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Abstract. This paper is concerned with the solution of large-scale linear discrete ill-posed
problems with error-contaminated data. Tikhonov regularization is a popular approach to determine
meaningful approximate solutions of such problems. The choice of regularization matrix in Tikhonov
regularization may significantly a↵ect the quality of the computed approximate solution. This matrix
should be chosen to promote the recovery of known important features of the desired solution, such
as smoothness and monotonicity. We describe a novel approach to determine regularization matrices
with desired properties by solving a matrix nearness problem. The constructed regularization matrix
is the closest matrix in the Frobenius norm with a prescribed null space to a given matrix. Numerical
examples illustrate the performance of the regularization matrices so obtained.
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1. Introduction. We are concerned with the computation of an approximate
solution of linear least-squares problems of the form

min
x2Rn

kKx� bk, K 2 Rm⇥n, b 2 Rm, (1.1)

with a large matrix K with many singular values of di↵erent orders of magnitude close
to the origin. In particular, K is severely ill-conditioned and may be singular. Linear
least-squares problems with a matrix of this kind often are referred to as linear discrete
ill-posed problems. They arise, for instance, from the discretization of linear ill-posed
problems, such as Fredholm integral equations of the first kind with a smooth kernel.
The vector b of linear discrete ill-posed problems that arise in applications typically
represents measured data that is contaminated by an unknown error e 2 Rm.

Let bb 2 Rm denote the unknown error-free vector associated with b, i.e.,

b = bb+ e, (1.2)

and let bx be the solution of the unavailable linear system of equations

Kx = bb, (1.3)

which we assume to be consistent. If K is singular, then bx denotes the solution of
minimal Euclidean norm.

Let K† denote the Moore–Penrose pseudoinverse of K. The solution of minimal
Euclidean norm of (1.1), given by

K†b = K†bb+K†e = bx+K†e,
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typically is not a useful approximation of bx due to severe propagation of the error
e. This depends on the large norm of K†. Therefore, one generally replaces the
least-squares problem (1.1) by a nearby problem, whose solution is less sensitive to
the error e. This replacement is known as regularization. One of the most popular
regularization methods is due to Tikhonov. This method replaces (1.1) by a penalized
least-squares problem of the form

min
x2Rn

�
kKx� bk2 + µkLxk2

 
, (1.4)

where L 2 Rp⇥n is referred to as a regularization matrix and the scalar µ > 0 as a
regularization parameter; see, e.g., [1, 9, 11]. Throughout this paper k · k denotes the
Euclidean vector norm or the spectral matrix norm. We assume that the matrices K
and L satisfy

N (K) \N (L) = {0}, (1.5)

where N (M) denotes the null space of the matrix M . Then the minimization problem
(1.4) has the unique solution

xµ = (KTK + µLTL)�1KT b

for any µ > 0. The superscript T denotes transposition. When L is the identity
matrix, the Tikhonov minimization problem (1.4) is said to be in standard form,
otherwise it is in general form. We are interested in minimization problems (1.4) in
general form.

The value of µ > 0 in (1.4) determines how sensitive xµ is to the error e, how
close xµ is to the desired solution bx, and how small the residual error b�Kxµ is. A
suitable value of µ generally is not explicitly known and has to be determined during
the solution process.

Minimization problems (1.4) in general form with matrices K and L of small to
moderate size can be conveniently solved with the aid of the Generalized Singular
Value Decomposition (GSVD) of the matrix pair {K,L}; see, e.g., [7, 11]. We are
interested in developing solution methods for large-scale minimization problems (1.4).
These problems have to be solved by an iterative method. However, the regularization
matrices L derived also may be useful for problems of small size.

Common choices of regularization matrices L in (1.4) when the least-squares
problem (1.1) is obtained by discretizing a Fredholm integral equation of the first kind
in one space-dimension are the n ⇥ n identity matrix In, and scaled finite di↵erence
approximations of the first derivative operator,

L1 =
1

2

2

666664

1 �1 0
1 �1

1 �1
. . .

. . .

0 1 �1

3

777775
2 R(n�1)⇥n, (1.6)

as well as of the second derivative operator,

L2 =
1

4

2

6664

�1 2 �1 0
�1 2 �1

. . .
. . .

