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Local Probability Conservation in Discrete Time Quantum Walks

Samuel T. Mister,∗ Benjamin J. Arayathel,† and Anthony J. Short‡

H. H. Wills Physics Laboratory, University of Bristol,
Tyndall Avenue, Bristol, BS8 1TL, United Kingdom

We show that probability is locally conserved in discrete time quantum walks, corresponding to
a particle evolving in discrete space and time. In particular, for a spatial structure represented by
an arbitrary directed graph, and any unitary evolution of a particle which respects that locality
structure, we can define probability currents which also respect the locality structure and which
yield the correct final probability distribution.

I. INTRODUCTION

For a particle evolving via the Schrodinger equation in
continuous space and time, it is well known that any
changes in its probability density can be explained by
local probability currents. This result has recently been
extended to discrete space and continuous time [1, 2]. In
this paper we will demonstrate that this is also the case
for discrete space and time, hence ensuring local conser-
vation of probability for discrete time quantum walks [3–
5]. Probability currents have previously been defined for
particular cases of quantum walks in one and two spatial
dimensions [6–8]. However, here we give a general ap-
proach that proves the existence of a probability current
for walks on arbitrary directed graphs.

In continuous space and time the local conservation
of probability for a single particle is expressed by the
continuity equation

∂ρ(~x, t)

∂t
+∇· J(~x, t) = 0, (1)

where ρ(~x, t) = |ψ(~x, t)|2 is the probability density and
J(~x, t) is a vector field describing the probability cur-
rent. For a particle governed by the non-relativistic
Schrödinger equation

ih̄
∂ψ(~x, t)

∂t
= − h̄2

2m
∇2ψ(~x, t) + V ψ(~x, t) (2)

we find that

J(~x, t) = − ih̄

2m
[ψ∗(~x, t)∇ψ(~x, t)−ψ(~x, t)∇ψ∗(~x, t)], (3)

is real and satisfies equation (1). From this we can con-
clude that probability is conserved locally in this case. A
similar probability current can be defined for relativistic
systems governed by the Dirac equation [9].

The same is true if we make space discrete. In this pic-
ture we represent space as a graph. Then the continuity
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equation representing local conservation of probability
becomes

dPn(t)

dt
+
∑
m

Jmn(t) = 0, (4)

where Pn(t) represents the probability of being at vertex
n at time t and Jmn(t) is a matrix element representing
the probability current between vertexes n and m (where
Jmn(t) > 0 implies a net flow of probability from n to
m). To ensure locality we require that Jmn(t) = 0 when-
ever n and m are not linked by an edge in the graph,
and in order to obtain meaningful results, we also re-
quire that Jmn(t) be real and anti-symmetric. It has
been shown that for any system undergoing Schrödinger
evolution with Hamiltonian H(t), we can take Jmn(t) to
have the form [1]

Jmn(t) =
1

ih̄
(Hmn(t)ρnm(t)− ρmn(t)Hnm(t)). (5)

Here ρ(t) represents the density operator of the particle
at time t. Similar results have been obtained by con-
sidering probability currents in tight-binding models and
other discrete solid state structures [2, 10–12]. Given
that Hmn(t) and Hnm(t) are zero whenever n and m are
not linked by an edge, J(t) is a local probability current
which satisfies (4) and is real and antisymmetric. Hence
again in these systems probability is locally conserved.

We now take this further by also making time discrete.
Instead of the Schrödinger equation, in each time step a
unitary operator is applied to the state. Labelling the dis-
crete times by integers, we have |ψ(t+ 1)〉 = U(t) |ψ(t)〉.
This corresponds to a discrete time quantum walk. For
simplicity in what follows, we will focus on a single time-
step and omit the explicit time parameter t, writing
|ψ′〉 = U |ψ〉. A quantum walk of many time-steps can
be considered by treating each time-step individually.

