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Abstract The numerical solution of linear discrete ill-posed problems typi-

cally requires regularization. Two of the most popular regularization methods

are due to Tikhonov and Lavrentiev. These methods require the choice of a

regularization matrix. Common choices include the identity matrix and finite

di↵erence approximations of a derivative operator. It is the purpose of the

present paper to explore the use of fractional powers of the matrices A
T
A (for

Tikhonov regularization) and A (for Lavrentiev regularization) as regulariza-

tion matrices, where A is the matrix that defines the linear discrete ill-posed

problem. Both small and large-scale problems are considered.
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1 Introduction

This paper discusses the solution of linear least-squares problems

(1.1) min
x2Rn

kAx� bk

with a nonsymmetric and possibly rectangular matrix A 2 Rm⇥n
or with

a symmetric positive semidefinite matrix A 2 Rn⇥n
. Throughout this paper

k · k denotes the Euclidean vector norm or the associated induced matrix

norm. The singular values of A are assumed to “cluster” at the origin. In

particular, A is severely ill-conditioned and may be singular. This kind of

least-squares problems often are referred to as discrete ill-posed problems.

They arise, for instance, from the discretization of linear ill-posed problems,

such as Fredholm integral equations of the first kind with a smooth kernel. The

vector b represents available data, which is contaminated by an error vector e.

This error may stem from measurement inaccuracies or discretization. Thus,

(1.2) b = bb + e,

where bb denotes the unknown error-free vector associated with b. We will

assume the unavailable error-free system

(1.3) Ax = bb

to be consistent and denote its solution of minimal Euclidean norm by bx.

We would like to determine an approximation of bx by computing a suitable

approximate solution of (1.1). Due to the ill-conditioning of the matrix A and

the error e in b, the solution of the least-squares problem (1.1) of minimal

Euclidean norm is typically a poor approximation of bx.

Tikhonov regularization is a popular approach to determine an approxi-

mation of bx; see, e.g., [3,6,8] for properties and applications. This method

replaces the minimization problem (1.1) by a penalized least-squares problem

of the form

(1.4) min
x2N (A)?

�
kAx� bk2 + µ kMxk2

 
,

where N (A)
?

denotes the orthogonal complement of the null space N (A) of

the matrix A, M 2 Rp⇥n
is a regularization matrix, and the scalar µ � 0 a

regularization parameter. The problem (1.4) has a unique solution xµ for all

nonnegative values of µ. The choices of regularization matrix M and value

of the regularization parameter µ determine how much xµ di↵ers from the

desired solution bx of (1.3) and how sensitive xµ is to the error e in b. The

choice of a suitable regularization matrix can be challenging. We propose the

use of a regularization matrix of the form

(1.5) M = (A
T
A)

�/2
,

where � � 0 and A
T

denotes the transpose of A.
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The e↵ect of the penalization term in (1.4) on the solution xµ can be

investigated with the aid of filter factors; see Section 2. We show that all filter

factors increase with �. Thus, for fixed µ > 0, the penalization term in (1.4)

provides less penalization the larger � is. This is interesting because standard

Tikhonov regularization, which corresponds to � = 0, generally oversmoothes

the computed solution; see Klann and Ramlau [12] for a discussion on the

latter.

Tikhonov regularization allows the matrix A to be nonsymmetric or rect-

angular. For notational simplicity, we assume in our discussion on Tikhonov

regularization that m � n; only minor modifications are required when m < n.

Lavrentiev regularization can be applied when the matrix A is symmetric

positive semidefinite. Many applications of this regularization method are re-

ported in the literature, including to neural networks [4], magnetic resonance

imaging [14], and image deblurring [15]. In its standard form, this regulariza-

tion method replaces the least-squares problem (1.1) by the linear system of

equations

(1.6) (A + µI) x = b.

We propose to replace the regularization matrix I by the matrix

(1.7) M = A
�

for some � > 0.

This paper is organized as follows. Section 2 discusses Tikhonov regular-

ization with the regularization matrix (1.5). The relation to the fractional

Tikhonov method presented in [10] is explored. Lavrentiev regularization with

a fractional regularization matrix (1.7) is derived in Section 3, and we discuss

the choices of µ and � in Section 4. When the matrix A is nonsymmetric and

of small to medium size, the regularization matrix (1.5) can be conveniently

computed by first evaluating the singular valued decomposition of A. Similarly,

when A is symmetric positive semidefinite, we can determine the matrix (1.7)

by first evaluating the spectral factorization of A. However, these approaches

to determining the matrices (1.5) and (1.7) are not attractive when A is large.

We outline in Section 5 how to proceed in this situation. Computed examples

that illustrate the performance of Lavrentiev regularization with a regular-

ization matrix of the form (1.7) are presented in Section 6 and concluding

remarks can be found in Section 7.

2 Fractional Tikhonov regularization

This section discusses Tikhonov regularization with the regularization matrix

(1.5). A di↵erent derivation can be found in [10]. The discussion of the present

paper sheds additional light on the method.

The normal equations associated with the Tikhonov minimization problem

(1.4) with the regularization matrix (1.5) can be expressed as

(2.1) ((A
T
A)

1��
+ µI) x = (A

T
A)

��
A

T b, x 2 N (A)
?

,



4 Hochstenbach, Noschese, and Reichel

where (A
T
A)

��
is defined with the aid of the Moore–Penrose generalized in-

verse when � > 0. Introduce the singular value decomposition (SVD)

A = U⌃V
T
,

where U = [u1,u2, . . . ,um] 2 Rm⇥m
and V = [v1,v2, . . . ,vn] 2 Rn⇥n

are

orthogonal matrices, and ⌃ is the diagonal, possibly rectangular, matrix

⌃ = diag[�1, �2, . . . ,�n] 2 Rm⇥n
,

whose nontrivial entries are the singular values ordered according to

�1 � �2 � . . . � �r > �r+1 = . . . = �n = 0.

The index r is the rank of A. We will throughout this paper assume the matrix

A to be scaled so that

(2.2) kAk < 1.

