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We propose a new approach to solve the problem of the prime factorization, formulating the problem as a
ground state searching problem of statistical mechanics Hamiltonian. This formulation is expected to give a new
insight to this problem. Especially in the context of computational complexity, one would expect to yield the
information which leads to determination of the typical case computational complexity of the factorizing process.
With this perspective, first we perform simulation with replica exchange Monte Carlo method. We investigated the
first passage time that the correct form of prime factorization is found and observed the behavior which seems to
indicate exponential computational hardness. As a secondary purpose, we also expected that this method may
become a new efficient algorithm to solve the factorization problem. But for now, our method seems to be not
efficient comparing to the existing method; number field sieve.
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1. Introduction

Prime factorization problem is one of relatively few problems called NP-intermediate. While no polynomial
algorithm has been found, this problem is not considered to be NP-complete [1] because of following two facts;

(i) The number field sieve method is already known as an relatively efficient algorithm that achieves Oðexpðn1=2ÞÞ
computational time, where n is the logarithm of the composite number which is to be factorized [2].

(ii) As an algorithm for quantum computation, Shor’s algorithm is already known to be able to solve in polynomial
time [3]. This fact is one of the reasons for that the prime factorization problem is expected to be not NP problem.

In this proceeding, we propose a statistical mechanical formulation of this problem and numerical analysis of them with
Monte Carlo algorithm.

Some investigations in the field between statistical mechanics and computational science have comprehensively
explained the threshold behavior of probability of the existence of solutions and the intractability of probabilistic search
algorithm near the threshold, based on the phase transition picture of the structure of the space of solutions [4–6]. At
first it is discussed on the k-SAT problem. In these researches, the correspondence of the difference of the
computational complexity class between k ¼ 2 and k � 3 cases to the difference of the behavior of the phase transition
is also included. Similar approaches are applied to other elemental NP-complete computational problems such as the
random vertex covering problem [7], and random graph coloring problem [8]. And the understanding of the
computational hardness in terms of the characteristics of energy landscape and the structure of the solution space have
been gradually established [5, 9, 10]. In the same manner as them, we expect to characterize the difficulty of prime
factorization problem, on the search algorithm, by investigating the energy landscape and the structure of low energy
states in the state space.

In addition to the above aspect, there are also practical applications of statistical mechanics. A classical example is
simulated annealing [11], which is widely used. In some cases, this algorithm has been utilized not only to find the
minimum value of cost function itself, but also to find the structure that gives the minima [12]. And as an another
example in practical success, the following fact was recognized in the statistical mechanical analysis of NP-complete
problems introduced above; even in the groups of problems which are classified as NP-complete, there are several
single instances which can be solved in polynomial time. And, based on the knowledge of the structure of the solution
space, an algorithm which works effectively even near the threshold is also proposed [13], though not able to entirely
overcome NP-complete problems. Therefore, also in practical point of view, it attracts our attention to studying the
prime factorization problem with the form that is tractable by probabilistic algorithms which is now conventionally
used in the field of statistical mechanics and verifying whether it can be solved in polynomial time with them.
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2. Models and Methods

2.1 Guidelines for formulation

Suppose that an integer No is given. To obtain the prime factorization of No, we will solve an optimization problem
by Markov chain Monte Carlo (MCMC) simulation with the cost function in the phase space. First, when an integer No

is located in 2n�1 < No � 2n, the number of its prime divisors is bounded by n. In other words, a number n is defined
for each No as

n ¼ dlog2 Noe; ð2:1Þ

where dxe is the minimal integer which is larger than x. Let fdig be the state in the phase space composed of the set of
integers di. We introduce the two types of formulation in next §2.2 and §2.3. The maximum number of i is taken as
i ¼ n and i ¼ 2 in §2.2 and §2.3 respectively.

Second, the cost function should be designed to favor states in which the elements of fdig are divisors of No and to
take its lowest value when the entire set of fdig is the prime factorization of No. Using the information of the residues
we can design such cost function. By definition of the residue, each modðNo; diÞ, which is obtained by dividing No by
each di, takes the value 0 only in the case that di is a divisor of No, and becomes positive in the other case. Instead of
modðNo; diÞ itself, we can also adopt following function of di and modðNo; diÞ,

�i ¼ min
�
modðNo; diÞ; di �modðNo; diÞ

�
; ð2:2Þ

without loss of such property.
The order of the residue modðNo; diÞ or �i is up to that of OðexpðnÞÞ. To formulate a proper statistical mechanical

model, we would like to keep the extensiveness of the cost function; Hamiltonian, with respect to n. The reason why we
mention about extensiveness is refered in the §2.4. By taking logarithm [see Eq. (2.5) below] or using coefficients of
p-adic expansion �i [see Eqs. (2.9) and (2.10) below], we can keep such extensiveness. Especially, with the case of
using the p-adic expansion coefficient, the extensiveness is naturally guaranteed and its value always becomes integer.
Thus it is particularly convenient in order to calculate the statistical mechanical quantities.