As time derivatives are not applicable in this case, the
continuity equation (4) must be modified to refer to the

change in probability ∆Pn = P
′

n − Pn at vertex n in
one time step, and the probability current Jmn flowing
between n and m in that time step, giving

∆Pn +
∑
m

Jmn = 0. (6)

There are four main properties that the probability cur-
rent J should satisfy. As in the previous case it should
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be real, anti-symmetric and non–zero only when n and m
are connected by an edge in the graph. However, here an
additional property to enforce locality is required - that
the probability flux out of a given vertex in one time step
is less than the initial probability of being at that vertex.
This property can be written concisely as∑

m∗

Jm∗n ≤ Pn, (7)

where m∗ = {m : Jmn > 0}. We will use this notation
for m∗ throughout the paper.

Ideally, it would be possible to find an equation for
Jmn in terms of U and |ψ〉 which satisfies all of the above
requirements. A promising candidate is [13]

Jmn =
1

2
[(ρU†)nmUmn + (U†)nm(Uρ)mn

− Unm(ρU†)mn − (Uρ)nm(U†)mn]. (8)

where ρ = |ψ〉 〈ψ|. This is anti-symmetric, real-valued,
and equal to zero whenever n and m are not connected
by an edge in the graph (in which case Umn, (U

†)nm, Unm

and (U†)mn are all equal to zero). Furthermore we show
in appendix A that this definition satisfies (6). However,
we also show that this definition does not always satisfy
(7), and therefore is not a suitable discrete-time proba-
bility current.

Whilst it is possible that an alternative general equa-
tion for Jnm could be found which satisfies all the re-
quirements, we conjecture that one does not exist, due
to the complex nature of the constraints encoded by (7),
which only arise in discrete time. Instead we give in this
paper a general non-constructive proof that a probabil-
ity current satisfying all of the requirements exists. This
resolves the key foundational issue, showing that proba-
bility is locally conserved in discrete space and time. We
also give an efficient numerical method for computing
the probability current, and extend the results to cases
with internal degrees of freedom and directed graphs, for
which we require that Jmn > 0 only if there is a directed
edge from n to m.

II. SETUP

A suitable description of our discrete space is a graph,
consisting of a set of vertices V and a set of edges E. For
full generality, we consider directed graphs, for which an
edge is associated with a particular direction of travel.
Examples of these types of graphs are shown in figure
1. These graphs allow us to include novel space-time
structures in which the particle is restricted to travel in
certain directions. An edge is specified by an ordered
pair of vertices E ⊆ {n → m |n,m ∈ V }. For example,
the edge n → m would allow the particle to move from
n to m. We assume that the particle is always allowed
to remain at its current location, so all self loops are

FIG. 1. Examples of directed graphs that allow discrete time
Quantum walks. Edges without arrows are undirected and
can be traversed in either direction.

included in E (n→ n ∈ E for all n) 1. To restrict to the
simpler case of undirected graphs, we would require that
n→ m ∈ E =⇒ m→ n ∈ E.

The time evolution of a quantum particle in our dis-
crete space-time model corresponds to a discrete time
quantum walk on this graph. To define such a quan-
tum walk, we associate an orthonormal quantum state
|n〉 to each vertex (corresponding to the particle being
at that point), and specify a unitary operator U de-
scribing the evolution, for which the matrix elements
Umn = 〈m|U |n〉 satisfy n → m /∈ E =⇒ Umn = 0.
Hence the unitary evolution cannot move the particle
between vertices which are not connected by an edge.
Given an initial pure state |ψ〉, we have Pn = |〈n|ψ〉|2
and P ′n = |〈n|U |ψ〉|2

Note that in the case of discrete space and continu-
ous time, it is unnecessary to consider directed graphs.
If there was a directed edge from m to n but no corre-
sponding edge in the opposite direction (i.e. m→ n ∈ E
but n → m /∈ E) then we must have Hmn(t) = 0 for all
time t. However, the Hermitian nature of the Hamilto-
nian would then imply that Hnm(t) = 0 as well. Such
cases would be the same as if there was no edge at all
between m and n, with no probability flowing in either
direction (Jmn(t) = 0 for all t).