Using the SVD of A, the solution of (1.4) with M given by (1.5) can be

expressed as

(2.3) xµ,� =

rX

j=1

'(�j , �) (uT

j
b) vj , '(�,�) :=

�
1�2�

�2�2� + µ
.

The coe�cients '(�j , �) are commonly referred to as filter factors. Gener-

ally, right singular vectors vj with a small index j represent discretizations of

constant or slowly oscillating functions, while right singular vectors vj with a

large index represent discretizations of rapidly oscillating functions. The latter

vectors often are associated with “tiny” positive singular values. When the de-

sired solution bx is smooth, the right singular vectors vj with j large should be

damped in the representation (2.3) of xµ,� . This can be achieved by requiring

the filter factors '(�j , �) to be small for large j and all µ > 0, and leads to

the demand that the function ' should satisfy

(2.4) lim
�&0

'(�,�) = 0

for any µ > 0. We therefore should choose

(2.5) � <
1
2 .

Tikhonov regularization problems of the form (2.1) also can be derived

from the penalized least-squares problem

(2.6) min
x2N (A)?

�
kAx� bk2

W
+ µ kxk2

 
,

where kxkW = (xT
Wx)

1/2
is a seminorm with W = (AA

T
)
(↵�1)/2

. This

approach to Tikhonov regularization is described in [10]. We define W with

the aid of the Moore–Penrose pseudoinverse of AA
T

when ↵ < 1.
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Proposition 2.1 The penalized least-squares problems (1.4) and (2.6) are
equivalent when ↵ = 1� 2�.

Proof The normal equations associated with (2.6) are given by (see [10])

(2.7) ((A
T
A)

(↵+1)/2
+ µI)x = (A

T
A)

(↵�1)/2
A

T b, x 2 N (A)
?

.

Comparing with (2.1) shows the proposition. ut

We note that with ↵ = 1� 2� the requirements � � 0 and (2.5) yield the

bounds

(2.8) 0 < ↵  1.

The Tikhonov solution (2.3) can be expressed in terms of ↵ as follows,

(2.9) xµ,(1�↵)/2 =

rX

j=1

e'(�j , ↵) (uT

j
b)vj , e'(�,↵) =

�
↵

�↵+1 + µ
.

With the scaling (2.2), the filter factors in (2.3) satisfy

(2.10) '(�j , �1) > '(�j , �2) > '(�j , 0) for �1 > �2 > 0

when µ > 0 and �j > 0, where � = 0 corresponds to standard Tikhonov

regularization with M = I. The inequalities (2.10) show that all components

of the computed solution (2.3) are damped less the larger � � 0 is. Moreover,

the filter factors converge to zero slower as j increases the larger � is. A positive

value of � may yield a more accurate approximation of bx than � = 0, because

standard Tikhonov regularization may oversmooth the solution; see [12] for

an analysis of the latter. Numerical examples in [10] illustrate that it can be

beneficial to let � > 0.

3 Fractional Lavrentiev regularization

The matrix A 2 Rn⇥n
is in this and the following sections assumed to be

symmetric and positive semidefinite, and scaled so that (2.2) holds. Let PR(A)

denote the orthogonal projector onto R(A), the range of A, and recall that

R(A) = N (A)
?

. The Lavrentiev equation (1.6) is not guaranteed to be con-

sistent for µ = 0. Therefore we propose to replace (1.6) by the equation

(3.1) (A + µI) x = PR(A) b, x 2 R(A),

which is consistent for all µ � 0.

The matrix A can be expressed as A = H
2
, where H is a symmetric and

positive semidefinite matrix. It can easily be verified that PR(A) = HH
+
,

where H
+

denotes the Moore–Penrose pseudo-inverse of H. Introduce the

vector d = H
+b. Then (3.1) can be written as

(H
2

+ µI) x = Hd, x 2 R(H).
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These are the normal equations associated with the Tikhonov minimization

problem

min
x2R(H)

�
kHx� dk2 + µ kxk2

 
.

The good performance reported in [10] of fractional Tikhonov regularization

suggests that it may be advantageous to replace the above minimization prob-

lem by

min
x2R(H)

�
kHx� dk2

W
+ µ kxk2

 
,

where W = H
��1

for some � > 0; cf. (2.6). When � < 1, H
��1

is defined

with the aid of the Moore–Penrose pseudoinverse of H. The associated normal

equations are given by (cf. the proof of Proposition 2.1)

(3.2) (H
�+1

+ µI) x = H
��1

Hd, x 2 R(H),

which we can express as

(A
(�+1)/2

+ µI) x = A
(��1)/2

PR(A) b, x 2 R(A).

To obtain filter factors of the same simple form as (2.9), we let ↵ =
1
2 (� � 1).

This yields

(3.3) (A
↵+1

+ µI)x = A
↵

PR(A) b, x 2 R(A).

These equations can be obtained from the normal equations (2.7) when the

matrix A is symmetric and ↵ > 0. This suggests that it may be interesting

to consider equation (3.3) for ↵-values in the interval (2.8). The projection

PR(A) is relevant only when ↵ = 0, since A
↵
PR(A) = A

↵
for ↵ > 0. The value

↵ = 0 corresponds to standard Lavrentiev regularization (1.6) with the extra

projection PR(A). For future reference, we define the vector

bR(A) = PR(A)b.

We refer to (3.3) as the fractional Lavrentiev method. Note that equation

(3.2), and therefore (3.3), also can be derived by forming the normal equations

associated with the minimization problem

min
x2R(H)

�
kHx� dk2 + µ kMxk2

 

with M = H
(1��)/2

.

We turn to the filter factors associated with the fractional Lavrentiev

method (3.3). Introduce the spectral factorization

(3.4) A = U⇤U
T
,

where U = [u1,u2, . . . ,un] 2 Rn⇥n
is orthogonal and

⇤ = diag[�1, �2, . . . ,�n] 2 Rn⇥n
.
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We order the eigenvalues according to

�1 � �2 � . . . � �r > �r+1 = . . . = �n = 0,

where the index r is the rank of A. Using the spectral factorization (3.4), the

solution of (3.3) can be written as

xµ,↵ =

rX

j=1

b'(�j , ↵) (uT

j
bR(A))uj , b'(�, ↵) =

�
↵

�↵+1 + µ
.

