. The Hamiltonian can be rewritten
in terms of new canonical variables ψ and iψ� by the
following canonical transformation:

ϕðt; xÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2mϕ

p P−1=2½e−imϕtψðt; xÞ þ eimϕtψ�ðt; xÞ�;

ð5:2Þ

πðt; xÞ ¼ −i
ffiffiffiffiffiffiffi
mϕ

2

r
P1=2½e−imϕtψðt; xÞ − eimϕtψ�ðt; xÞ�;

ð5:3Þ

where P is defined by

P≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

∇2

m2
ϕ

s
: ð5:4Þ

This should be included since otherwise the equation of
motion of ψ depends on the spatial derivative of ψ� [27].
Note for future reference that the dimension of ψ in the
normalization of NGK differs from that of Eq. (2.2) by a
factor of ffiffiffiffiffiffiffimϕ

p .
This canonical transformation can be done by the

following generating function F½ϕ;ψ ; t�:

F½ϕ;ψ ; t� ¼ imϕϕ
2 − i

ffiffiffiffiffiffiffiffiffi
2mϕ

p
e−imϕtψϕþ i

2
e−2imϕtψ2;

ð5:5Þ

which satisfies

∂F½ϕ;ψ ; t�
∂ϕ ¼ π; ð5:6Þ

−
∂F½ϕ;ψ ; t�

∂ψ ¼ iψ�: ð5:7Þ

Hence the new Hamiltonian H0 is given by

H0½ψ ;ψ�� ¼ H½ϕ; π� þ ∂F½ϕ;ψ ; t�
∂t ð5:8Þ

¼ mϕψ
�ðP − 1Þψ þ λ4

4!
ϕ4½ψ ;ψ�� þ λ6

6!m2
ϕ

ϕ6½ψ ;ψ��;

ð5:9Þ

where ϕ and π should be rewritten in terms of ψ and ψ�
by using Eqs. (5.2) and (5.3). This is similar to the

10As this paper was being finalized, an update to [27] appeared
which clarified the expansion scheme in their method by
separating self-interaction, spatial derivative, and time derivative
corrections.
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Hamiltonian in the nonrelativistic field theory if we expand
P by using ∇2=m2

ϕ ≪ 1.
The Lagrangian is therefore given by

L ¼ i
2
ð _ψψ� − ψ _ψ�Þ −mϕψ

�ðP − 1Þψ

−
λ4
4!
ϕ4½ψ ;ψ�� − λ6

6!m2
ϕ

ϕ6½ψ ;ψ��: ð5:10Þ

As a result, the equation of motion looks like a Schrödinger
equation in quantum mechanics. Since we have just used
the canonical transformation, the commutation relations for
ψ and iψ� are the same as those for ϕ and π. Up to now, the
calculations are exact.

2. Expansion scheme

Following Ref. [27], we decompose ψðt; xÞ as

ψðt; xÞ ¼
X

ν¼0;�1;�2;…

ψνðt; xÞeiνmϕt; ð5:11Þ

where each of the ψνðx; tÞ is assumed to be slowly varying.
The modes with odd ν do not play any role in the following
analysis because of the Z2 symmetry in the original
Lagrangian.

Here, we note that the zero point energy is shifted by an
amount of mϕ by the canonical transformation. Hence the
ψ0 represents the nonrelativistic field whose kinetic energy
is much smaller than its rest mass. Its rest energy m is
removed from the Hamiltonian by the constant shift. So one
may expect that the nonrelativistic Lagrangian for ψ0 can
be constructed by integrating out ψν with ν ≠ 0.
However, we should note that the modes ψν with ν ≥ 2

represents components of the original scalar field that have
negative frequencies. In particular, the mode ψ2 satisfies
i _ψ2 þmϕψ2 ¼ −mϕψ2, where a factor of mϕ comes from
the constant shift of the Hamiltonian. This means that the
EFT of ψ0 includes a contribution from integration of the
mode ψ2 with frequency of order −mϕ. This leads to a large
correction at the first nontrivial order.
To integrate out relativistic modes, we introduce a

pseudo parameter ϵ and expand ψν (ν ≠ 0) as

ψνðt; xÞ ¼
X∞
n¼1

ϵnψ ðnÞ
ν ðt; xÞ: ð5:12Þ

We assume that ψ0 is the zeroth order for ϵ. Then the
equation of motion can be expanded by this small param-
eter. The result is given by

i _ψ0 ¼ ðleading termsÞ þ 3λ4
4!m2

ϕ

½ψ2
0ψ2 þ 2ψ�

0ψ0ψ
�
2 þ ψ�2

0 ψ−2 þ ψ�2
0 ψ�

4�

þ 15

4

λ6
6!m5

ϕ

½ψ4
0ψ4 þ ψ4

0ψ
�
−2 þ 4ψ�

0ψ
3
0ψ2 þ 6ψ�3

0 ψ0ψ
�
2

þ 4ψ�3
0 ψ0ψ−2 þ 4ψ�3

0 ψ0ψ
�
4 þ ψ�4

0 ψ−4 þ ψ�4
0 ψ�

6�; ð5:13Þ
at the first order of ϵ (¼ 1). Here and hereafter, we set P ¼ 1 for simplicity and focus only on the effective potential.
The relativistic modes can be rewritten in terms of ψ0 by using _ψν ≪ mϕjψνj:

ψ−4 ¼
1

4
c6ψ5

0; ψ−2 ¼
1

2
c4ψ3

0 þ
5

2
c6ψ�

0ψ
4
0; ð5:14Þ

ψ2 ¼ −
3

2
c4ψ�2

0 ψ0 − 5c6ψ�3
0 ψ2

0; ð5:15Þ

ψ4 ¼ −
1

4
c4ψ�3

0 −
5

4
c6ψ0ψ

�4
0 ; ψ6 ¼ −

1

6
c6ψ�5

0 ; ð5:16Þ

where we define

c4 ¼
λ4

4!m3
ϕ

; c6 ¼
3

4

λ6
6!m6

ϕ

: ð5:17Þ

Substituting these into Eq. (5.13), we obtain the effective potential as

Veffðjψ1jÞjϵ2V ¼ λ4
ð2!Þ2

�jψ0j2
2mϕ

�
2

þ λ6 − 17=8λ24
ð3!Þ2m2

ϕ

�jψ0j2
2mϕ

�
3

− 11
λ4λ6

ð4!Þ2m4
ϕ

�jψ0j2
2mϕ

�
4

−
131

6

λ26
ð5!Þ2m6

ϕ

�jψ0j2
2mϕ

�
5

: ð5:18Þ

JOSHUA EBY et al. PHYS. REV. D 99, 123503 (2019)

123503-14



This is different from Eq. (A2) even if we take into account
the difference of the normalization of ψ (jψ0j2=2mϕ ↔
jψ1j2). In particular, the signs of first order corrections in
NGK and MTY are the opposites of each other.
However, if we do not integrate out ψ2, we obtain

i _ψ0 ¼ ðinteraction terms with ψ2Þ þ Ṽeffðψ0Þ: ð5:19Þ

We found that the effective potential Ṽeff is equivalent to
Eq. (A2) when we take into account the difference of the
normalization of ψ . We expect that the form of the equation
of motion can be factorized into a combination of ψ0 and
ψ2, and then the resulting effective potential is given by the
same form as Ṽeff and given by Eq. (A2). This is consistent
with the fact that ψ2, which is a fast oscillating mode from
the standpoint of NGK, is a nonrelativistic mode from the
standpoint of MTY.11

B. Method proposed by Braaten,
Mohapatra, and Zhang

Here we explain the method proposed by BMZ in
Ref. [28,41].
They first write down the effective Lagrangian

Leff ¼
i
2
ð _ψψ� − ψ _ψ�Þ − 1

2mϕ
∇ψ� · ∇ψ

−
X∞
n¼2

λ02n
ðn!Þ2

�
ψ�ψ
2mϕ

�
n
: ð5:20Þ

The effective coupling constants λ02n are determined by
the following procedure. First, they calculate the scatter-
ing amplitudes which have only nonrelativistic particles
in the external lines by using the original relativistic
Lagrangian and the effective Lagrangian. Then they
compare the results and determine λ02n so that the results
are consistent. Note that the vertex factor in the EFT is
given by λ02n=2

n. In addition, there should be an addi-
tional factor

ffiffiffi
2

p
m for the diagram with m external legs in

the EFT to compare the amplitude with the one calcu-
lated by the original theory.
It is important that the contribution to the amplitude from

the nonrelativistic internal line in the EFT has a different
meaning from the one calculated in the original theory. This
is because in the nonrelativistic EFT the denominator of the
propagator is linear in the energy, resulting in propagation
which is only forward in time. The resulting EFT is
therefore equivalent to the one calculated in Ref. [27]. In
fact, we have checked that the effective potential calculated
in Ref. [41] [i.e. Eq. (5.18)] is consistent with the one

calculated in Ref. [27] at least for the coefficients of λ24,
λ4λ6, and λ26.

C. Consistency check

Here we check the consistency of EFTs: [10] (MTY) and
[27,28,41] (BMZ-NGK). Since each EFT defines the
dominant nonrelativistic part in a different way, we should
be careful about how to compare different EFTs. One way
may be to compare some physical quantities predicted by
EFTs which are truncated at the same ϵn order. For
example, EFT can predict the frequency-dependent total
energy of oscillons EðωÞ, which is an important physical
quantity. We expect the difference of the physical quantities
to be Oðϵnþ1Þ.
Below, we will show such a consistency check of the

effective theory at Oðϵ3VÞ in [10] (MTY) and [27,28,41]
(BMZ-NGK). We consider a simple setup where there is
only the quartic coupling and no spatial dependence for
simplicity. The Lagrangian and equation of motion are then
given by