In the case of discrete space and discrete time, directed
graphs can lead to interesting results, because there ex-
ist unitaries with Umn = 0 but Unm 6= 0. Hence we can
find examples in which particles propagate along directed
edges only in the allowed direction. Directed graphs have
been previously studied in the context of discrete time
quantum walks. In particular it has been shown that re-
versibility of the graph is a necessary and sufficient condi-
tion to define a coined Quantum walk [5]. An edge from
n → m is reversible if there exists a path from m to n,
and a graph is reversible if every edge in it is reversible.
We give the extension of our results to coined quantum

1 If we allow graphs for which some self loops are not included,
then we can still prove local probability conservation using the
probability flow approach given in the next section. However, the
corresponding restrictions on the probability current are more
complicated.
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walks, and other cases in which the vertices have internal
states in section III D.

III. RESULTS

A. Probability flow

In order to analyse the locality of probability flows, it
is helpful to break the probability current Jmn (which
represents the net flow of probability between vertices n
and m) into the individual flows of probability along the
directed edges n → m and m → n. In particular, we
define the flow of probability along the edge n → m as
fmn. Then

Jmn = fmn − fnm. (9)

Note that the ‘diagonal’ flow matrix element fnn corre-
sponds to the amount of probability which remains at
vertex n.

In order to give meaningful results and satisfy local
probability conservation, the flow matrix elements fmn

must satisfy the following properties:

fmn ≥ 0, (10)

fmn = 0 if n→ m /∈ E, (11)∑
m

fmn = Pn, (12)∑
n

fmn = P ′m. (13)

The first condition specifies that the probability flowing
along an edge in a particular direction must be positive,
the second that it must respect the locality structure of
the graph. The third condition specifies that all probabil-
ity initially at vertex n must either flow to a neighbouring
vertex or remain there during one time-step. The fourth
condition requires that all probability at vertex n after
one time step must either have flowed to it from a neigh-
bouring vertex or have remained there.

Note that these conditions would refer to any local
probabilistic evolution on a graph. The quantum nature
of the evolution enters because we use |ψ〉 and U to cal-
culate the initial and final probability distributions via
Pn = |〈n|ψ〉|2 and P ′m = |〈m|U |ψ〉|2. These probabil-
ity distributions then enter the flow conditions (12) and
(13) which will be used in the next two sections to prove
the existence of a valid set of probability flows and to
construct explicit solutions numerically. Not all pairs of
distributions Pn and P ′m can arise from a quantum evo-
lution on a particular graph.

We now show that properties (10) - (13) for fmn yield
all the required properties of Jmn. The flow fmn is a
positive number hence Jmn as defined in (9) is real. We
also see that Jmn is anti-symmetric, and non-zero only

when an edge exists between m and n. Note that

∆Pn +
∑
m

Jmn = (P ′n − Pn) +
∑
m

fmn −
∑
m

fnm

= (P ′n − Pn) + Pn − P ′n
= 0, (14)

hence Jmn satisfies equation (6). Finally, as∑
m∗

Jm∗n =
∑
m∗

fm∗n −
∑
m∗

fnm∗

≤
∑
m

fmn −
∑
m∗

fnm∗ ≤ Pn (15)

Jmn also satisfies equation (7).
Below, we show that a valid fnm satisfying properties

(10)-(13) always exists, hence we can also define a valid
Jnm satisfying local probability conservation.

The converse is also true. If we can define a Jnm which
is real, antisymmetric, satisfies (6) and (7), and for which
Jmn > 0 only if m→ n ∈ E then we can always generate
flows fmn satisfying conditions (10)-(13). This is shown
in appendix B, and illustrates that flow conditions (10)-
(13) are equivalent to the conditions on the Jmn given in
the introduction.

B. Existence of local probability flows

In this section we prove that there exist flow matrix ele-
ments fnm satisfying the conditions (10) to (13) for any
discrete time quantum walk, and thus that probability is
locally conserved.