The filter factors b'(�j , ↵) decrease as ↵ increases when the matrix A is scaled

so that (2.2) holds.

Figure 3.1 displays the filter functions � 7! b'(�, ↵) for standard Lavrentiev

regularization (a) and for fractional Lavrentiev regularization (b). The former

filter functions do not satisfy (2.4). We therefore expect the computed solutions

obtained with the fractional Lavrentiev method to often be better approxima-

tions of the desired solution bx than the approximate solutions determined by

standard Lavrentiev regularization.

10−10 10−5 100

10−2

100

102

104

 

 
µ=100

µ=10−1

µ=10−2

µ=10−3

10−10 10−5 10010−20

10−15

10−10

10−5

100

 

 

α=0.25
α=0.5
α=1
α=1.5

(a) (b)

Fig. 3.1 (a) The filter factors (� + µ)�1 as function of � for standard Lavrentiev for

di↵erent values of µ. (b) The filter factors �↵

�↵+1+µ
as function of � for fractional Lavrentiev

for µ = 0.01 and di↵erent values of ↵.

4 Choosing µ and ↵ in fractional Lavrentiev regularization

The choice of µ and ↵ for fractional Tikhonov regularization (2.6) is discussed

in [10]. This section presents analogous results for the fractional Lavrentiev

method. We consider two popular choices for the regularization parameter µ:

the discrepancy principle and the imposition of a solution norm constraint.

We first investigate the dependence of the solution xµ,↵ of (3.3) on the

parameters µ and ↵. Substituting the spectral factorization (3.4) into (3.3)

yields

(⇤
↵+1

+ µI) y = ⇤
↵

U
TbR(A).
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Denote the solution by y
µ,↵

. Then xµ,↵ = Uy
µ,↵

solves (3.3), and we have

kxµ,↵k2 = ky
µ,↵
k2 =

rX

j=1

�
2↵

j

(�
↵+1
j

+ µ)2
(uT

j
bR(A))

2
,

where r is the rank of A. Thus,

(4.1)
@

@µ
kxµ,↵k2 = �2

rX

j=1

�
2↵

j

(�
↵+1
j

+ µ)3
(uT

j
bR(A))

2
.

Clearly, µ 7! kxµ,↵k2 is a monotonically decreasing function. Similarly,

@

@↵
kxµ,↵k2 = 2µ

rX

j=1

log(�j)�
�↵

j

(�j + µ�
�↵

j
)3

(uT

j
bR(A))

2
.

Due to (2.2), we have log(�j) < 0 and it follows that ↵ 7! kxµ,↵k2 is mono-

tonically decreasing.

The choice of the regularization parameter µ depends on the amount of

error e in b. Consider for the moment standard Tikhonov regularization when

A is symmetric. Then ↵ = 1 in (2.7) and the normal equations become

(4.2) (A
2

+ µI)x = Ab.

Generally, the larger kek, the larger µ should be in order for the solution

xµ of (3.3) to be a suitable approximation of the desired solution bx; see,

e.g., Proposition 4.1 below. However, it follows from (4.1) that increasing µ

decreases the norm of the solution xµ,1 of (4.2). Therefore, the computed

solution may be of significantly smaller norm than the desired solution bx.

This di�culty can be remedied by choosing ↵ < 1, because this increases the

norm of the computed solution.

Consider the situation when a fairly accurate bound for the error in b,

kek  ",

is available. Then we can apply the discrepancy principle to determine a suit-

able value of the regularization parameter µ. Let ↵ and 0 < s < 1 be fixed,

define

(4.3) � = "
s
,

and determine µ > 0 so that

(4.4) kbR(A) �Axµ,↵k = �.

We refer to this approach to determine µ as the discrepancy principle. It is

shown in [15] that xµ,0 ! bx as " & 0 for this choice of µ. A di↵erent choice of

µ is proposed by Groetsch and Cuacamene [7] for ↵ = 0, who also show that

xµ,0 is not guaranteed to converge to bx in a Hilbert space setting when " & 0

and s = 1. Computed examples in [15] show that the choice of s can a↵ect the
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quality of the computed approximation xµ,↵ of bx significantly when ↵ = 0.

We will illustrate the dependence of kxµ,↵ � bxk on s and ↵ in Section 6.

Results analogous to those shown in the remainder of this section have

been established for Tikhonov regularization in [10], but many details of the

proofs below and in [10] di↵er. We therefore provide complete proofs for the

convenience of the reader. It follows from

bR(A) �Axµ,↵ =

rX

j=1

⇣
1� �j

�
↵

j

�
↵+1
j

+ µ

⌘
uj (uT

j
bR(A)) +

nX

j=r+1

uj (uT

j
bR(A))

that

kbR(A) �Axµ,↵k2 =

rX

j=1

⇣
1�

�
↵+1
j

�
↵+1
j

+ µ

⌘2
(uT

j
bR(A))

2
(4.5)

+

nX

j=r+1

(uT

j
bR(A))

2
.

Substituting ⌫ = µ
�1

into (4.5) shows that the solution of (4.4) for µ > 0 is

equivalent to the computation of the positive zero of the function

(4.6) F↵(⌫) =

rX

j=1

(⌫�
↵+1
j

+ 1)
�2

(uT

j
bR(A))

2
+

nX

j=r+1

(uT

j
bR(A))

2 � �
2
.

We are in a position to show how µ, such that xµ,↵ satisfies (4.4) for fixed

↵ > 0, depends on �.

Proposition 4.1 Let µ = µ(�) > 0 be such that xµ,↵ satisfies (4.4) for fixed
↵ > 0. Then dµ/d� > 0.

Proof Consider ⌫(�) = 1/µ(�). It follows from (4.6) that the inverse function

satisfies

�(⌫)
2

=

rX

j=1

(⌫�
↵+1
j

+ 1)
�2

(uT

j
bR(A))

2
+

nX

j=r+1

(uT

j
bR(A))

2
.

Di↵erentiating with respect to ⌫ yields

2 �(⌫) �
0
(⌫) = �2

rX

j=1

�
↵+1
j

(⌫�
↵+1
j

+ 1)3
(uT

j
bR(A))

2
.