−L ¼ 1

2
ϕð∂2

t þm2
ϕÞϕþ λ4

4!
ϕ4; ð5:21Þ

ϕ̈þm2
ϕϕþ λ4

3!
ϕ3 ¼ 0; ð5:22Þ

where the dot denotes derivative with respect to time. If the
amplitude of ϕ is given by a ×mϕ with a being some
dimensionless number, the frequency of oscillation ω can
be written as

ðω=mϕÞ ¼
π

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðλ4=3!Þa2

p
Kðk2Þ ; ð5:23Þ

k2 ¼ ðλ4=3!Þa2
2ð1þ ðλ4=3!Þa2Þ

; ð5:24Þ

where Kðk2Þ is elliptic integral of the first kind and
given by

Kðk2Þ ¼ π

2

X∞
n¼0

�ð2n − 1Þ!!
ð2nÞ!!

�
2

k2n: ð5:25Þ

Note that in the limit λ4 → 0, we recover ω=mϕ ¼ 1.
For this system, we can use each EFT to estimate ω. The

procedure is as follows. First, we fix the amplitude of the
dominant mode (ψ1 in MTYand ψ0 in BMZ-NGK) to some
constant value. Then, by using the equations of motion
derived from each EFT, we can estimate ω. On the other
hand, we can also estimate the amplitude a which is
modified by fast oscillating modes. Then, we can use
the frequency formula above Eq. (5.23) to estimate ω. If ω
derived from an EFT and the one from the frequency
formula are the same, the EFT can be regarded as a
consistent one.

11As this paper was being finalized, an update to [27] appeared
which contained a discussion of some of these issues, and where
the authors performed a comparison of these methods as well.
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Below, we estimate ω up to third order in the λ4 expansion
by using formula Eq. (5.23) and EFT in MTY and BMZ-
NGK. We will see that both EFTs can reproduce the correct
result at least to third order in λ4. This means that if we make
a prediction of amplitude dependent frequency ωðaÞ by
using both EFTs at ϵ3, the difference appears at ϵ4. This fact
supports the consistency of both EFTs.

1. MTY

We fix the amplitude of the nonrelativistic field to be
jψ1j=mϕ ¼ 1 in order to set a ¼ 1þ Oðλ4Þ. This choice is
just for representational simplicity. For any value of jψ1j,
we can do the same procedure and see consistency.
At the order of Oðλ24Þ, there exist the following fast

oscillating modes:

ϕ − ½ψ1e−iωt þ H:c:�
mϕ

¼
�ðλ4=3!Þ

32

���� ψ1

mϕ

����3 − 9ðλ4=3!Þ
128

ððω=mϕÞ − 1Þ
���� ψ1

mϕ

����3 þ 3ðλ4=3!Þ2
512

���� ψ1

mϕ

����5
�

× cosð3ωtÞ þ ðλ4=3!Þ2
1024

���� ψ1

mϕ

����5 cosð5ωtÞ þ Oðλ34Þ: ð5:26Þ

As a result, when we evaluate the expression at jψ1=mϕj ¼ 1, the total amplitude is shifted as

a ¼ 1þ ðλ4=3!Þ
32

−
9ðλ4=3!Þ
128

ððω=mϕÞ − 1Þ þ 7ðλ4=3!Þ2
512

þ Oðλ34Þ: ð5:27Þ

Then, the frequency formula Eq. (5.23) gives

ω=mϕ ¼ 1þ 3

8
ðλ4=3!Þ −

15

256
ðλ4=3!Þ2 þ

123

8192
ðλ4=3!Þ3 þ Oðλ44Þ: ð5:28Þ

On the other hand, our EFT gives

2ðω=mϕ − 1Þ þ ðω=mϕ − 1Þ2 ¼ 3ðλ4=3!Þ
4

���� ψ1

mϕ

����2 þ 3ðλ4=3!Þ2
128

���� ψ1

mϕ

����4

−
27ðλ4=3!Þ2

512
ððω=mϕÞ − 1Þ

���� ψ1

mϕ

����4 þ 3ðλ4=3!Þ3
512

���� ψ1

mϕ

����6 þ Oðλ44Þ; ð5:29Þ

from Eq. (B11). Note here that the term proportional to
(ω=mϕ − 1) comes from the interaction at ϵ2Vϵt. This is
exactly the same term pointed out in Ref. [28]. We will also
clarify this point in Sec. V C 3. One may readily solve this
equation at jψ1=mϕj ¼ 1 to give

ω=mϕ ¼ 1þ 3

8
ðλ4=3!Þ −

15

256
ðλ4=3!Þ2

þ 123

8192
ðλ4=3!Þ3 þ Oðλ44Þ; ð5:30Þ

which is consistent with the exact result given in Eq. (5.28).

2. BMZ-NGK

We fix jψ0j=m3=2
ϕ ¼ 1=

ffiffiffi
2

p
in order to set a ¼ 1þ OðλÞ.