2.2 Model Hamiltonian

The cost function is mainly composed of two contributions H1 and H2. H1 comes from the residue terms and H2 does
from the difference of the product

Q
i di from No. When representing the prime factorization form by the entire set of di

we set i ¼ n and prepare n integers fdig ¼ fd1; . . . ; dng. Each di takes the value di 2 f1; . . . ; 2ng.
Thus the detail of the resulting Hamiltonian HwholeðfdigÞ is shown as,

Hwholeðfdig j NoÞ ¼ H1 þ H2 � �M; ð� � 0Þ ð2:3Þ
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Fig. 1. The profile of logð1þ �Þ introduced in Eq. (2.4) andPn
j¼1ð�̂ð�; jÞÞ in Eq. (2.7). Both are in the case of

No ¼ 235 ¼ 5� 47 < 28. It is indicated that their contri-
bution for each landscape is rough and bounded by 8.
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Fig. 2. The histogram of the result of the simulation of Hwhole

with replica exchange Monte Carlo method in the case of
No ¼ 23057583. The value of � is taken to be 0 in this
result. The color red, green, blue, and purple represent the
region where the number of hit h is more than 300, 1000,
3000, and 10000 times respectively. At sufficiently low
temperature, only the case which di is a divisor of No is
sampled.
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H1 ¼
Xn
i¼1

logð1þ �iÞ; ð2:4Þ

H2 ¼
1

n2
logNo �

Xn
i¼1

logðdiÞ

 !2

; ð2:5Þ

where M is the number of integers included in fdig which is larger than 1. H1 takes the value 0 when all di become any
divisors of No. This term works to each di locally. On the other hand, H2 takes the value 0 when the product of all di is
equal to No. This term works globally to prohibit the case that all di takes the value 1. In simulations with sufficiently
low temperature, only the states that the full set of fdig becomes the factorization of No are expected to realize [see
Fig. 2], because of the term H1 þ H2. And eventually the prime factorization is realized as the ground states of the
Hamiltonian (2.3).

We introduced the � term to treat No which can be decomposed to many prime numbers. But following in this paper,
we mainly treat No which is composed of only two prime numbers. Therefore � is set as 0 in the following of this paper.

2.3 Another model

To formulate the problem of prime factorization as ground state searching, there is some arbitrariness in designing of
Hamiltonian. In practice, it is also efficient to decompose No into two divisors recursively and apply the primality test.
In this procedure, the Hamiltonian of factorization of No into d1; d2 can be written as follows,

Helemðfdig j NoÞ ¼ H1 þ H2; ð2:6Þ

H1 ¼
Xn
j¼1

�̂ð�1; jÞ þ �̂ð�2; jÞ
� �

; ð2:7Þ

H2 ¼
Xn
k¼1

�̂ðjd1d2 � Noj; kÞ; ð2:8Þ

where the function �̂ð�; �Þ represents the coefficient of the p-adic expansions of the variables. Here, for an integer I, the
j-th coefficient of p-adic expansion �̂ðI; jÞ is defined as

I ¼
Xn
j¼1

�̂ðI; jÞpj�1; ð2:9Þ

and each resulting coefficient takes the value � which is in

� 2 f0; . . . ; p� 1g: ð2:10Þ

The ground states of this Hamiltonian does not become the prime factorization of No unless it is the composite number
of two prime numbers. But we can investigate the elemental process of the factorization with this Hamiltonian.

2.4 Searching with replica exchange Monte Carlo method

Replica exchange (or some other extended ensemble) Monte Carlo methods are applied to several optimization or
constraint satisfaction problems branching from spin glass, including NP-complete problems, and powerful tool for
estimating expectation values with less systematic errors, finding the optimal solution, computing entropy or free
energy, counting the number of solutions of these models. In this paper we apply this method to the Hamiltonians
formulated as Eqs. (2.3) and (2.6).