It follows that �
0
(⌫) < 0. Consequently, ⌫

0
(�) < 0 and µ

0
(�) > 0. ut

We discuss Newton’s method for computing the positive zero of the function

(4.6). However, other zero-finders also can be used.

Proposition 4.2 Newton’s method applied to the computation of the positive
zero of F↵ with initial iterate ⌫0 = 0 converges quadratically and monotoni-
cally.
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Proof The quadratic convergence is a consequence of the analyticity of F↵(⌫)

in a neighborhood of the positive real axis in the complex plane. The monotonic

convergence follows from the fact that for every fixed ↵ > 0 and ⌫ � 0, the

function F↵ satisfies F
0
↵
(⌫) < 0 and F

00
↵
(⌫) > 0. ut

Let ↵ > 0 and determine µ = µ(↵) so that xµ,↵ satisfies (4.4) with � given by

(4.3) for some fixed 0 < s < 1. The following result shows that the solution

xµ,1 of (4.2) locally minimizes the solution norm.

Proposition 4.3 Let for ↵ > 0 the regularization parameter µ = µ(↵) be
such that xµ,↵ satisfies (4.4). Then there is an open real interval ⌦ containing
unity such that argmin

↵2⌦

kxµ(↵),↵k = 1.

Proof The equation F↵(⌫) = 0 can be expressed as

(4.7)

rX

j=1

µ
2

(�
↵+1
j

+ µ)2
(uT

j
bR(A))

2
= �

2 �
nX

j=r+1

(uT

j
bR(A))

2
.

We may consider µ = µ(↵) a function of ↵. Implicit di↵erentiation of (4.7)

with respect to ↵ yields

(4.8) 2 µ

rX

j=1

�
↵+1
j

(µ
0 � µ log(�j))

(�
↵+1
j

+ µ)3
(uT

j
bR(A))

2
= 0,

which, since µ > 0, implies that

(4.9)

rX

j=1

⇠j (µ
0 � µ log(�j)) = 0,

where

(4.10) ⇠j =
�

↵+1
j

(�
↵+1
j

+ µ)3
(uT

j
bR(A))

2
.

Introduce the function

G(↵) = kxµ(↵),↵k2 =

rX

j=1

�
2↵

j

(�
↵+1
j

+ µ)2
(uT

j
bR(A))

2
.

Then

G
0
(↵) =

rX

j=1

2�
2↵

j
log(�j)(�

↵+1
j

+ µ)� 2�
2↵

j
(�

↵+1
j

log(�j) + µ
0
)

(�
↵+1
j

+ µ)3
(uT

j
bR(A))

2

=

rX

j=1

2�
2↵

j
(log(�j)µ� µ

0
)

(�
↵+1
j

+ µ)3
(uT

j
bR(A))

2

= 2

rX

j=1

⇠j�
2↵

j
(µ log(�j)� µ

0
).
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It follows from (4.9) that G
0
(1) = 0. Moreover, di↵erentiating (4.9) yields

(4.11)

rX

j=1

�
⇠
0
j
(µ
0 � µ log(�j)) + ⇠j(µ

00 � µ
0
log(�j))

 
= 0.

Since

G
00
(↵) = 2

rX

j=1

�
2↵

j

�
(⇠
0
j
+ ⇠j log(�j))(µ log(�j)� µ

0
) + ⇠j(µ

0
log(�j)� µ

00
)
 

,

we obtain, in view of (4.11), that

G
00
(1) = 2

rX

j=1

⇠j log(�j)(µ log(�j)� µ
0
).

The above sum can be determined by multiplying the terms in (4.9) by the pos-

itive weights � log(�j); the largest weights multiply the largest terms. There-

fore, G
00
(1) > 0. By continuity, G

00
(↵) is positive in a neighborhood ⌦ of ↵ = 1.

Thus, G(↵) has a local minimum at ↵ = 1. ut

For some linear discrete ill-posed problems (1.1) an estimate � of the norm of

the desired solution bx may be known. Then it might be desirable to require

the computed solution xµ,↵ to be of the same norm, i.e.,

(4.12) � = kxµ,↵k.

This type of problems is discussed in [2,11,13,17]. The following result shows

that the Tikhonov solution xµ,1 of (4.2) locally minimizes the solution norm.

Proposition 4.4 Let, for ↵ > 0, the regularization parameter µ = µ(↵) be
such that xµ,↵ satisfies (4.12). Then there is an open real interval ⌦ containing
unity, such that argmin

↵2⌦

kbR(A) �Axµ(↵),↵k = 1.

Proof This result is shown in a similar fashion as Proposition 4.3. Di↵erenti-

ating the squares of the right-hand and left-hand sides of (4.12) with respect

to ↵, keeping in mind that µ = µ(↵), gives analogously to (4.9) the equation

(4.13)

rX

j=1

⇣j (µ log(�j)� µ
0
) = 0,

where ⇣j = ⇠j �
2↵

j
and ⇠j is defined by (4.10). Introduce the function

H(↵) = kbR(A)�Axµ(↵),↵k2 =

rX

j=1

µ
2

(�
↵+1
j

+ µ)2
(uT

j
bR(A))

2
+

nX

j=r+1

(uT

j
bR(A))

2
;

cf. (4.5). Using (4.8) now yields

H
0
(↵) = 2µ

rX

j=1

⇣j �
1�↵

j
(µ
0 � µ log(�j))
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and it follows from (4.13) that H
0
(1) = 0. Di↵erentiating the representation

H
0
(↵) = 2 µ

rX

j=1

⇠j (µ
0 � µ log(�j))

gives

(4.14)

H
00
(↵) = 2 µ

0
rX

j=1

⇠j (µ
0 � µ log(�j))

+ 2µ

rX

j=1

[⇠
0
j
(µ
0 � µ log(�j)) + ⇠j (µ

00 � µ
0
log(�j))],

and di↵erentiating (4.13) yields

(4.15)

rX

j=1

⇣
0
j
(µ log(�j)� µ

0
) + ⇣j (µ

0
log(�j)� µ

00
) = 0.