As before, this choice is just for representational simplicity.
At Oðλ24Þ, there are ν ¼ −4;−2; 2; 4; 6 modes in ψ (note
that some of these modes are mixed with the nonrelativistic
mode in MTY sense). Taking their contributions into
account, the total amplitude becomes

a ¼ 1 −
5ðλ4=3!Þ

32
þ 3ðλ4=3!Þ

128
ððω=mϕÞ − 1Þ

þ 91ðλ4=3!Þ2
1024

þ Oðλ34Þ: ð5:31Þ

Then, the frequency formula Eq. (5.23) gives

ω=mϕ ¼ 1þ 3

8
ðλ4=3!Þ −

51

256
ðλ4=3!Þ2

þ 1419

8192
ðλ4=3!Þ3 þ Oðλ44Þ: ð5:32Þ

On the other hand, in this EFT, a higher-order version of
Eq. (5.18) leads to

ðω=mϕ − 1Þ ¼ 3ðλ4=3!Þ
8

−
51ðλ4=3!Þ2

256
þ 81ðλ4=3!Þ2

1024

× ðω=mϕ − 1Þ þ 147ðλ4=3!Þ3
1024

þ Oðλ44Þ:
ð5:33Þ

Now one can solve this equation easily
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ω=mϕ ¼ 1þ 3

8
ðλ4=3!Þ −

51

256
ðλ4=3!Þ2

þ 1419

8192
ðλ4=3!Þ3 þ Oðλ44Þ; ð5:34Þ

which is consistent with the exact result given in Eq. (5.32).

3. On interaction with time derivative

In Ref. [28], they argued that there is an error in MTY
[10], namely there is a missing term with a time derivative.
However, as we have seen in Sec. V C, both EFTs give the
same result, which suggests their claim is incorrect. In this
section, we clarify that our EFT contains the required term.
We explicitly show that the interaction with a time
derivative arises if one would like to match the EFT with
scatterings of NR free particles as done in Ref. [28].
First, we illustrate how to derive the interaction term

proportional to (ω −mϕ) in the case of the stationary ψ1 in
Sec. II B. Let us start from Eq. (2.20). Thanks to ∂tψ1 ¼ 0,
one finds

−
Z
x

λ24
ð3!Þ2 ψ

3
1

1

9ω2 −m2
ϕ þ ∇2 þ iϵ

ψ†
1
3

¼ −
Z
x

λ24
8ð3!Þ2

�
1 −

9ðω=mϕ − 1Þ
4

� jψ1j6
m2

ϕ

þ � � � :

ð5:35Þ

The second term represents the correction at ϵ2Vϵt which
gives the term proportional to (ω −mϕ) in Eq. (5.29).
Now let us confirm that the same term can be reproduced

even if we take ω → mϕ but keep ∂tψ1 ≠ 0 as done in
Ref. [10]. This limit is useful if one would like to compute
the scattering amplitude of free NR particles rather than to
obtain the stationary solution. One easily gets

−
Z
x

λ24
ð3!Þ2 ψ

†
1
3 1

8m2
ϕ þ 6imϕ∂t þ ∇2 − ∂2

t þ iϵ
ψ3
1

¼ −
Z
x

λ24jψ1j4
8ð3!Þ2m2

ϕ

�
jψ1j2 −

9

8

ψ†
1i∂

↔

tψ1

mϕ

�
þ � � � : ð5:36Þ

The second term is nothing but the one pointed out in
Ref. [28], which is clearly included in our EFT. We can also
see that this expression is equivalent to Eq. (5.35) if one
replaces ψ1ðt; xÞ with e−iðω−mϕÞtψ1ðxÞ.

VI. CONCLUSION

We have provided a method to construct a classical
NREFT in a scalar field theory including the effect of
gravity. There are several advantages in our EFT:

(i) the calculation is easy and straightforward by using
Feynman diagrams;

(ii) the reason of (approximate) stability is clear;

(iii) it is easy to calculate the background configuration;
(iv) it is straightforward to include the effect of gravity

(at least at leading order);
(v) the lifetime can be calculated from the imaginary

part of the Lagrangian in the NREFT.
We have clarified an expansion scheme for gravitational
corrections as well as relativistic corrections. Since the
gravitational potential has a radial dependence, we need to
solve coupled differential equations to determine the
oscillon profile.
Since the number of particles is approximately con-

served in the NREFT, the oscillon can be understood as a
projection of a Q-ball onto the real axis. Then its (quasi)
stability can be understood by the approximate con-
servation of the number of particles in the NREFT. If
the gradient energy hits the pole of the propagator of
the relativistic field, it gives imaginary terms in the
Lagrangian of the EFT. This leads to the emission of
relativistic particles and hence the decay of the oscillon,
which is easily calculated in the MTY method in spite of
the fact that it is not a perturbative effect. We have
checked that the lifetime is exponentially suppressed with
a large exponent which is inversely proportional to a
small expansion parameter.
We have also discussed stability against small perturba-