We can show the existence of such probability flows us-
ing a result of Aaronson [14], which was proven in a dif-
ferent context (without considering locality). He showed
that for any unitary evolution of a quantum state, and
any fixed basis, there exist probability flows fmn between
basis states that take the initial probability distribution
over the basis to the final probability distribution over
that basis, and which satisfy fmn ≤ |Umn|. In our case,
n → m /∈ E =⇒ Umn = 0 =⇒ fmn = 0, hence such
flows would satisfy our requirements. However, Aaron-
son’s condition is stronger than we need, because it also
constrains probability flows along edges which do exist.
Therefore, for completeness and clarity, we provide here
a simpler proof of a similar result which is sufficient for
our purposes.

The key insight is to consider probability as a ‘fluid’,
flowing through a network of ‘pipes’ with different ca-
pacities from a source to a sink. This can be described
by a directed graph with edges which have a maximum
capacity specifying the amount of probability allowed to
flow along them. Figure 2 illustrates the configuration
we will consider.

This network consists of 3 different groups of edges.
The first and final sets of edges have capacity correspond-
ing to initial and final probabilities respectively. The in-
termediate edges represent the evolution of the state and
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FIG. 2. A diagram showing the movement of probability in
the network flow picture. The line on the graph is an example
of a cut. Vertices corresponding to n ∈ A and m ∈ B are
shown half-filled.

have capacity defined in the following way 2

Cmn =

{
0 if n→ m /∈ E
1 otherwise

(16)

If the total capacity of this network from source to sink is
one, then for any flow configuration achieving this capac-
ity the flow of probability along the edges in the middle
section will give a valid fmn. In particular, we set fmn

equal to the flow of probability along the intermediate
edge with capacity Cmn.

Following a similar approach to [14], we will show that
the maximum flow allowed by the network is one unit
of probability by making use of the max-flow, min-cut
theorem [15]. This states that the value of the minimum
cut in the network is equal to the maximum flow of the
network. A cut is a set of edges which if removed from
the network disconnects the source from the sink, and its
value is the total capacity of those edges.

Let us first write down the value K of a general cut.
Let A be the set of n such that the edge Source → n is
not in the cut and let B be the set of m such that the
edge m→ Sink is not in the cut. Then to disconnect the
source from the sink the cut must contain all the edges
n→ m such that n ∈ A and m ∈ B. Therefore the value
of the cut can be written as

K =
∑
n/∈A

Pn +
∑
m/∈B

P ′m +
∑

n∈A,m∈B
Cmn

= (1−
∑
n∈A

Pn) + (1−
∑
m∈B

P ′m) +
∑

n∈A,m∈B
Cmn

= 2−

(∑
n∈A

Pn +
∑
m∈B

P ′m

)
+

∑
n∈A,m∈B

Cmn (17)

In order for probability one to be able to flow through the
network, we require that K ≥ 1 for all cuts. We prove

2 Note that the similar result in [14] takes Cmn = |Umn|. This
leads to a valid flow satisfying fmn ≤ |Umn|.

this by considering separately the two cases in which the
sum over Cmn in (17) is either non-zero or zero.

Firstly, consider the case in which at least one of the
Cmn elements in the cut is equal to one. In this case∑

n∈A,m∈B Cmn ≥ 1 and thus

K ≥ 3−

(∑
n∈A

Pn +
∑
m∈B

P ′m

)
≥ 1, (18)

where we have used the fact that any partial sum over
elements of a probability distribution is at most one.