. . .

0 �1 2 �1

3

7775
2 R(n�2)⇥n. (1.7)
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The null spaces of these matrices are

N (L1) = span{[1, 1, . . . , 1]T } (1.8)

and

N (L2) = span{[1, 1, . . . , 1]T , [1, 2, . . . , n]T }. (1.9)

The regularization matrices L1 and L2 damp fast oscillatory components of the so-
lution xµ of (1.4) more than slowly oscillatory components. This can be seen by
comparing Fourier coe�cients of the vectors x, L1x, and L2x; see, e.g., [21]. These
matrices therefore are referred to as smoothing regularization matrices. Here we think
of the vector xµ as a discretization of a continuous real-valued function. The use of
a smoothing regularization matrix can be beneficial when the desired solution bx is a
discretization of a smooth function.

The regularization matrix L in (1.4) should be chosen so that known important
features of the desired solution bx of (1.3) can be represented by vectors in N (L),
because these vectors are not damped by L. For instance, if the solution is known to be
the discretization at equidistant points of a smooth monotonically increasing function,
then it may be appropriate to use the regularization matrix (1.7), because its null
space contains the discretization of linear functions. Several approaches to construct
regularization matrices with desirable properties are described in the literature; see,
e.g., [4, 5, 6, 13, 16, 18, 21]. Many of these approaches are designed to yield square
modifications of the matrices (1.6) and (1.7) that can be applied in conjunction with
iterative solution methods based on the Arnoldi process. We will discuss the Arnoldi
process more below.

The present paper describes a new approach to the construction of square regu-
larization matrices. It is based on determining the closest matrix with a prescribed
null space to a given square nonsingular matrix. For instance, the given matrix may
be defined by appending a suitable row to the finite di↵erence matrix (1.6) to make
the matrix nonsingular, and then prescribing a null space, say, (1.8) or (1.9). The
distance between matrices is measured with the Frobenius norm,

kAkF :=
p

hA,Ai, A 2 Rp⇥n,

where the inner product between matrices is defined by

hA,Bi := Trace(BTA), A,B 2 Rp⇥n.

Our reason for using the Frobenius norm is that the solution of the matrix nearness
problem considered in this paper can be determined with fairly little computations in
this setting.

We remark that commonly used regularization matrices in the literature, such as
(1.6) and (1.7), are rectangular. Our interest in square regularization matrices stems
from the fact that they allow the solution of (1.4) by iterative methods that are based
on the Arnoldi process. Application of the Arnoldi process to the solution of Tikhonov
minimization problems (1.4) was first described in [2]; a recent survey is provided by
Gazzola et al. [10]. We are interested in being able to use iterative solution methods
that are based on the Arnoldi process because they only require the computation
of matrix-vector products with the matrix A and, therefore, typically require fewer
matrix-vector product evaluations than methods that demand the computation of
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matrix-vector products with both A and AT , such as methods based on Golub–Kahan
bidiagonalization; see, e.g., [15] for an example.

This paper is organized as follows. Section 2 discusses matrix nearness problems
of interest in the construction of the regularization matrices. The application of
regularization matrices obtained by solving these nearness problems is discussed in
Section 3. Krylov subspace methods for the computation of an approximate solution of
(1.4), and therefore of (1.1), are reviewed in Section 4, and a few computed examples
are presented in Section 5. Concluding remarks can be found in Section 6.

2. Matrix nearness problems. This section investigates the distance of a ma-
trix to the closest matrix with a prescribed null space. For instance, we are interested
in the distance of the invertible square bidiagonal matrix

L1,� =
1

2

2

66666664

1 �1 0
1 �1

1 �1
. . .

. . .
1 �1

0 0 �

3

77777775

2 Rn⇥n (2.1)

with � > 0 to the closest matrix with the same null space as the rectangular matrix
(1.6). Regularization matrices of the form (2.1) with � > 0 small have been considered
in [4]; see also [13] for a discussion.