tions and see that the Q-ball analogy works well. As a
result, we have found even with gravitational interaction,
a necessary and sufficient condition for the stability against
small perturbations is simply given by dQ=dω < 0. This
extends previous work on stability of nongravitating
Q-balls. Interestingly (and nontrivially), the stability cri-
terion is the same in these two cases.
As an example, we have considered an axionlike

potential and found oscillon solutions taking into account
the gravity effect. Our results are consistent with the ones
in the literature, but can be extended to the regime where
relativistic corrections become relevant. We have found
that a long-lived oscillon solution is absent in the limit
where the gravity effect vanishes. The lifetime of axion
stars can be estimated from these results and we have
found that it is much shorter than the present age of the
universe for the dense axion star but is much longer for
the dilute axion star (in accordance with the previous
results of [20]). We have concluded that dilute axion stars
survive until the present day for realistic parameters
of axion.
We also discuss the consistency of our EFT with the

ones proposed by BMZ and NGK in Refs. [27,28,41]. As
they have shown in those papers, we have checked that
all of the EFTs are consistent, though depending on the
application, different approaches have different advan-
tages. In particular, one of the relatively low-frequency
modes is integrated out in the EFTs of BMZ and NGK,
but is not integrated out in our EFT; nonetheless, we
emphasize the equivalence of the EFTs is maintained for
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physical observables calculated at a given order, as in the
comparison of Sec. V C.
We have pointed out that, in a system where gravity

contributes at leading order in the equation of motion, it is
not consistent to account for relativistic corrections without
taking into account corrections to the gravitational inter-
action as well. This is the situation in a typical dilute boson
star, where gravity is one of the dominant forces determin-
ing the bound state configuration. The EFT we have
presented here, as well as that of NGK [27] and BMZ
[28], does not calculate corrections to the gravitational
interaction. Interestingly, these corrections can give rise to
new interactions and potentially new decay diagrams
mediated by gravity and self-interactions. We leave a full
analysis of this topic for a future work.
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APPENDIX A: CORRECTIONS FOR
ϕ6 THEORY

Here, we show corrections up to Oðϵ3Þ for a ϕ6 theory,
where the relativistic potential is given by

V intðϕ2Þ ¼ λ4
4!
ϕ4 þ λ6

6!m2
ϕ

ϕ6: ðA1Þ

The effective potential is

Veffðjψ1jÞjϵ2V ¼ λ4
ð2!Þ2 jψ1j4 þ

λ6 þ 1=8λ24
ð3!Þ2m2

ϕ

jψ1j6 þ
λ4λ6

ð4!Þ2m4
ϕ

jψ1j8 þ
19

6

λ26
ð5!Þ2m6

ϕ

jψ1j10; ðA2Þ

up to ϵ2V and

Veffðjψ1jÞjϵ3V ¼ 1

4

λ34
ð4!Þ2m4

ϕ

jψ1j8 þ
55

24

λ24λ6
ð5!Þ2m6

ϕ

jψ1j10 þ
241

16

λ4λ
2
6

ð6!Þ2m8
ϕ

jψ1j12 þ
6027

32

λ36
ð7!Þ2m10

ϕ

jψ1j14; ðA3Þ

up to ϵ3V .
The corrections involving ϵt or ϵx start from ϵ2Vϵt or ϵ

2
Vϵt:

Veff jϵ2Vϵt;ϵ2Vϵx ¼
1

8

λ24
ð3!Þ2m2

ϕ

ψ†3
1 D3ψ

3
1 þ

1

2

λ4λ6
ð4!Þ2m4

ϕ

ðψ†3
1 D3ðψ†

1ψ
4
1Þ þ ψ†4

1 ψ1D3ψ
3
1Þ

þ 1

24

λ26
ð5!Þ2m6

ϕ

ðψ†5
1 D5ψ

5
1 þ 75ψ†4

1 ψ1D3ðψ†
1ψ

4
1ÞÞ; ðA4Þ

where Dn is defined by Eq. (2.25).

APPENDIX B: CALCULATIONS FOR HIGHER ORDER CORRECTIONS

1. Construction up to ϵ3 order

Here, as an illustration, we show how to construct the effective Lagrangian by adopting a concrete example where the
potential is given by λ4ϕ

4=4! and there is no gravitational interaction. We assume δt ∼ δx ∼ δV and will construct the
effective Lagrangian up to ϵ3 order.