Changing di randomly with each Monte Carlo step, we search the prime factorization of No by optimizing the state
HwholeðfdigjNoÞ or HelemðfdigjNoÞ with certain condition. We have implemented the rule of the transitions in the phase
space by representing each di with p-adic expansion similar to Eqs. (2.9) and (2.10) in the cases of the cost function.
But in this case we adopted the following modulated form of the expansion,

di ¼ 1þ
Xn
j¼1

�̂ðdi � 1; jÞqj�1; ð2:11Þ

� 2 f0; . . . ; q� 1g; ð2:12Þ
so that each di does not take the value 0. We note q instead of p to avoid the confusion. Thus the phase space is divided-
and-conquered by Potts (Ising) like variables �. Transitions in the phase space are performed by shifting (or flipping)
the value of each �. For example, when we adopt q ¼ 2, the above two Hamiltonians Hwhole and Helem are described
with n2 and 2n degrees of freedom respectively.

In the potential energy landscape of Hwhole or Helem, like that of spin glass models, there are several local minima [see
Fig. 1]. Even with probabilistic sampling, in ordinary way, the random walker can easily become trapped in each
minima. To avoid these trap, it requires iterative heating and annealing of the system. Thus we perform simulations
with several temperature in parallel with exchanging [15] the correspondence of each walker and temperature. When a
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replica is in temperature T1, the microscopic state � is sampled with stational probability Pð�;T1Þ. With certain
condition of transition rate, we can keep the canonical stationary distribution in each temperature.

The keystone that enables us to achieve efficient sampling is the exchange between two replicas respectively
connected to temperatures which are adjacent each other. The exchange ratio of two adjacent replicas with energies EA

and EB is given by expfð�1 � �2ÞðEA � EBÞg. As long as the energy function is extensive to the system size N, it is
known that the number of replicas needed to keep sufficient exchange ration scales with N1=2 [15]. When we adopt the
non-extensive energy function H, for example H ¼ jNo � d1d2j, we will require significantly and inefficiently larger
increase of the number of replicas to keep sufficient exchange ratio. In statistical mechanical point of view, strictly
speaking, there are not necessarily a need to be provided extensiveness of the energy. In fact, the interesting property of
the long range spin glass models with power-law dependence of the energy on the system size are recently researched
[16, 17] and the numerical simulation with replica exchange Monte Carlo method for such systems are also performed
[18]. However, especially in the case of prime factorization problem, if we attempt to modelize the problem with the
way without interposing a complicated function (such as logarithm or p-adic coefficient), the energy function comes to
have exponential dependence on its system size as mentioned above.

3. Result

3.1 Behavior of computational cost

We numerically observed the first passage time ��rst, the Monte Carlo step that the walker of the MCMC simulation
visits the state of the correct factorization for the first time, and its dependence on the system size n both for Hwhole and
Helem. Various samples of No are generated by multiplying two prime numbers which are randomly choosed but
moderately close to each other.

First we start from the explanation of the results of the simulations of Hwhole. Figure 3 shows the dependence of ��rst
on no ¼ log2 No. Here the results are obtained with � ¼ 0. The green points shows the average over 10 independent

samples for each No. The average is taken as expðlog ��rstÞ and the dispersion exp
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log ��rst2 � ðlog ��rstÞ2
p �

indicates a

measure of the variation. Due to the large variation, it is difficult to distinguish between the exponential dependence
and power-law dependence with large exponent from these results. Even if power-law dependence was actually correct,
the exponent is estimated by numerical fitting as nearly 8. In the case of 3-SAT, in the parameter region which we
typically can find a solution in polynomial time, the computational time is nearly proportional to the system size [5].
With respect to that, such a large value in this problem is significantly large. At least it is thought to be not practically
small value for efficient computing.

Figures 4 and 5 show the results of the case of Helem. In this case we performed with two different manner of
conquering the phase space, q ¼ 2 (by Ising variables) and q ¼ 3 (by Potts variables), with the same No. Although
both cases have the same values of energy on every microscopic states indicated by fdig, the connectivity among each
state is different, because of the different conquering manners. The arrangement of local minima in the phase space is
dominated by the connectivity. Thus the system have different arrangements of local minima with different values
of q. In both cases the results are obtained by averaging over 10 sets of independent simulations for each No. These
results exhibit similar behavior to the case of Hwhole; they are also seen to exhibit exponential dependence on no and
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Fig. 3. The dependence of ��rst on no ¼ log2 No with the simulation of Hwhole with semilogarithmic plot. The red points represents
independent 10 samples for each no ¼ log2 No and the green points represents average over them. The error bar represents the
dispersion obtained from log ��rst of each simulation. It indicates a measure of variation. Trying the numerical fitting to this data
with assuming that it has the power law dependence, the exponent is estimated nearly 8.