Let ↵ = 1. Then ⇣j = ⇠j for all j. Using this property when substituting (4.15)

into (4.14), we then obtain, in view of (4.13), that

(4.16) H
00
(1) = 2µ

rX

j=1

(⇠
0
j
� ⇣

0
j
)(µ

0 � µ log(�j)).

It follows from ⇠j = ⇣j�
1�↵

j
that, for ↵ = 1, ⇠

0
j

= ⇣
0
j
� ⇣j log(�j). Substituting

the latter expression into (4.16) yields

H
00
(1) = �2µ

rX

j=1

⇣j (µ
0 � µ log(�j)) log(�j).

Comparing this sum with (4.13) shows that H
00
(1) > 0, similarly as the anal-

ogous result for G
00
(1) in the proof of Proposition 4.3. We conclude similarly

as in the proof of Proposition 4.3 that H is convex in a neighborhood ⌦ of

↵ = 1 and therefore has a local minimum at ↵ = 1. ut

Propositions 4.3 and 4.4 show the choice ↵ = 1 to be quite natural. By

Proposition 4.3 this choice minimizes kxµ(↵),↵k locally when the residual norm

kbR(A)�Axµ(↵),↵k is specified and by Propositions 4.4 the residual norm has

a local minimum for ↵ = 1 when kxµ(↵),↵k is specified. We remark that the

value of � used in Proposition 4.3 does not have to be defined by (4.3) and,

similarly, the value of � in Proposition 4.4 does not have to be close to kbxk.
Nevertheless, numerical examples of Section 6 show 0 < ↵ < 1 to yield more

accurate approximations of bx than ↵ = 1.



Fractional regularization matrices 13

5 Large-scale problems

The computations described in the previous section use the spectral factor-

ization (3.4) of the symmetric positive definite matrix A 2 Rn⇥n
. When this

matrix is large, the evaluation of its spectral factorization might be too ex-

pensive to be attractive. In this situation, we may use the symmetric Lanczos

process to reduce A to a small matrix. Application of ` steps of the symmetric

Lanczos process to A with initial vector b/kbk yields the Lanczos decomposi-

tion

(5.1) AW` = W`T` + f
`
eT

`
,

where the orthonormal columns of the matrix W` 2 Rn⇥`
form a basis for

the Krylov subspace span{b, Ab, . . . , A
`�1b} with W`e1 = b/kbk, T` 2 R`⇥`

is symmetric and tridiagonal, and f
`
2 Rn

satisfies W
T

`
f

`
= 0. Here ej

denotes the jth axis vector; see, e.g., [5, Chapter 9] for details on the symmetric

Lanczos process. We may assume that ` is chosen small enough so that a

decomposition of the form (5.1) with the stated properties exists. The matrix

T` is an orthogonal projection of A onto R(W`). Therefore its eigenvalues

live in the convex hull of the spectrum of A and it follows that T` is positive

semidefinite.

We determine an approximate solution of (1.1) in R(W`) by a Galerkin

method. This leads to the reduced problem

(5.2) min
z2R`

kT`z � e1kbk k,

which can be solved by the fractional Lavrentiev method. The so computed

approximate solution zµ,↵ of (5.2) gives the approximate solution xµ,↵,` =

W`zµ,↵ of (1.1). Since ` typically can be chosen quite small, the spectral

factorization of T` can be readily evaluated.

We remark that in order for the fractional Lavrentiev method to be ap-

plicable, it su�ces that T` is symmetric and positive semidefinite. However,

typically the matrix T` determined by the symmetric Lanczos process is posi-

tive definite, because generally the vector f
`

in (5.1) is nonvanishing.

Proposition 5.1 Let the matrices A and T`, and the vector f
`
, be those in the

Lanczos decomposition (5.1). Assume that A is symmetric positive semidefinite
and that f

`
6= 0. Then T` is positive definite and N (A) \R(W`) = ;.

Proof Since f
`
6= 0 another Lanczos step can be carried out, which yields the

symmetric positive semidefinite tridiagonal matrix T`+1 2 R(`+1)⇥(`+1)
. This

matrix has nonvanishing subdiagonal entries. The eigenvalues of T` strictly

interlace those of T`+1; see, e.g., [9, Theorem 1]. It follows that the smallest

eigenvalue of T` is positive.

Assume that N (A) \R(W`) 6= ;. Then there is a vector y 2 R`\{0} such

that AW`y = 0. We obtain from (5.1) that

0 = AW`y = W`T`y + f
`
eT

`
y.

It follows that eT

`
y 6= 0 and therefore f

`
2 R(W`). This is a contradiction. ut
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When A 2 Rm⇥n
is a large nonsymmetric matrix, it can be reduced to a

smaller one by partial Golub–Kahan bidiagonalization. Application of ` steps

of Golub–Kahan bidiagonalization to A with initial vector b/kbk yields decom-

positions that determine a Tikhonov minimization problem analogous to (2.1)

with ` ⇥ ` matrices. Generally, ` can be chosen fairly small and the reduced

problem can be solved as described in Section 2. Further details can be found

in [10].

6 Computed examples

The examples of this section illustrate the performance of the fractional Lavren-

tiev method when the regularization parameter µ = µ(↵) is determined by the

discrepancy principle (4.4). All computations were carried out in MATLAB

with machine epsilon 2.2 · 10
�16

.

Example 6.1. We consider the Fredholm integral equation of the first kind

(6.1)

Z
⇡

0
exp(u cos(v)) x(v) dv = 2

sinh(u)

u
, 0  u  ⇡

2

discussed by Baart [1]. We first discretize (6.1) by a Galerkin method using the

function baart from the MATLAB package Regularization Tools by Hansen [8]

to determine the matrix B 2 R100⇥100
and a scaled discrete approximation bx 2

R100
of the solution x(v) = sin(v) of (6.1). Fractional Lavrentiev regularization

is applied to the symmetric positive semidefinite matrix A = BB
T

scaled to

have norm 0.5. The matrix is of ill-determined rank. In fact, the MATLAB

function cond gives the condition number (B) = 5 · 10
18

, where (B) :=

kBkkB�1k. This yields (A) = (B)
2

= 2·10
37

. In particular, A is numerically

singular. Let bb = Abx. An error vector e with normally distributed random

entries with zero mean is scaled to correspond to a chosen noise level ✏ =

kek/kbbk and added to bb; cf. (1.2).