A. Diagrammatic derivation

First we list all the interaction vertices after the decomposition given in Eq. (2.2). The interactions between the NR mode
and relativistic mode are given by
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ðB1Þ

and their conjugates. There also exists a self interaction for the relativistic mode,

ðB2Þ

See also Eqs. (2.16) and (2.17).
Then, to get the NREFT, all one has to do is to integrate out the relativistic mode δϕ. Throughout this paper, we focus on

the classicalNREFT, and hence all the diagrams that will be integrated out must be tree diagrams. The leading order term in
the coupling expansion is obtained from

ðB3Þ

where we dropped terms of higher order than ϵ3 and also the imaginary part in the second line. The next to leading order
term involves three vertices as depicted below

ðB4Þ
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where again we dropped terms of higher order than ϵ3 and
also the imaginary part. To sum up, the effective potential
up to ϵ3 is given by

Vðϵ3Þ
eff ¼ λ4

4
jψ1j4 þ

λ24
8ð3!Þ2 jψ1j6 þ

3λ34
32ð3!Þ3m4

ϕ

jψ1j8

−
λ24

8ð3!Þ2m2
ϕ

�
9

4
jψ1j4ψ†

1

�
ω

mϕ
− 1þ i∂↔t

2mϕ

�
ψ1

þ ψ†
1
3 ∇2

8m2
ϕ

ψ3
1

�
: ðB5Þ

B. Derivation from EoM

Here we present another way to derive the NREFTwhich
is essentially equivalent but still useful. Starting from the
equation of motion (EoM), we solve δϕ order by order in
terms of ϵV . In this case, the original EOM is given by

ð□þm2
ϕÞϕþ λ4

3!
ϕ3 ¼ 0: ðB6Þ

We decompose ϕ as

ϕðt; xÞ ¼
X
n>0

e−inωtψnðt; xÞ þ H:c:; ðB7Þ

and assume ψ1 dominates ϕ. Then, at ϵV order, we have

ð□þm2
ϕÞδϕðϵ1VÞ ¼ −

ϵV
3!

λ4ψ
3
1e

−3iωt þ H:c:; ðB8Þ

and the resulting solution is

ψ
ðϵ1V Þ
3 ¼ ϵVλ4

3! · 8m2
ϕ

�
1 − ϵt

3ð3ðω −mϕÞ þ i∂tÞ
4mϕ

−
ϵx∇2

8m2
ϕ

�
ψ3
1

þ Oðϵ3Þ: ðB9Þ

By substituting ϕ ¼ ½e−iωtψ1 þ e−3iωtψ
ðϵ1VÞ
3 þ H:c:� into

EOM, we obtain the EOM at ϵ2V order. In this order, only

ψ
ðϵ2V Þ
3 contributes to effective action at Oðϵ3Þ. We have

ψ
ðϵ2V Þ
3 ¼ ϵVλ4

8m2
ϕ

jψ1j2ψ ðϵ1V Þ
3

¼ ϵ2Vλ
2
4

3! · 82m4
ϕ

jψ1j2ψ3
1 þ Oðϵ3Þ: ðB10Þ

Then, by substituting ϕ ¼ ½e−iωtψ1 þ e−3iωtðψ ðϵVÞ
3 þ

ψ
ðϵ2V Þ
3 Þ þ H:c:� into EOM, we obtain the effective EOM

for ψ ≡ e−iωtψ1

ð□þm2
ϕÞψ

¼ −
ϵVλ4
2

jψ j2ψ −
ϵ2Vλ

2
4

96m2
ϕ

jψ j4ψ −
ϵ3Vλ

3
4

576m4
ϕ

jψ j6ψ

þ ϵ2Vλ
2
4

96m2
ϕ

�
9ϵt
4mϕ

jψ j4ði∂t −mϕÞψ þ ψ†2 ϵx∇
2

8m2
ϕ

ψ3

�
:

ðB11Þ
Then, we can obtain the effective action at Oðϵ3Þ order:

Leff ¼ j∂ψ j2 −m2
ϕjψ j2 − Vðϵ3Þ

eff ; ðB12Þ

Vðϵ3Þ
eff ¼ λ4

4
jψ j4 þ λ24

288m2
ϕ

jψ j6 þ λ34
2304m4

ϕ

jψ j8

−
λ24

96m2
ϕ

�
3

4mϕ
jψ j4ψ†ði∂t −mϕÞψ þ ψ†3 ∇2

24m2
ϕ

ψ3

�
:

ðB13Þ
2. The consistency between methods

There are three methods in the literature to derive
an EFT:

(i) bottom-up (or e.o.m.) method,
(ii) top-down (or matching) method,
(iii) integrating-out (I.o.) method (the main method in

this paper).
The bottom-up method was used by NGK and the top-
down method was used by BMZ to calculate their EFTs. In
the main part of this paper, we use the integrating-out
method to calculate our EFT. Our EFT looks different from
the one used by NGK and BMZ, but the equivalence among
these EFTs is discussed in Sec. V. We can calculate each
EFT by using all of the three methods. In this subsection,
we discuss the equivalence among the methods.
Above in this section, we have seen the bottom-up and

Integrating-out method give the same effective theory. Now
we clarify procedures and consistencies of top-down and
integrating-out methods.
For a representational purpose, we consider the follow-

ing type of Lagrangian:

