3 research outputs found

    Local probability conservation in discrete-time quantum walks

    Get PDF

    Modélisation Mathématique et Simulation Numérique de Systèmes Fluides Quantiques

    Get PDF
    The PhD thesis is concerned with the study of a new class of quantum transport models: the quantum fluid models derived from the entropy principle. These models have been derived in two articles published in 2003 and 2005 by Degond, Méhats and Ringhofer in the Journal of Statistical Physics, by adapting to the quantum framework the moment method developed by Levermore in the classical framework. This method consists in taking the moments of the Quantum Liouville equation and closing this system by a local equilibrium (or quantum Maxwellian) defined as the minimizer of a quantum entropy with constraints on some physical quantities such as the mass, current, and energy. The main interest of such macroscopic models is their low cost in terms of numerical implementation compared to microscopic models such as the Schrödinger equation or the Wigner equation. Moreover, such models take implicitly into account collisions which are much more difficult to handle with quantum microscopic models. The goal of this thesis is thus to propose numerical methods to implement these models and to test them on some physical devices.We have started in chapter I by proposing a discretization for the most simple of these models which is the Quantum Drift-Diffusion model on a closed domain. We have then decided in chapter II and III to apply this model to electron transport in semiconductors by choosing as open device the resonant tunneling diode. We have then studied in chapter IV the Isothermal Quantum Euler model, before considering in chapter V the study of non isothermal models such as the Quantum Hydrodynamic and the Quantum Energy Transport models. Finally, chapter VI is concerned with a slightly different problem which is the implementation of an asymptotically stable scheme in the semiclassical limit for the fluid formulation of the Schrödinger equation: the Madelung system.Le sujet de la thèse porte sur l'étude d'une nouvelle classe de modèles de transport quantique: les modèles fluides quantiques issus du principe de minimisation d'entropie. Ces modèles ont été dérivés dans deux articles publiés en 2003 et 2005 par Degond, Méhats et Ringhofer dans Journal of Statistical Physics en adaptant au cadre de la théorie quantique la méthode des moments développée par Levermore dans le cadre classique. Cette méthode consiste à prendre les moments de l'équation de Liouville quantique et à fermer ce système par un équilibre local (ou Maxwellienne quantique) défini comme minimiseur d'une certaine entropie quantique sous contrainte de conservation de certaines quantités physiques comme la masse, le courant, et l'énergie. Le principal intérêt des modèles quantiques ainsi obtenus provient du fait qu'étant macroscopiques, ils sont biens moins coûteux numériquement que des modèles microscopiques comme l'équation de Schrödinger ou l'équation de Wigner, et de plus, ils prennent en compte implicitement des effets de collision bien plus difficiles à modéliser à un niveau microscopique. Le but de cette thèse est donc de proposer des méthodes numériques pour implémenter ces modèles et de les tester sur des dispositifs physiques adéquats.Nous avons donc commencé dans le chapitre I par proposer une discrétisation du plus simple de ces modèles qu'est le modèle de Dérive-Diffusion Quantique sur un domaine fermé. Puis nous avons décidé dans le chapitre II et III d'appliquer ce modèle au transport d'électrons dans les semiconducteurs en choisissant comme dispositif ouvert la diode à effet tunnel résonnant. Ensuite nous nous sommes intéressés au chapitre IV à l'étude et l'implémentation du modèle d'Euler Quantique Isotherme, avant de s'attaquer aux modèles non isothermes dans le chapitre V avec l'étude des modèles d'Hydrodynamique Quantique et de Transport d'Énergie Quantique. Enfin, le chapitre VI s'intéresse à un problème un petit peu différent en proposant un schéma asymptotiquement stable dans la limite semi-classique pour l'équation de Schrödinger écrite dans sa formulation fluide: le système de Madelung

    Highly-doped germanium nanowires: fabrication, characterization, and application

    Get PDF
    Germanium (Ge) is the most compatible semiconductor material with silicon-based complementary metal-oxide semiconductor technology, which has higher electron and hole mobility than Si, leading to enhanced device performance. In addition, semiconductor nanowires (NWs) have attracted significant attention as promising candidates for next-generation nanoscale devices. Due to their unique geometry and physical properties, NWs show excellent optical and electrical properties such as quantum size effects, enhanced light absorption, and high biological and chemical sensitivity. Furthermore, high response to light irradiation is one of the most significant properties of semiconductor NWs, which makes them excellent candidates for photodetectors. Hence, Ge NWs are promising high-mobility nanostructures for optoelectronic devices. Despite constant improvement in the performance of single NW-based devices, determining their electrical properties remains challenging. Here, a symmetric six-contact Hall bar configuration is developed for top-down fabricated highly doped Ge NWs with different widths down to 30 nm, which simultaneously facilitates Hall effect and four-probe resistance measurements. Furthermore, accurate control of doping and fabrication of metal contacts on n-type doped Ge NWs with low resistance and linear characteristics remain significant challenges in Ge-based devices. Therefore, a combined approach is reported to fabricate Ohmic contacts on n-type doped Ge NWs using ion implantation and rear-side flash lamp annealing. This approach allows the fabrication of axial p–n junctions along the single NWs with different widths. The fabricated devices demonstrated rectifying characteristics in dark conditions. The photoresponse of the axial p–n junction photodetectors was investigated under three different illumination wavelengths of 637 nm, 785 nm, and 1550 nm. Moreover, the fabricated axial p–n junction photodetector demonstrated a high-frequency response up to 1 MHz at zero bias
    corecore