263,267 research outputs found

    Some matrix nearness problems suggested by Tikhonov regularization

    Full text link
    The numerical solution of linear discrete ill-posed problems typically requires regularization, i.e., replacement of the available ill-conditioned problem by a nearby better conditioned one. The most popular regularization methods for problems of small to moderate size are Tikhonov regularization and truncated singular value decomposition (TSVD). By considering matrix nearness problems related to Tikhonov regularization, several novel regularization methods are derived. These methods share properties with both Tikhonov regularization and TSVD, and can give approximate solutions of higher quality than either one of these methods

    Non-perturbative regularization and renormalization: simple examples from non-relativistic quantum mechanics

    Get PDF
    We examine several zero-range potentials in non-relativistic quantum mechanics. The study of such potentials requires regularization and renormalization. We contrast physical results obtained using dimensional regularization and cutoff schemes and show explicitly that in certain cases dimensional regularization fails to reproduce the results obtained using cutoff regularization. First we consider a delta-function potential in arbitrary space dimensions. Using cutoff regularization we show that for d≥4d \ge 4 the renormalized scattering amplitude is trivial. In contrast, dimensional regularization can yield a nontrivial scattering amplitude for odd dimensions greater than or equal to five. We also consider a potential consisting of a delta function plus the derivative-squared of a delta function in three dimensions. We show that the renormalized scattering amplitudes obtained using the two regularization schemes are different. Moreover we find that in the cutoff-regulated calculation the effective range is necessarily negative in the limit that the cutoff is taken to infinity. In contrast, in dimensional regularization the effective range is unconstrained. We discuss how these discrepancies arise from the dimensional regularization prescription that all power-law divergences vanish. We argue that these results demonstrate that dimensional regularization can fail in a non-perturbative setting.Comment: 19 pages, LaTeX, uses epsf.te

    Fractional regularization matrices for linear discrete ill-posed problems

    Get PDF
    The numerical solution of linear discrete ill-posed problems typically requires regularization. Two of the most popular regularization methods are due to Tikhonov and Lavrentiev. These methods require the choice of a regularization matrix. Common choices include the identity matrix and finite difference approximations of a derivative operator. It is the purpose of the present paper to explore the use of fractional powers of the matrices {Mathematical expression} (for Tikhonov regularization) and A (for Lavrentiev regularization) as regularization matrices, where A is the matrix that defines the linear discrete ill-posed problem. Both small- and large-scale problems are considered. © 2013 Springer Science+Business Media Dordrecht

    Regularization matrices determined by matrix nearness problems

    Get PDF
    This paper is concerned with the solution of large-scale linear discrete ill-posed problems with error-contaminated data. Tikhonov regularization is a popular approach to determine meaningful approximate solutions of such problems. The choice of regularization matrix in Tikhonov regularization may significantly affect the quality of the computed approximate solution. This matrix should be chosen to promote the recovery of known important features of the desired solution, such as smoothness and monotonicity. We describe a novel approach to determine regularization matrices with desired properties by solving a matrix nearness problem. The constructed regularization matrix is the closest matrix in the Frobenius norm with a prescribed null space to a given matrix. Numerical examples illustrate the performance of the regularization matrices so obtained
    • …
    corecore