Secondly, consider the case in which all of the Cmn

elements in the cut are zero, such that
∑

n∈A,m∈B Cmn =
0. In this case, it is helpful to express the sum over
probabilities in (17) in terms of projection operators as∑
n∈A

Pn +
∑
m∈B

P ′m =
∑
n∈A
| 〈n|ψ〉 |2 +

∑
m∈B

| 〈m|U |ψ〉 |2

= 〈ψ|
(∑

n∈A
|n〉 〈n|+

∑
m∈B

U† |m〉 〈m|U
)
|ψ〉

= 〈ψ|ΠA + ΠB |ψ〉 (19)

where |ψ〉 is the initial state,

ΠA =
∑
n∈A
|n〉 〈n| and ΠB =

∑
m∈B

U† |m〉 〈m|U.

(20)

ΠA and ΠB are projectors onto the spaces spanned by
|n〉 such that n ∈ A and U† |m〉 such that m ∈ B respec-
tively. In this case, we can show that ΠA and ΠB are pro-
jectors onto orthogonal spaces, and thus that ΠA + ΠB

is itself a projection operator. In particular,

ΠBΠA =
∑

n∈A,m∈B
U† |m〉 〈m|U |n〉 〈n| = 0 (21)

because by assumption Cmn = 0 for all terms in the
sum, which means that n → m /∈ E and thus Umn =
〈m|U |n〉 = 0. As ΠA + ΠB is a projection operator,
〈ψ|ΠA + ΠB |ψ〉 ≤ 1 and thus

K = 2− 〈ψ|ΠA + ΠB |ψ〉 ≥ 1. (22)

Note that this second part of the proof, expressed in (19)
- (22), depends critically on the quantum nature of the
evolution.

We have shown that K ≥ 1 for all cuts in the network
shown in figure 2. Hence the minimum cut in the network
has value greater than or equal to one. In fact, the mini-
mum cut must have value exactly one, because a possible
cut would be to separate the source from all nodes it is
connected to, which has value K =

∑
n Pn = 1. Then

by applying the Max-flow, Min-cut theorem we can con-
clude that the maximum flow allowed in the network is
also one.

In appendix C, we show how this general proof applies
to a specific example of a quantum walk on a three vertex
graph, to further illustrate the method.
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As we have shown that one unit of probability can flow
through the network, there exists a valid local probability
flow which changes Pn to P ′n. As this applies to each time
step of a discrete time quantum walk, it proves that prob-
ability is locally conserved in such evolutions. In other
words, probability is locally conserved for all quantum
evolutions in discrete space time.

C. Constructing solutions

Although the above proof ensures the existence of a valid
probability flow satisfying local probability conservation,
it does not give a method of constructing such a flow.
However, this can be achieved efficiently for cases with a
finite number of vertices via linear programming.

If N is the number of vertices in V , we can think of the
flow matrix elements fnm as forming an N2 dimensional
real vector f . The constraints (10)-(13) then correspond
to a positivity constraint on each component of f , and a
number of linear equalities satisfied by the components.
These can be expressed in the form

f ≥ 0, (23)

A.f = b, (24)

where A and b are a matrix and vector expressing the
linear equalities (11) - (13). Given such constraints, a lin-
ear program can find a vector f∗ which satisfies the con-
straints and maximizes the value of some linear objective
function c = v.f . In this case, as we are only interested in
finding a feasible assignment f , it does not really matter
what we choose as our objective function, but one natu-
ral choice would be to maximize the amount of probabil-
ity which remains stationary (i.e. taking c =

∑
n fnn).

This would prevent probability from flowing in both di-
rections between two vertices. Note that this is not the
only source of non-uniqueness of f . Given any cycle on
the graph around which probability of at least δ flows,
there is another valid solution in which that probability
remains stationary instead.

Various techniques exist to solve linear programming
problems, including the simplex method [16], or Kar-
markar’s algorithm [17]. The latter approach is efficient
in the computational complexity sense, requiring a time
which is polynomial in N .

In appendix C, we show how to use this method to gen-
erate probability flows for a specific example of a quan-
tum walk on a three vertex graph.

D. Systems with Internal Degrees of Freedom

Quantum systems with internal degrees of freedom are
commonly used in the context of coined quantum walks.
In particular, we could consider a particle which carries
an internal degree of freedom, such as a spin, in addition
to its location. Alternatively we could consider cases in

which each spatial location has its own distinct set of
internal states.