Table 6.1 reports relative errors kxµ,↵ � bxk/kbxk for several noise levels

✏. The regularization parameter µ is determined by the discrepancy principle

(4.4) for powers s 2 {0.5, 0.6, . . . , 1} in (4.3). The column labeled “Lavrentiev”

reports the relative errors obtained for ↵ = 0, and the column “Fractional

Lavrentiev” displays the relative errors achieved for the optimal value ↵
⇤
.

Specifically, for each s and ✏, the column labeled ↵
⇤

shows the value of the

parameter ↵ 2 {0, 0.1, 0.2, . . . , 1} that gives the most accurate approximation

xµ,↵ of bx when µ is determined by the discrepancy principle. The table shows

the relative error kxµ,↵ � bxk/kbxk for standard Lavrentiev to increase with s

for s close to unity. In particular, s = 1 yields the largest errors. Fractional

Lavrentiev gives the smallest errors for s = 1. The optimal value ↵
⇤

is seen to

increase with s when s is close to one.

We now discretize (6.1) more accurately with the function baart and obtain

the matrix B 2 R1000⇥1000
and a scaled discrete approximation bx 2 R1000

of

the solution of (6.1). Table 6.2 is analogous to Table 6.1 for this larger problem.
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Noise level s Lavrentiev Fractional Lavrentiev
% ↵⇤

5 0.5 6.08 · 10�1 0.1 6.06 · 10�1

0.6 5.93 · 10�1 0.1 5.75 · 10�1

0.7 6.11 · 10�1 0.1 5.59 · 10�1

0.8 6.86 · 10�1 0.2 5.52 · 10�1

0.9 9.09 · 10�1 0.5 5.47 · 10�1

1.0 2.94 · 100 0.8 5.44 · 10�1

1 0.5 5.30 · 10�1 0 5.30 · 10�1

0.6 5.13 · 10�1 0 5.13 · 10�1

0.7 5.14 · 10�1 0.1 4.98 · 10�1

0.8 5.67 · 10�1 0.1 4.82 · 10�1

0.9 7.46 · 10�1 0.1 4.70 · 10�1

1.0 4.13 · 100 0.2 4.61 · 10�1

0.1 0.5 4.83 · 10�1 0 4.83 · 10�1

0.6 4.62 · 10�1 0 4.62 · 10�1

0.7 4.49 · 10�1 0 4.49 · 10�1

0.8 4.55 · 10�1 0.1 4.37 · 10�1

0.9 5.48 · 10�1 0.1 4.11 · 10�1

1.0 5.48 · 10�1 0.1 4.11 · 10�1

Table 6.1 Example 6.1: Discretization of the integral equation (6.1). Relative errors of the
approximate solutions. Dimension n = 100.

Noise level s Lavrentiev Fractional Lavrentiev
% ↵⇤

5 0.5 5.99 · 10�1 0 5.99 · 10�1

0.6 5.78 · 10�1 0.1 5.63 · 10�1

0.7 5.91 · 10�1 0.1 5.41 · 10�1

0.8 6.65 · 10�1 0.1 5.25 · 10�1

0.9 9.22 · 10�1 0.1 5.08 · 10�1

1.0 2.10 · 101 0.2 4.61 · 10�1

1 0.5 5.27 · 10�1 0 5.27 · 10�1

0.6 5.09 · 10�1 0 5.09 · 10�1

0.7 5.06 · 10�1 0.1 4.94 · 10�1

0.8 5.52 · 10�1 0.1 4.47 · 10�1

0.9 7.29 · 10�1 0.1 4.50 · 10�1

1.0 4.19 · 100 0.1 3.17 · 10�1

0.1 0.5 4.85 · 10�1 0 4.85 · 10�1

0.6 4.66 · 10�1 0 4.66 · 10�1

0.7 4.56 · 10�1 0 4.56 · 10�1

0.8 4.69 · 10�1 0.1 4.44 · 10�1

0.9 5.68 · 10�1 0.1 4.24 · 10�1

1.0 5.68 · 10�1 0.1 4.24 · 10�1

Table 6.2 Example 6.1: Discretization of the integral equation (6.1). Relative errors of the
approximate solutions. Dimension n = 1000.

Fractional Lavrentiev regularization can be seen to perform similarly as in

Table 6.1. ⇤
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Example 6.2. The Fredholm integral equation of the first kind

(6.2)

Z 6

�6
(u, v) x(v) dv = g(u), �6  u  6,

with kernel  and right-hand side g given by

(u, v) = �(u� v),

g(u) = (6� |u|)(1 +
1
2 cos(

⇡u

3 )) +
9
2⇡

sin(
⇡|u|
3 ),

where

�(y) =

⇢
1 + cos(

⇡y

3 ), |y| < 3,

0, |y| � 3,

is discussed by Phillips [16]. We discretize this integral equation by a Galerkin

method with orthonormal box functions as test and trial functions using the

function phillips from [8]. This function yields A 2 R100⇥100
and a scaled

discrete approximation bx 2 R100
of the solution x(v) = �(v) of (6.2). The

matrix A is scaled to have norm 0.5, and is symmetric indefinite and of ill-

determined rank. Its condition number is (A) = kAkkA�1k = 2.64 · 10
6
. The

error-free right-hand side vector is computed as bb = Abx. The error vector e
has normally distributed entries with zero mean; they are scaled to correspond

to specified noise levels. The vector b in (1.1) is determined by (1.2).

Application of ` = 5 steps of the symmetric Lanczos process to A with

initial vector b/kbk gives the decomposition (5.1) with a symmetric positive

definite matrix T5. We apply the fractional Lavrentiev method to the reduced

problem (5.2).