Square regularization matrices have the advantage over rectangular ones that they
can be used together with iterative methods based on the Arnoldi process for Tikhonov
regularization [2, 10] as well as in GMRES-type methods [17]. These applications have
spurred the development of a variety of square regularization matrices. For instance,
it has been proposed in [21] that a zero row be appended to the matrix (1.6) to obtain
the square regularization matrix

L1,0 =
1

2

2

66666664

1 �1 0
1 �1

1 �1
. . .

. . .
1 �1

0 0 0

3

77777775

2 Rn⇥n

with the same null space. Among the questions that we are interested in is whether
there is a square regularization matrix that is closer to the matrix (2.1) than L1,0 and
has the same null space as the latter matrix. Throughout this paper R(A) denotes
the range of the matrix A.

Proposition 2.1. Let the matrix V 2 Rn⇥` have 1  ` < n orthonormal columns
and define the subspace V := R(V ). Let B denote the subspace of matrices B 2 Rp⇥n

whose null space contains V. Then BV = 0 and the matrix

bA := A(In � V V T ) (2.2)

satisfies the following properties:
1. bA 2 B;
2. if A 2 B, then bA ⌘ A;
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3. if B 2 B, then hA� bA,Bi = 0.
Proof. We have bAV = 0, which shows the first property. The second property

implies that AV = 0, from which it follows that

bA = A�AV V T = A.

Finally, for any B 2 B, we have

hA� bA,Bi = Trace(BTAV V T ) = 0,

where the last equality follows from the cyclic property of the trace.
The following result is a consequence of Proposition 2.1.
Corollary 2.2. The matrix (2.2) is the closest matrix to A in B in the Frobenius

norm. The distance between the matrices A and (2.2) is kAV V T kF .
The matrix closest to a given matrix with a prescribed null space also can be

characterized in a di↵erent manner that does not require an orthonormal basis of the
null space. It is sometimes convenient to use this characterization.

Proposition 2.3. Let B be the subspace of matrices B 2 Rp⇥n whose null space
contains R(V ), where V 2 Rn⇥` is a rank-` matrix. Then the closest matrix to A in
B in the Frobenius norm is AP , where

P = In � V ⌦�1V T (2.3)

with ⌦ = V TV .
Proof. Since the columns of V are linearly independent, the matrix ⌦ is positive

definite and, hence, invertible. It follows that P is an orthogonal projector with null
space R(V ). The desired result now follows from Proposition 2.1.

It follows from Proposition 2.1 and Corollary 2.2 with V = n�1/2[1, 1, . . . , 1]T , or
from Proposition 2.3, that the closest matrix to L1,� with null space N (L1) is L1,�P ,
where P = [Ph,k] 2 Rn⇥n is the orthogonal projector given by

Ph,k =

8
>><

>>:

� 1

n
, h 6= k,

n� 1

n
, h = k.

Hence,

L1,�P =
1

2

2

66666664

1 �1 0
1 �1

1 �1
. . .

. . .
1 �1

� �
n � �

n . . . . . . � �
n (1� 1

n )�

3

77777775

2 Rn⇥n.

Thus, kL1,� � L1,�PkF = �
2
p
n
is smaller than kL1,� � L1,0kF = �

2 .

We turn to square tridiagonal regularization matrices. The matrix

L2,0 =
1

4

2

66666664

0 0 0 0
�1 2 �1

�1 2 �1
. . .

. . .
. . .

�1 2 �1
0 0 0 0

3

77777775

2 Rn⇥n
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with the same null space as (1.7) is considered in [6, 21]. We can apply Propositions
2.1 or 2.3 to determine whether this matrix is the closest matrix to

eL2 =
1

4

2

66666664

2 �1 0
�1 2 �1

�1 2 �1
. . .

. . .
. . .

�1 2 �1
0 �1 2

3

77777775

2 Rn⇥n

with the null space (1.9). We also may apply Proposition 2.4 below, which is analogous
to Proposition 2.3 in that that no orthonormal basis for the null space is required.
The result can be shown by direct computations.