In both of these cases we can denote an orthonormal
basis of quantum states by |n, k〉 where n ∈ V gives the
spatial location and k ∈ Sn gives the internal degree of
freedom. In such cases, we can apply the results obtained
earlier, and thus prove local probability conservation, by
mapping the system to one with no internal degrees of
freedom. In this mapping, a vertex with M internal de-
grees of freedom can be replaced with a set of M vertices
that are all connected to each other. Note that this is
similar to the staggered fermion approach used in dis-
crete models of quantum field theory [18–20] where some
issues arise. However, as we are using this as a math-
ematical tool to prove probability conservation on the
original graph these issues do not affect the result.

In particular, suppose that initially the different spatial
locations form a directed graph with edge set E ⊆ {n→
m |n,m ∈ V }, then we can construct a new graph to
represent the situation including the internal degrees of
freedom, with vertices V ′ = {(n, k) |n ∈ V, k ∈ Sn} and
edge set E′ = {(n, k) → (m, l) |n → m ∈ E, k ∈ Sn, l ∈
Sm}. For example any coined Quantum walk of a particle
on a line with a two-dimensional degree of freedom is
identical to a walk of a particle with no internal degrees
on the graph shown in figure 3.

Local probability conservation on the expanded graph
then implies local probability conservation for the orig-
inal graph, with the probabilities and currents on the
original graph being Pn =

∑
k P(n,k) and Jmn =∑

k,l J(m,l),(n,k)

FIG. 3. Any quantum walk of a particle on a line with a two
dimensional internal degree of freedom can be represented by
a quantum walk on this expanded graph. For generality, all
links are shown undirected, allowing travel in both directions.

E. Mixed states and general quantum processes

So far we have considered pure quantum states evolv-
ing unitarily. However, it is also possible to extend
these results to mixed states and general quantum pro-
cesses (represented by completely positive trace preserv-
ing maps), which may be useful when considering open
quantum systems or situations involving uncertainty. In
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this case the state is represented by a density oper-
ator ρ, and the transformation during a single time-

step is given by ρ′ =
∑

iKiρK
†
i , where Ki are Kraus

operators [21]. In order to respect the locality struc-
ture of the graph, such a transformation must satisfy
n → m /∈ E =⇒ 〈m|Ki |n〉 = 0 ∀ i. Mixed states and
general quantum dynamics can always be represented by
pure states and unitary evolutions on a larger hilbert
space composed of the original system and an ancilla [21].
By treating the ancilla as an internal degree of freedom as
in the previous subection, it follows that local probability
conservation also applies in these cases.

IV. DISCUSSION

For quantum evolutions in discrete space and time, in
which the locality structure of space is described by an
arbitrary directed graph and the evolution is unitary, we
have shown that probability is locally conserved. Essen-
tially, we can always explain the change in spatial prob-
ability distributions in terms of probability flows which
respect the locality of space.

The constraint of local probability conservation can
be expressed in terms of the probability current Jnm be-
tween vertices or probability flows fnm along edges. Un-
like in the continuous time examples which have been
considered, the existence of a valid probability flow is
established non-constructively, although valid solutions
can be obtained efficiently via numerical methods.

A third approach to the probability flow is to consider
a stochastic matrix3 Pm|n which evolves the initial prob-

ability distribution into the final distribution via

P ′m =
∑
n

Pm|nPn, (25)

with n → m /∈ E =⇒ Pm|n = 0. This is equivalent to
the formulation in terms of probability flows. To go from
fmn to Pm|n we take

Pm|n =
fmn

Pn
, (26)

whenever Pn 6= 0. If Pn = 0, (26) is not well defined.
However, in such cases the distribution Pm|n is irrelevant
as there is no probability initially at n to flow, and we can
simply take Pm|n = δm,n to avoid violating the locality
structure. Similarly we can transform from Pm|n to fmn

by taking fmn = Pm|nPn. As in the discussion of proba-
bility flows, note that the aim here is not to derive P ′n by
computing Pm|n and then evolving the initial state, as we
need to calculate P ′n in order to find Pm|n. Rather, it is
to show that there exists a Pm|n which is consistent with
the initial and final probability distributions and locality.