Table 6.3 is analogous to Table 6.1 and reports relative errors kxµ,0,5 �
bxk/kbxk and kxµ,↵⇤,5 � bxk/kbxk for several values of s and ✏. Similarly as in

Table 6.1, the error for standard Lavrentiev grows and the error for fractional

Lavrentiev decreases as s increases. The value ↵
⇤

can be seen to be an increas-

ing function of s.

We turn to a finer discretization of the integral equation (6.2) using 1000

orthonormal test and trial functions. The function phillips gives A 2 R1000⇥1000

and a scaled discrete approximation bx 2 R1000
of the solution of (6.2). The

results are displayed in Table 6.4. They are seen to be similar to those of Table

6.3. ⇤
Example 6.3. Consider the integral equation of the first kind

(6.3)

Z 1

0
(u, v) x(v) dv = g(u), 0  u  1,

where the kernel and the right-hand side function g are given by

(u, v) =

⇢
u (v � 1), u < v,

v (u� 1), u � v,
g(u) =

u
3 � u

6
.

The function deriv2 from [8] determines a discretization of (6.3) with a symmet-

ric negative definite matrix A 2 R100⇥100
and a scaled discrete approximation
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Noise level s Lavrentiev Fractional Lavrentiev
% ↵⇤

5 0.5 3.00 · 10�1 0.1 2.59 · 10�1

0.6 3.31 · 10�1 0.2 2.15 · 10�1

0.7 4.27 · 10�1 0.3 1.79 · 10�1

0.8 5.97 · 10�1 0.3 1.48 · 10�1

0.9 9.33 · 10�1 0.4 1.22 · 10�1

1.0 2.24 · 100 0.6 9.32 · 10�2

1 0.5 1.44 · 10�1 0.1 1.24 · 10�1

0.6 1.73 · 10�1 0.2 9.31 · 10�2

0.7 3.59 · 10�1 0.3 7.07 · 10�2

0.8 4.04 · 10�1 0.4 5.55 · 10�2

0.9 6.56 · 10�1 0.5 4.42 · 10�2

1.0 1.77 · 100 0.7 3.16 · 10�2

0.1 0.5 2.65 · 10�2 0.2 5.32 · 10�2

0.6 1.79 · 10�1 0.4 4.02 · 10�2

0.7 4.60 · 10�1 0.6 2.91 · 10�2

0.8 4.60 · 10�1 0.6 2.91 · 10�2

0.9 2.31 · 10�1 0.7 2.55 · 10�2

1.0 2.31 · 10�1 0.7 2.55 · 10�2

Table 6.3 Example 6.2: Discretization of the integral equation (6.2). Relative errors of the
approximate solutions. Dimension n = 100.

Noise level s Lavrentiev Fractional Lavrentiev
% ↵⇤

5 0.5 3.03 · 10�1 0.1 2.46 · 10�1

0.6 3.44 · 10�1 0.2 2.00 · 10�1

0.7 4.57 · 10�1 0.2 1.58 · 10�1

0.8 6.72 · 10�1 0.3 1.22 · 10�1

0.9 1.10 · 100 0.4 9.07 · 10�2

1.0 7.39 · 100 0.6 3.52 · 10�2

1 0.5 1.51 · 10�1 0.1 1.25 · 10�1

0.6 1.86 · 10�1 0.2 9.30 · 10�2

0.7 2.84 · 10�1 0.3 7.00 · 10�2

0.8 4.49 · 10�1 0.4 5.46 · 10�2

0.9 9.06 · 10�1 0.5 3.91 · 10�2

1.0 2.36 · 100 0.6 2.94 · 10�2

0.1 0.5 7.65 · 10�2 0.1 5.36 · 10�2

0.6 1.79 · 10�1 0.4 4.05 · 10�2

0.7 4.51 · 10�1 0.6 2.89 · 10�2

0.8 4.51 · 10�1 0.6 2.89 · 10�2

0.9 2.27 · 10�1 0.7 2.54 · 10�2

1.0 2.27 · 10�1 0.7 2.54 · 10�2

Table 6.4 Example 6.2: Discretization of the integral equation (6.2). Relative errors of the
approximate solutions. Dimension n = 1000.

bx 2 R100
of the solution x(v) = v. Fractional Lavrentiev regularization is ap-

plied to the matrix �A scaled to have norm 0.5. Let bb = Abx. An error vector

e with normally distributed random entries with zero mean, scaled to corre-
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spond to a chosen noise level ✏ = kek/kbbk, is added to bb to yield the vector b
in (1.1).

Noise level s Lavrentiev Fractional Lavrentiev
% ↵⇤

5 0.5 6.55 · 10�1 0 6.55 · 10�1

0.6 5.42 · 10�1 0 5.42 · 10�1

0.7 4.82 · 10�1 0 4.82 · 10�1

0.8 5.01 · 10�1 0.1 4.38 · 10�1

0.9 7.74 · 10�1 0.2 4.01 · 10�1

1.0 1.77 · 100 0.4 3.63 · 10�1

1 0.5 4.93 · 10�1 0 4.93 · 10�1

0.6 4.15 · 10�1 0 4.15 · 10�1

0.7 3.69 · 10�1 0 3.69 · 10�1

0.8 3.86 · 10�1 0.1 3.40 · 10�1

0.9 5.72 · 10�1 0.2 3.16 · 10�1

1.0 1.69 · 10�1 0.4 2.92 · 10�1

0.1 0.5 3.48 · 10�1 0 3.48 · 10�1

0.6 2.79 · 10�1 0 2.79 · 10�1

0.7 2.30 · 10�1 0 2.30 · 10�1

0.8 2.42 · 10�1 0.1 2.14 · 10�1

0.9 3.46 · 10�1 0.2 2.06 · 10�1

1.0 3.46 · 10�1 0.2 2.06 · 10�1

Table 6.5 Example 6.3: Discretization of the integral equation (6.3). Relative errors of the
approximate solution. Dimension n = 100.

We show in Table 6.5 relative errors for several values of s and ✏ for ↵ = 0

and ↵ = ↵
⇤
. Fractional Lavrentiev can be seen to give the smallest error when

s = 1.