Proposition 2.4. Given A 2 Rp⇥n, the closest matrix to A in the Frobenius
norm with a null space containing the linearly independent vectors v(1), v(2) 2 Rn is
given by A(In � C), where

Ci,j =
kv(1)k2v(2)i v(2)j � [v(2)i v(1)j + v(1)i v(2)j ](v(1), v(2)) + kv(2)k2v(1)i v(1)j

kv(1)k2kv(2)k2 � (v(1), v(2))2
. (2.4)

It follows easily from Proposition 2.4 that the closest matrix to eL2 with null space
N (L2) is eL2P , where P = [Ph,k] 2 Rn⇥n is an orthogonal projector defined by

Ph,k = �h,k � 2(n+ 1)(�3h+ 2n+ 1) + 6k(2h� n� 1)

n(n+ 1)(n� 1)
, h, k = 1, . . . , n. (2.5)

The regularization matrices constructed above are generally nonsymmetric. We
are also interested in determining the distance between a given nonsingular symmetric
matrix, such as eL2, and the closest symmetric matrix with a prescribed null space,
such as (1.9). The following results shed light on this.

Proposition 2.5. Let the matrix A 2 Rn⇥n be symmetric, let V 2 Rn⇥` have
1  ` < n orthonormal columns and define the subspace V := R(V ). Let Bsym denote
the subspace of symmetric matrices B 2 Rn⇥n whose null space contains V. Then
BV = 0 and the matrix

bA = (In � V V T )A(In � V V T ) (2.6)

satisfies the following properties:
1. bA 2 Bsym;

2. if A 2 Bsym, then bA ⌘ A;

3. if B 2 Bsym, then hA� bA,Bi = 0.

Proof. We have bA = bAT and bAV = 0, which shows the first property. The second
property implies that AV = V TA = 0, from which it follows that

bA = A� V V TA�AV V T + V V TAV V T = A.

Finally, for any B 2 Bsym, it follows from the cyclic property of the trace that

hA� bA,Bi = Trace(BV V TA+BAV V T �BV V TAV V T ) = 0.
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Fig. 2.1. Distances keL2 � L2,0kF (dashed curve), keL2 � P eL2PkF (dash-dotted curve), and

keL2 � eL2PkF (solid curve) as a function of the matrix order n.

Corollary 2.6. The matrix (2.6) is the closest matrix to A in Bsym in the Frobe-
nius norm. The distance between the matrices A and (2.6) is given by kV V TAV V T �
V V TA�AV V T kF .

Proposition 2.5 characterizes the closest matrix in Bsym to a given symmetric
matrix A 2 Rn⇥n. The following proposition provides another characterization that
does not explicitly use an orthonormal basis for the prescribed null space. The result
follows from Proposition 2.5 and Corollary 2.6 in a straightforward manner.

Proposition 2.7. Let Bsym be the subspace of symmetric matrices B 2 Rn⇥n

whose null space contains R(V ), where V 2 Rn⇥` is a rank-` matrix. Then the
closest matrix to the symmetric matrix A in Bsym in the Frobenius norm is PAP ,
where P 2 Rn⇥n is defined by (2.3).

We are interested in determining the closest symmetric matrix to eL2 with null
space in (1.9). It is given by P eL2P , with P defined in (2.5). One has

keL2 � eL2PkF < keL2 � P eL2PkF < keL2 � L2,0kF =

p
10

4
.

Figure 2.1 displays the three distances for increasing matrix dimensions.

3. Application of the regularization matrices. In this section we discuss
the use of regularization matrices of the form L = L̃P and L = PL̃P in the Tikhonov
minimization problem (1.4), where P is an orthogonal projector and L̃ is nonsingular.
We solve the problem (1.4) by transforming it to standard form in two steps. First,
we let y = Px and then set z = L̃y. Following Eldén [8] or Morigi et al. [16], we
express the Tikhonov minimization problem

min
x2Rn

n
kKx� bk2 + µkL̃Pxk2

o
(3.1)

in the form

min
y2Rn

n
kK1y � b1k2 + µkL̃yk2

o
, (3.2)

where

K1 = KP †
K , P †

K = (In � (K(In � P †P ))†K)P
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and

b1 = b�Kx(0), x(0) = (K(In � P †P ))†b.