54 NAKAJIMA



large (still larger) variation in each sample. And even with different arrangements of local minima, both q ¼ 2 and
q ¼ 3 cases exhibit not only qualitatively but also quantitatively similar behavior. This behavior suggests that low
energy local minima appear at statistically (in a single instance of No) similar density, with little dependence on
connectivities among macroscopic states. This property might be one of the characteristics of the prime factorization
problem.

4. Summary and Discussion

In this proceeding we have proposed statistical mechanical formulations of the problem of factorization of integers.
We set up two kinds of Hamiltonians and gave rough overviews of the size dependence of their computational cost for
optimization by replica exchange Monte Carlo method. Though the results are not yet sufficient to obtain quantitative
conclusion, we observed the behavior which is seemed to indicate that they require exponential computational cost.
However, it should be noted that several questions and issues still remain.

First, the roughly yielded results of the first passage time should be improved by extensive investigation. An accurate
determination of the probability distribution of the first passage times is left for future work. As the system size
dependence of the distribution directly reflects the computational complexity of this problem, it should be precisely
computed. In the above result about ��rst, the dispersion of log ��rst calculated from 10 independent samples is given as
a measure of the spread of the distribution function, assuming that their distribution is a Gaussian. But the tendency of
the variation in the figures indicates a possibility that the actual form of the distribution may not be Gaussian.

Second, it should be emphasized that the number field sieve method is already known as an relatively efficient
algorithm that achieves Oðexpðn1=2ÞÞ computational cost. Considering the fact, it is suggested that the formulation
in this proceeding has not yet reached the level of the maximum possible efficiency in the classical computer. In order
to use the above results as any evidence about the computational complexity class with classical probabilistic
algorithm, it is thought to be the most reasonable with the case that is confirmed with the most efficient algorithm. We
argue that it is still not excluded out the possibility that we can reach the most efficient level of computation amount by
the choice of the way of dividing-and-conquering the phase space, the transition rule, and the temperature points of
each replicas [19]. While, it is non-trivial whether we can introduce Markov chain and cost function into the algorithm
of the number field sieve method.

As an another subject of future works, we plan to investigate the static quantities of these statistical mechanical
models. Being trapped in local minima is one of the main cause of a large computational cost on NP-complete problem
with local search algorithm has deep relation to its complexity, as revealed with several previous researches [14].

In the simulations of this paper, it seemed that the random walker in the phase space had been trapped in several
isolated local minima which take the value 1 or 2 even in the case that No is composed of two prime numbers, when the
number of true ground states are order of Oð1Þ in the above Hamiltonians. As mentioned in the previous section, both
cases of q ¼ 2 and q ¼ 3 exhibit not only qualitatively but also quantitatively similar behavior, even with different
connectivity among microscopic states. It is thought that the detailed investigation of this characteristic behavior on the
landscape can be an effective way in explaining the typical difficulty of prime factorization problem. In addition, the
average behavior of the density of states on energy with various values of No would be also useful. If, suppose that,
there is a tendency for the average behavior of density of states that skewed to somewhat certain regions, one may be
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Fig. 4. The dependence of ��rst on no with the simulation of
Helem with q ¼ 2. The means of red points, green points
and error bars are the same as Fig. 3 respectively. Both the
average and the dispersion are calculated with the same
manner.
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Fig. 5. The dependence of ��rst on no with the simulation of
Helem with q ¼ 3. The means of red points, green points
and error bars are the same as Fig. 3 respectively. Both the
average and the dispersion are calculated with the same
manner.
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able to practically make utilize of it to promote the overall acceleration of the search algorithm by reweighting the
distribution in simulation. While, if there is no tendency that skewed, that property itself can be an explanation of the
specific difficulty of this problem. By observing the bivariate density of states on the value of energy and the hamming
distance from the microscopic state corresponding to the correct factorization, we can enter into the detailed aspect
along the above motivation.

It would be effective to observe the density of states focusing on the asymptotic n dependence of the low energy tail.
The characterics of the density of states can also appear in the temperature dependence of specific heat and entropy. By
the detailed analysis of the above quantities, one could gain an understanding of the computational complexity of this
problem.
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