This result could be helpful in understanding quan-
tum walk evolutions, and is also interesting from a foun-
dational perspective, as it demonstrates that an intuitive
property of quantum theory in continuous space and time
and discrete space continuous time also holds in the dis-
crete space and time formalism. This could be helpful for
any approaches to particle physics in which discretization
of time and space is pursued, such as [22–25].
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Appendix A: A proposed general current

In this appendix we consider a proposed general form of
the probability current [13], for arbitrary discrete time
quantum walks on undirected graphs, given by

Jmn =
1

2
[(ρU†)nmUmn + (U†)nm(Uρ)mn

− Unm(ρU†)mn − (Uρ)nm(U†)mn]. (A1)

This is an appealing definition as it can be easily verified
that Jmn is anti-symmetric, real-valued, and equal to zero
whenever n and m are not connected by an edge in the
graph (in which case Umn, (U

†)nm, Unm and (U†)mn are

all equal to zero). Furthermore, note that∑
m

Jmn =
1

2
[(ρU†U)nn + (U†Uρ)nn − 2(UρU†)nn]

= ρnn − (UρU†)nn

= −∆Pn (A2)

and hence

∆Pn +
∑
m

Jmn = 0. (A3)

However, this definition does not always satisfy the re-
quirement that ∑

m∗

Jm∗n ≤ Pn, (A4)

where m∗ = {m : Jmn > 0}. In particular, it is possible
to find cases in which the probability flow away from
a vertex is greater than the initial probability located at
that vertex. A simple example is provided by considering
a quantum walk on three connected vertices with

U =


1
2

1
2 − 1√

2
1
2

1
2

1√
2

− 1√
2

1√
2

0

 (A5)

and an initial pure state |ψ〉 = 1√
2
(|2〉+ |3〉), correspond-

ing to

ρ =

 0 0 0
0 1

2
1
2

0 1
2

1
2

 . (A6)

As U and ρ are both Hermitian and real in this case,
(A1) simplifies to

Jmn = Umn[(Uρ)mn − (Uρ)nm]. (A7)

From this, one finds that

J21 =
1

2

[
0−

(
1

4
− 1

2
√

2

)]
=

1

8
(
√

2− 1) > 0. (A8)

This implies that there is a positive flow of probability
from vertex 1 to vertex 2. However, there is initially no
probability of the particle being at vertex 1 ( P1 = 0).
Hence we obtain a violation of (A4).

Appendix B: Equivalence of flow and current
conditions

In this appendix, we show that if we can define a Jnm
which is real, antisymmetric, satisfies (6) and (7), and for
which Jmn > 0 only if m → n ∈ E then we can always
generate flows fmn satisfying conditions (10)-(13). As
we showed in the main paper that these flow conditions
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always allow one to construct a probability current Jmn

with the specified properties this shows that these two
sets of properties are equivalent.

To achieve this, we set

fmn =

 Jmn if Jmn > 0 and m 6= n
Pn −

∑
m∗ Jm∗n m = n
0 otherwise.

(B1)
Property (10) is ensured by (7), property (11) follows
because n → m /∈ E =⇒ m 6= n and Jmn ≤ 0 =⇒
fmn = 0. The remaining two properties are given by∑

m

fmn =
∑
m6=n

fmn + fnn

=
∑
m∗

Jm∗n +

(
Pn −

∑
m∗

Jm∗n

)
= Pn (B2)

∑
n

fmn =
∑
n 6=m

fmn + fmm

=
∑

n:Jmn>0

Jmn +

(
Pm −

∑
k:Jkm>0

Jkm

)
= −

∑
k:Jkm<0

Jkm + Pm −
∑

k:Jkm>0

Jkm

= −
∑
k

Jkm + Pm

= ∆Pm + Pm

= P ′m (B3)

Appendix C: Example of Constructing Probability
Flows

In this appendix we illustrate the existence proof for
local flows given in section III B, and the method for con-
structing probability flows in section III C for a specific
example.