Let the columns of V` form an orthonormal basis for the desired null space of L.
Then P = In � V`V T

` . Determine the QR factorization

KV` = QR, (3.3)

where Q 2 Rm⇥` has orthonormal columns and R 2 R`⇥` is upper triangular. It
follows from (1.5) that R is nonsingular, and we obtain

P †
K = In � V`R

�1QTK, KP †
K = (Im �QQT )K. (3.4)

These formulas are convenient to use in iterative methods for the solution of (3.2);
see [16] for details. Let yµ solve (3.2). Then the solution of (3.1) is given by xµ =

P †
Kyµ + x(0).

We turn to the solution of (3.2). This minimization problem can be expressed in
standard form

min
z2Rn

�
kK2z � b1k2 + µkzk2

 
, (3.5)

where K2 = K1L̃�1. Let zµ solve (3.5). Then the solution of (3.2) is given by
yµ = L̃�1zµ. In actual computations, we evaluate L̃�1z by solving a linear system

of equations with L̃. We can similarly solve the problem (1.4) with L = PL̃P by
transforming it to standard form in three steps, where the first two steps are the same
as above and the last step is similar to the first step of the case with L = L̃P .

It is desirable that the matrix L̃ not be very ill-conditioned to avoid severe error
propagation when solving linear systems of equations with this matrix. For instance,
the condition number of the regularization matrix L1,�, defined by (2.1), depends on
the parameter � > 0. Clearly, the condition number of L1,�, defined as the ratio of
the largest and smallest singular value of the matrix, is large for � > 0 “tiny” and of
moderate size for � = 1. In the computations reported in Section 5, we use the latter
value.

4. Krylov subspace methods and the discrepancy principle. A variety
of Krylov subspace iterative methods are available for the solution of the Tikhonov
minimization problem (3.5); see, e.g., [2, 3, 10, 17] for discussions and references.
The discrepancy principle is a popular approach to determining the regularization
parameter µ when a bound " for the norm of the error e in b is known, i.e., kek  ".
It can be shown that the error in b1 satisfies the same bound. The discrepancy
principle prescribes that µ > 0 be chosen so that the solution zµ of (3.5) satisfies

kK2zµ � b1k = ⌘", (4.1)

where ⌘ > 1 is a constant independent of ". This is a nonlinear equation of µ.
We can determine an approximation of zµ by applying an iterative method to the

linear system of equations

K2z = b1 (4.2)

and terminating the iterations su�ciently early. This is simpler than solving (3.5),
because it circumvents the need to solve the nonlinear equation (4.1) for µ. We
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therefore use this approach in the computed examples of Section 5. Specifically, we
apply the Range Restricted GMRES (RRGMRES) iterative method described in [17].
At the kth step, this method computes an approximate solution zk of (4.2) as the
solution of the minimization problem

min
z2Kk(K2,K2b1)

kK2z � b1k,

where Kk(K2,K2b1) := span{K2b1,K2
2b1, . . . ,K

k
2 b1} is a Krylov subspace. The dis-

crepancy principle prescribes that the iterations with RRGMRES be terminated as
soon as an iterate zk that satisfies

kK2zk � b1k  ⌘" (4.3)

has been computed. The number of iterations required to satisfy this stopping cri-
terion generally increases as " is decreased. Using the transformation from zµ to
xµ described in Section 3, we transform zk to an approximate solution xk of (1.1).
Further details can be found in [17]. Here we only note that kK2zk � b1k can be
computed without explicitly evaluating the matrix-vector product K2zk.

5. Numerical examples. We illustrate the performance of regularization ma-
trices of the form L = L̃P and L = PL̃P . The error vector e has in all examples
normally distributed pseudorandom entries with mean zero, and is normalized to
correspond to a chosen noise level

⌫ :=
kek
kbbk

,

where bb denotes the error-free right-hand side vector in (1.3). We let ⌘ = 1.01 in (4.3)
in all examples. Throughout this section P1 and P2 denote orthogonal projectors
with null spaces (1.8) and (1.9), respectively. All computations are carried out on
a computer with an Intel Core i5-3230M @ 2.60GHz processor and 8GB ram using
MATLAB R2012a. The computations are done with about 15 significant decimal
digits.