L ¼ LquadðχÞ þLquadðϕiÞ − V intðχ;ϕiÞ; ðB14Þ

where χ represents “light” degree of freedom and ϕiði ¼
1; 2;…Þ denote “heavy” ones which are not dynamical in
the resulting EFT. LquadðχÞ and LquadðϕiÞ indicate quad-
ratic parts (or free parts) of Lagrangian and V int denotes the
interaction part.

a. Top-down method

In the top-down method, we define the effective potential
at low energy:

Vðtop-downÞ
eff ðχÞ ¼

X
n>1

c2nχ2n: ðB15Þ
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Then, we have two actions at high energy and low energy
(EFT):

SðhighÞ ¼ S ¼
Z

d4xLquadðχÞ þLquadðϕiÞ − V intðχ;ϕiÞ;

ðB16Þ

SðlowÞEFT ¼
Z

d4xLquadðχÞ − Vðtop-downÞ
eff ðχÞ: ðB17Þ

For both actions, we can define generating functions:

WðhighÞ½J�≡ ln
Z Y

i

DϕiDχ expð−iSðhighÞ − iJ · χÞ;

ðB18Þ

WðlowÞ½J�≡ ln
Z

Dχ expð−iSðlowÞEFT − iJ · χÞ: ðB19Þ

The coefficients c2n in Vðtop-downÞ
eff are determined by the

following matching conditions:

∂2nWðlowÞ½J�
∂J2n

����
J¼0

¼ ∂2nWðhighÞ½J�
∂J2n

����
J¼0

: ðB20Þ

b. Integrating-out method

In integrating out method, we just integrate out heavy
modes. In the present case, we have the following effective
action at low energy (EFT):

−iSðI:o:ÞEFT ðχÞ ¼ ln

R Q
iDϕi expð−iSðhighÞÞR Q

iDϕi exp ð−i
R
d4xLquadðϕiÞÞ

;

ðB21Þ

where the denominator accounts for the normalization.
Next, let us consider the consistency with the top-down

method. We can estimate the generating function for SðI:o:ÞEFT :

WðI:o:Þ½J�≡ ln
Z

Dχ expð−iSðI:o:ÞEFT − iJ · χÞ

¼ ln
Z

DϕDχ expð−iSðhighÞ − iJ · χ þ constÞ:

ðB22Þ

We can see the matching condition

∂2nWðI:o:Þ½J�
∂J2n

����
J¼0

¼ ∂2nWðhighÞ½J�
∂J2n

����
J¼0

ðB23Þ

is automatically satisfied, which indicates the equivalence

of SðI:o:ÞEFT and SðlowÞEFT .

APPENDIX C: THE STABILITY CONDITION
AGAINST SMALL PERTURBATIONS

Here, we derive the stability condition against small
perturbations when gravitational interactions are included.
We fundamentally follow stability discussions done in
[35,36], although we extend their analysis by including
gravitational interactions.
The Lagrangian of the system can be written as12

L ¼ j _ψ j2 − ω2jψ j2 − S3ðωÞ ðC1Þ

≡ K − S3ðωÞ; ðC2Þ

S3ðωÞ≡
Z
x
j∇ψ j2 þ ðm2

ϕð1 − 2ΨÞ − ω2Þjψ j2

þ Veffðjψ j2Þ þ
ð∇ΨÞ2
8πG

; ðC3Þ

where K denotes a kinetic term and Ψ is a gravitational
potential. The dot denotes derivative with respect to time.
Suppose that the Q-ball solution is given by e−iωtσðrÞ= ffiffiffi

2
p

where σðrÞ is a real function. S3ðωÞ is stationarized by the
Q-ball solution σðrÞ= ffiffiffi

2
p

. In second order in fluctuations,
we can find eigenvectors and eigenvalues:

S″3

�
δψa

δΨa

�
¼ λa

�
δψa

δΨa

�
: ðC4Þ

We normalize them as follows:

Z
x

�
δψ†

a δΨ†
a

��
δψb

δΨb

�
¼ δab: ðC5Þ

Note that real and imaginary parts of δψ are separated.
We decompose functional space into real and imaginary
directions as δψ ¼ δψR þ iδψ I . We know that S3ðωÞ has
one negative mode in real direction. Below, we assume
S3ðωÞ has only one negative mode, which is ensured if the
Q-ball solution is a solution of the equation of motion with
the minimal action S3. In addition, there are four zero
modes for S3″: three of them are related to spatial shift
which we denote δψS;kðk ¼ 1; 2; 3Þ and one of them
corresponds to a Uð1Þ shift which we denote δψθ. δψS;k
are a real function and δψθ is a purely imaginary function.
We remove such zero modes from δψ space and treat them
in a different way.
Since the real direction has one negative mode, the

stability is non trivial. We concentrate on eigenvectors with
a real δψa. As we will see, the negative mode can be shifted
to a positive mode due to the mixing with the zero mode.

