51 research outputs found

    Resource-efficient wireless relaying protocols

    No full text
    Relay-aided communication is considered one of the key techniques to achieve high throughput at low cost in future wireless systems. However, when transmitting signals via a relay, additional time slots, antennas, or frequency slots are required, which may erode the potential gain of relay-aided systems. In this article various approaches to creating relay-aided systems are reviewed. The advantages and disadvantages of various relaying schemes are compared in terms of their slot efficiency, error rate performance, and feasibility. Our detailed comparisons and the numerical results indicate that the specific family of network coding aided relaying protocols constitutes one of the most promising solutions. We conclude this article by listing a number of open problems

    Reconfigurable Intelligent Surfaces vs. Relaying: Differences, Similarities, and Performance Comparison

    Get PDF
    Reconfigurable intelligent surfaces (RISs) have the potential of realizing the emerging concept of smart radio environments by leveraging the unique properties of meta-surfaces. In this article, we discuss the potential applications of RISs in wireless networks that operate at high-frequency bands, e.g., millimeter wave (30-100 GHz) and sub-millimeter wave (greater than 100 GHz) frequencies. When used in wireless networks, RISs may operate in a manner similar to relays. This paper elaborates on the key differences and similarities between RISs that are configured to operate as anomalous reflectors and relays. In particular, we illustrate numerical results that highlight the spectral efficiency gains of RISs when their size is sufficiently large as compared with the wavelength of the radio waves. In addition, we discuss key open issues that need to be addressed for unlocking the potential benefits of RISs.Comment: Submitted for journal publication (revised version

    Distributed Self-Concatenated Coding for Cooperative Communication

    No full text
    In this paper, we propose a power-efficient distributed binary self-concatenated coding scheme using iterative decoding (DSECCC-ID) for cooperative communications. The DSECCC-ID scheme is designed with the aid of binary extrinsic information transfer (EXIT) charts. The source node transmits self-concatenated convolutional coded (SECCC) symbols to both the relay and destination nodes during the first transmission period. The relay performs SECCC-ID decoding, where it mayor may not encounter decoding errors. It then reencodes the information bits using a recursive systematic convolutional (RSC) code during the second transmission period. The resultant symbols transmitted from the source and relay nodes can be viewed as the coded symbols of a three-component parallel concatenated encoder. At the destination node, three-component DSECCC-ID decoding is performed. The EXIT chart gives us an insight into operation of the distributed coding scheme, which enables us to significantly reduce the transmit power by about 3.3 dB in signal-to-noise ratio (SNR) terms, as compared with a noncooperative SECCC-ID scheme at a bit error rate (BER) of 10-5. Finally, the proposed system is capable of performing within about 1.5 dB from the two-hop relay-aided network’s capacity at a BER of 10-5 , even if there may be decoding errors at the relay

    Signal-Level Cooperative Spatial Multiplexing for Uplink Throughput Enhancement in MIMO Broadband Systems

    No full text
    International audienceIn this paper, we address the issue of throughputefficient half-duplex constrained relaying schemes for broadband uplink transmissions over multiple-input multiple-output (MIMO) channels. We introduce a low complexity signal-level cooperative spatial multiplexing (CM) architecture that allows for the shortening of the relaying phase without resorting to any symbol detection or re-mapping at the relay side. Half-duplex latency is thereby reduced, resulting in a remarkable throughput gain compared to amplify-and-forward (AF) relaying scheme. Surprisingly, we show that CM strategy becomes more powerful in boosting uplink throughput as the relay approaches cell edge

    MIMO Beamforming for Secure and Energy-Efficient Wireless Communication

    Get PDF
    Considering a multiple-user multiple-input multiple-output (MIMO) channel with an eavesdropper, this letter develops a beamformer design to optimize the energy efficiency in terms of secrecy bits per Joule under secrecy quality-of-service constraints. This is a very difficult design problem with no available exact solution techniques. A path-following procedure, which iteratively improves its feasible points by using a simple quadratic program of moderate dimension, is proposed. Under any fixed computational tolerance the procedure terminates after finitely many iterations, yielding at least a locally optimal solution. Simulation results show the superior performance of the obtained algorithm over other existing methods.Comment: 12 pages, 2 figure
    • 

    corecore