Example 5.1. Consider the Fredholm integral equation of the first kind,

Z 6

�6
(⌧,�)x(�)d� = g(⌧), �6  ⌧  6, (5.1)

with kernel and solution given by

(⌧,�) := x(⌧ � �)

and

x(�) :=

⇢
1 + cos(⇡3�), if |�| < 3,

0, otherwise.

This equation is discussed by Phillips [19]. We use the MATLAB code phillips from
[12] to discretize (5.1) by a Galerkin method with 200 orthonormal box functions as
test and trial functions. The code produces the matrix K 2 R200⇥200 and a scaled
discrete approximation of x(�). Adding n1 = [1, 1, . . . , 1]T to the latter yields the

vector bx 2 R200 with which we compute the error free right-hand side bb := Kbx.
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reg. mat. # iterations k # mat.-vec. prod. kxk � bxk/kbxk
noise level ⌫ = 1 · 10�2

I 4 5 3.5 · 10�2

L1,0 3 4 6.5 · 10�3

L1,�P1 5 7 5.1 · 10�3

L2,0 3 4 6.6 · 10�3

L̃2P2 4 7 9.5 · 10�3

P2L̃2P2 1 7 1.5 · 10�2

noise level ⌫ = 1 · 10�3

I 9 10 1.7 · 10�2

L1,0 3 4 4.5 · 10�3

L1,�P1 7 9 1.2 · 10�3

L̃2,0 3 4 4.5 · 10�3

L̃2P2 5 8 4.1 · 10�3

P2L̃2P2 5 11 1.4 · 10�2

noise level ⌫ = 1 · 10�4

I 10 11 6.1 · 10�3

L1,0 6 7 2.8 · 10�3

L1,�P1 9 11 2.0 · 10�3

L̃2,0 6 7 2.8 · 10�3

L̃2P2 7 10 2.1 · 10�3

P2L̃2P2 6 12 3.9 · 10�3

Table 5.1
Example 5.1: Number of iterations, number of matrix-vector product evaluations with the matrix

K, and relative error in approximate solutions xk determined by truncated iteration with RRGMRES

using the discrepancy principle and di↵erent regularization matrices for several noise levels.

This provides an example of a problem for which it is undesirable to damp the n1-
component in the computed approximation of bx.

The error vector e 2 R200 is generated as described above and normalized to
correspond to di↵erent noise levels ⌫ 2 {1 · 10�2, 1 · 10�3, 1 · 10�4}. The data vector
b in (1.1) is obtained from (1.2).

Table 5.1 displays results obtained with RRGMRES for several regularization
matrices and di↵erent noise levels, and Figure 5.1 shows three computed approximate
solutions obtained for the noise level ⌫ = 1 · 10�4. The iterations are terminated
by the discrepancy principle (4.3). From Table 5.1 and Figure 5.1, we can see that
the regularization matrix L = L1,�P1 yields the best approximation of bx. The worst
approximation is obtained when no regularization matrix is used with RRGMRES.
This situation is denoted by L = I. Table 5.1 shows both the number of iterations
and the number of matrix-vector product evaluations with the matrix K. The fact
that the latter number is larger depends on the ` matrix-vector product evaluations
with K required to evaluate the left-hand side of (3.3) and the matrix-vector product
with K needed for evaluating the product of P †

K with a vector; cf. (3.4). 2

Example 5.2. Regard the Fredholm integral equation of the first kind,

Z 1

0
k(s, t)x(t) dt = exp(s) + (1� e)s+ 1, 0  s  1, (5.2)
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Fig. 5.1. Example 5.1: Continuous curves: Computed approximate solutions xk determined by

truncated iteration with RRGMRES using the discrepancy principle. The noise level is ⌫ = 1 ·10�4
.

(a) Iterate x10 determined without regularization matrix (L = I), (b) iterate x9 determined with

the regularization matrix L = L1,�P1, (c) iterate x7 determined with the regularization matrix

L = L̃2P2, and (d) iterate x6 determined with the regularization matrix L = P2L̃2P2. The dashed

curves show the desired solution bx.

where

k(s, t) =

⇢
s(t� 1), s < t,
t(s� 1), s � t.