12We restrict ourselves to the effective theory at leading order
in ϵg;x;t because in that case the derivative parts in the effective
action remain in canonical forms.
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We consider fluctuations in the real direction and a zero
mode13:

ψ ¼ 1ffiffiffi
2

p e−iωt−iθðtÞðσðrÞ þ δψRðxÞÞ; ðC6Þ

where θðtÞ denotes some real function, which is a zero
mode in S3.
What is nontrivial here is the mixing between the zero

mode θðtÞ and the real direction in K. We can solve the
equation of motion for _θ and the resulting kinetic term
becomes

K ¼ 1

2
_δψR

2 −
2ω2

I

�Z
x
δψRσ

�
2

; ðC7Þ

I ≡
Z
x
σ2: ðC8Þ

We expand the vector ðσðrÞ; 0Þt in terms of eigenvectors:

�
σðrÞ
0

�
¼
X
a

σa

�
δψa

δΨa

�
: ðC9Þ

Here δψa are real functions in eigenmodes. We define
matrix B and C as

Bab ≡
Z
x
δψaδψb; ðC10Þ

Cab ≡
Z
x
δΨaδΨb; ðC11Þ

Bab þ Cab ¼ Îab: ðC12Þ

For ðσðrÞ; 0Þt, we expect

σa ¼ Babσb: ðC13Þ

We expand δψ as follows:

�
δψR

δΨ

�
¼
X
a

caðtÞ
�
δψa

δΨa

�
: ðC14Þ

For caðtÞ, the Lagrangian can be written as

L ¼ 1

2
_cðtÞtB _cðtÞ − 2ω2

I
V2 −

X
a

λacaðtÞ2
2

; ðC15Þ

V ≡
Z
x
δψRσ ¼

X
a;b

σaBabcbðtÞ ¼
X
a

σacaðtÞ: ðC16Þ

Since Bab is a positive matrix, the minimal eigenvalue of
the following matrix

Mab ≡ λaδab þ
4ω2

I
σtσ; ðC18Þ

determines the stability. If the minimal eigenvalue is
positive, we expect that Q-ball configuration is stable
against small perturbations. On the contrary, if the minimal
eigenvalue is negative, Q-ball configuration becomes
unstable against small perturbations. We denote the eigen-
values ofM by fΛag, and require that (Λ1 < Λ2 < � � �) and
also (λ1 < λ2 < � � �) are different.14 Then, we have

det jM − zÎj ∝ GðzÞ≡ 1þ 4ω2

I

X
a

σaσa
λa − z

: ðC19Þ

Here, we use the relation

det jÎ þ uutj ¼ 1þ utu; ðC20Þ

with u being some vector. Note that

dG
dz

> 0; lim
z→λj�0

GðzÞ ¼∓ ∞: ðC21Þ

These relations ensure that there is only one Λa between λa
and λaþ1. Note that λa has only one negative mode which
we denote λ1. The condition Λ1 > 0 is now equivalent to

Gð0Þ < 0: ðC22Þ

As is in [35,36], we can connect Gð0Þ and dQ=dω and
show that the stability condition is given by

ω

Q
dQ
dω

< 0: ðC23Þ

Below, we derive Gð0Þ ¼ ω
Q

dQ
dω.

First, we note that σðωÞ is a solution to the equation of
motion derived by S3ðωÞ. Taking the derivative of the
equations of motion for ψ andΨ with respect to ω, we have

S″3

 ∂σ
∂ω
∂Ψ
∂ω

!
¼
�
2ωσ

0

�
: ðC24Þ

Multiplying
P

a σa on 1
λa
S″3ðδψaδΨaÞt ¼ ðδψaδΨaÞt, we

have

13δψS;k do not contribute to this analysis (see [35,36]).

14One may worry about the degeneracy of eigenmodes.
However, if we deform the potential infinitesimally, such a
degeneracy is broken in general. The physical results are
expected to be unaffected by such an infinitesimal deformation.
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S″3
X
a

σa
λa

�
δψa

δΨa

�
¼
�
σ

0

�
: ðC25Þ

Since δψa and ∂σ=∂ω do not contain the zero mode of S3,
we can multiply the inverse matrix of S3 in (C24) and
(C25). Then, we have

2ω
X
a

σa
λa

δψa ¼
∂σ
∂ω : ðC26Þ

Multiplying
R
x

P
b σbδψb, we obtain

2ω
X
a

σaσa
λa

¼
Z
x
σ
∂σ
∂ω ; ðC27Þ

where we use (C13). On the other hand, by differentiating
Q ¼ ω

R
x σ

2 with respect to ω, we have

ω

Q
∂Q
∂ω ¼ 1þ 2ω

I

Z
σ
∂σ
∂ω : ðC28Þ

Taken together, we have

ω

Q
∂Q
∂ω ¼ 1þ 4ω2

I

X
a

σaσa
λa

¼ Gð0Þ: ðC29Þ

Therefore, we conclude that stability is ensured when
Eq. (C23) is satisfied.
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