We also apply the function deriv2 to determine a symmetric negative defi-

nite matrix A 2 R1000⇥1000
and a scaled discrete approximation bx 2 R1000

of

the solution of (6.3). The results are displayed in Table 6.6. They are similar

to those of Table 6.5. ⇤
Example 6.4. The function wing from [8] determines a discretization of

the Fredholm integral equation of the first kind

(6.4)Z 1

0
t exp(�st

2
)x(t)dt =

1

2s

✓
exp

⇣
�s

9

⌘
� exp

✓
�4s

9

◆◆
, 0 < s < 1,

with the discontinuous solution

x(t) =

⇢
1,

1
3 < t <

2
3 ,

0, elsewhere.

This integral equation is discussed in [18]. We compute the matrix B 2
R100⇥100

with wing and form A = B
T
B. The matrix B is numerically singular

and, therefore, so is A. The function wing also yields a scaled discretization
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Noise level s Lavrentiev Fractional Lavrentiev
% ↵⇤

5 0.5 6.69 · 10�1 0 6.69 · 10�1

0.6 5.56 · 10�1 0 5.56 · 10�1

0.7 5.08 · 10�1 0.1 5.00 · 10�1

0.8 5.31 · 10�1 0.1 4.46 · 10�1

0.9 7.61 · 10�1 0.2 4.05 · 10�1

1.0 6.48 · 100 0.4 3.19 · 10�1

1 0.5 4.89 · 10�1 0 4.89 · 10�1

0.6 4.09 · 10�1 0 4.09 · 10�1

0.7 3.63 · 10�1 0 3.63 · 10�1

0.8 3.96 · 10�1 0.1 3.20 · 10�1

0.9 6.05 · 10�1 0.2 2.95 · 10�1

1.0 3.84 · 100 0.4 2.44 · 10�1

0.1 0.5 3.48 · 10�1 0 3.48 · 10�1

0.6 2.79 · 10�1 0 2.79 · 10�1

0.7 2.32 · 10�1 0 2.32 · 10�1

0.8 2.61 · 10�1 0.1 2.08 · 10�1

0.9 4.12 · 10�1 0.2 1.99 · 10�1

1.0 4.12 · 10�1 0.2 1.99 · 10�1

Table 6.6 Example 6.3: Discretization of the integral equation (6.3). Relative errors of the
approximate solutions. Dimension n = 1000.

Noise level s Lavrentiev Fractional Lavrentiev
% ↵⇤

5 0.5 8.88 · 10�1 0 8.88 · 10�1

0.6 8.48 · 10�1 0.1 8.47 · 10�1

0.7 8.39 · 10�1 0.1 8.30 · 10�1

0.8 8.53 · 10�1 0.1 8.23 · 10�1

0.9 9.27 · 10�1 0.2 8.19 · 10�1

1.0 2.93 · 100 0.3 8.11 · 10�1

1 0.5 8.34 · 10�1 0 8.34 · 10�1

0.6 8.24 · 10�1 0 8.24 · 10�1

0.7 8.22 · 10�1 0 8.22 · 10�1

0.8 8.27 · 10�1 0.1 8.22 · 10�1

0.9 8.72 · 10�1 0.1 8.20 · 10�1

1.0 2.85 · 100 0.1 8.07 · 10�1

0.1 0.5 8.21 · 10�2 0 8.21 · 10�1

0.6 8.17 · 10�1 0 8.17 · 10�1

0.7 8.12 · 10�1 0 8.12 · 10�1

0.8 8.08 · 10�1 0 8.08 · 10�1

0.9 8.32 · 10�1 0.1 8.04 · 10�1

1.0 8.32 · 10�1 0.1 8.04 · 10�1

Table 6.7 Example 6.4: Discretization of the integral equation (6.4). Relative errors of the
approximate solutions. Dimension: n = 100.

of the solution bx from which we compute bb = Abx. The error-contaminated

vector b in (1.1) is determined similarly as in the previous examples.

Table 6.7 displays the computed results. In particular, the table shows that

also when the desired solution bx is discontinuous, it is advantageous to let ↵ be



20 Hochstenbach, Noschese, and Reichel

positive and smaller than unity. Table 6.8 is analogous to Table 6.7; it displays

computed results for a finer discretization of (6.4) with A 2 R1000⇥1000
. ⇤

Noise level s Lavrentiev Fractional Lavrentiev
% ↵⇤

5 0.5 8.83 · 10�1 0 8.83 · 10�1

0.6 8.50 · 10�1 0 8.50 · 10�1

0.7 8.42 · 10�1 0.1 8.35 · 10�1

0.8 8.54 · 10�1 0.1 8.28 · 10�1

0.9 9.26 · 10�1 0.1 8.25 · 10�1

1.0 1.41 · 101 0.2 8.12 · 10�1

1 0.5 8.37 · 10�1 0 8.37 · 10�1

0.6 8.28 · 10�1 0 8.28 · 10�1

0.7 8.26 · 10�1 0.1 8.25 · 10�1

0.8 8.32 · 10�1 0.1 8.22 · 10�1

0.9 8.82 · 10�1 0.1 8.16 · 10�1

1.0 2.91 · 100 0.1 7.79 · 10�1

0.1 0.5 8.25 · 10�1 0 8.25 · 10�1

0.6 8.22 · 10�1 0 8.22 · 10�1

0.7 8.20 · 10�1 0 8.20 · 10�1

0.8 8.21 · 10�1 0.1 8.17 · 10�1

0.9 8.64 · 10�1 0.1 8.14 · 10�1

1.0 8.64 · 10�1 0.1 8.14 · 10�1

Table 6.8 Example 6.4: Discretization of the integral equation (6.4). Relative errors of the
approximate solutions. Dimension n = 1000.

7 Conclusion

We have presented a fractional Lavrentiev method that uses a fractional power

of the matrix A as regularization matrix. Computed examples show this method

to perform better than the standard Lavrentiev method. The fractional Lavren-

tiev method performs best for the parameter s = 1; the standard Lavrentiev

method performs poorly for this choice of s. The value of the parameter ↵
⇤

is in all examples strictly smaller than unity. This shows that the fractional

Lavrentiev method yields more accurate approximations of the desired solution

bx than standard Tikhonov regularization (4.2).
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