We discretize (5.2) by a Galerkin method with orthonormal box functions as test and
trial functions using the MATLAB program deriv2 from [12]. This program yields a
symmetric indefinite matrix K 2 R200⇥200 and a scaled discrete approximation of the
solution x(t) = exp(t) of (5.2). Adding n1 = [1, 1, . . . , 1]T yields the vector bx 2 R200

with which we compute the error-free right-hand side bb := Kbx. Error vectors e 2 R200

are constructed similarly as in Example 5.1, and the data vector b in (1.1) is obtained
from (1.2).

Table 5.2 shows results obtained with RRGMRES for di↵erent regularization
matrices. The performance for three noise levels is displayed. The iterations are
terminated with the aid of the discrepancy principle (4.3). When L = L̃2,0, L = L̃2P2

or L = P2L̃2P2, and the noise level is ⌫ = 1 · 10�2, as well as when L = P2L̃2P2, and
the noise level is ⌫ = 1·10�3 or ⌫ = 1·10�4, the initial residual r0 := b�Ax(0) satisfies
the discrepancy principle and no iterations are carried out. Figure 5.2 shows computed
approximate solutions obtained for the noise level ⌫ = 1 ·10�4 with the regularization
matrix L = L̃2P2 and without regularization matrix. Table 5.2 and Figure 5.2 show
the regularization matrix L = L̃2P2 to give the most accurate approximations of the
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reg. mat. # iterations k # mat.-vec. prod. kxk � bxk/kbxk
noise level v = 1 · 10�2

I 4 5 2.4 · 10�1

L1,0 1 2 1.1 · 10�2

L1,�P1 1 3 2.6 · 10�2

L̃2,0 0 1 3.1 · 10�3

L̃2P2 0 3 3.1 · 10�3

P2L̃2P2 0 6 1.1 · 10�2

noise level v = 1 · 10�3

I 8 9 1.5 · 10�1

L1,0 3 4 7.3 · 10�3

L1,�P1 7 9 4.6 · 10�2

L̃2,0 1 2 1.9 · 10�3

L̃2P2 1 4 1.7 · 10�3

P2L̃2P2 0 6 1.1 · 10�3

noise level v = 1 · 10�4

I 13 14 1.0 · 10�1

L1,0 2 3 5.6 · 10�3

L1,�P1 26 28 8.0 · 10�2

L̃2,0 2 3 1.4 · 10�3

L̃2P2 3 6 1.2 · 10�3

P2L̃2P2 0 6 9.5 · 10�5

Table 5.2
Example 5.2: Number of iterations, number of matrix-vector product evaluations with the matrix

K, and relative error in approximate solutions xk determined by truncated iteration with RRGMRES

using the discrepancy principle and di↵erent regularization matrices for several noise levels.

desired solution bx. We remark that addition of the vector n1 to to the solution vector
determined by the program deriv2 enhances the benefit of using a regularization matrix
di↵erent from the identity. The benefit would be even larger, if a larger multiple of
the vector n1 were added to the solution. 2

The above examples illustrate the performance of regularization matrices sug-
gested by the theory developed in Section 2. Other combinations of nonsingular
regularization matrices and orthogonal projectors also can be applied. For instance,
the regularization matrix L = L̃2P1 performs as well as L = L̃2P2 when applied to
the solution of the problem of Example 5.1.

6. Conclusion. This paper presents a novel method to determine regularization
matrices via the solution of a matrix nearness problem. Numerical examples illustrate
the e↵ectiveness of the regularization matrices so obtained. While all examples used
the discrepancy principle to determine a suitable regularized approximate solution of
(1.1), other parameter choice rules also can be applied; see, e.g., [14, 20] for discussions
and references.
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comments on part of the present work. The authors would like to thank a referee for
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Fig. 5.2. Example 5.2: Continuous curves: Computed approximate solutions xk determined by

truncated iteration with RRGMRES using the discrepancy principle. The noise level is ⌫ = 1 ·10�4
.

(a) Iterate x13 determined without regularization matrix (L := I), (b) iterate x3 determined with

the regularization matrix L = L̃2P2 and (c) iterate x0 determined with the regularization matrix

L = P2L̃2P2. The dashed curves show the desired solution bx.
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