We will consider a walk on the three vertex graph
shown in figure 4, according to the unitary

U =


1
2

1√
2

1
2

1
2 − 1√

2
1
2

1√
2

0 − 1√
2

 . (C1)

for the initial state

|ψ〉 =
1√
2

(|1〉+ |2〉) =

 1√
2
1√
2

0

 . (C2)

Note that U32 = 0 as required by the fact that there is no
edge from vertex 2 to vertex 3 in the graph. To proceed,

FIG. 4. A three vertex graph on which we consider an example
quantum walk in appendix C.

FIG. 5. A flow network with each edge labelled by its capacity

we first calculate the final state

|ψ′〉 = U |ψ〉 =


1
2

(
1 + 1√

2

)
1
2

(
1− 1√

2

)
1
2

 . (C3)

We can then calculate the initial and final probability
distributions from |ψ〉 and |ψ′〉. For all numerical calcu-
lations these are stored and manipulated using machine
precision, but for simplicity we present them below to 2
d.p.

Pn = |〈n|ψ〉|2 =

 0.50
0.50

0

 P ′m = |〈m|ψ′〉|2 =

 0.73
0.02
0.25

 .

(C4)
Our aim is to find a local probability flow that explains

the transition from Pn to P ′n.
Let us first consider the proof that there exists such a

flow, as given in section III B. To do this, we construct a
flow network as shown in figure 5

If we can find a flow of one unit of probability through
this network then the flows on the central edges will cor-
respond to local flows fmn on our original graph as de-
sired. To prove that such flows exist we use the max-flow,
min cut theorem. The maximal flow through the network
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is equal to the minimal total capacity of edges that we
need to remove to disconnect the source from the sink.

One way to disconnect the source from the sink is to
cut all three edges coming from the source. This cut has
a value equal to the sum of the capacities of those edges,
given by K = 0.5 + 0.5 + 0 = 1. Similarly, disconnecting
all of the edges leading into the sink has K = 0.73 +
0.02 + 0.25 = 1. Any cut that includes one of the central
solid edges with capacity 1 must yield a value of K ≥ 1,
so these offer no improvement to the minimal cut value
and can be discounted. The only remaining interesting
option is to cut the set of edges {Source→ 1, Source→
3, 2 → 3, 1 → Sink, 2 → Sink}. This does disconnect
the source from the sink. However, this cut has value
K = 0.5 + 0 + 0 + 0.73 + 0.02 = 1.25. Hence the minimal
cut value is one, and thus a maximal flow of one through
the network is possible.

In terms of the proof in section III B, the cut with
K = 1.25 considered above corresponds to A = {2} and
B = {3}, leading to orthogonal projectors

ΠA = |2〉 〈2| , (C5)

ΠB = U† |3〉 〈3|U =
1

2
(|1〉 − |3〉) (〈1| − 〈3|) . (C6)

This gives 〈ψ|ΠA + ΠB |ψ〉 = 0.75, and thus K = 2 −
〈ψ|ΠA + ΠB |ψ〉 = 1.25.

The above proves that a suitable probability flow ex-
ists, but does not give an explicit solution. To find one,
we employ the method in section III C. In particular, we
use the Pn and P ′n we calculated in (C4) to write down
the constraint conditions (11) - (13) on fmn in the form

of equation (24)



1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 0





f11
f12
f13
f21
f22
f23
f31
f32
f33


=



0.50
0.50

0
0.73
0.02
0.25

0


, (C7)

As discussed in the main body, we now consider a lin-
ear program which maximizes the objective function
c = f11 + f22 + f33 subject to the linear equations (C7)
and the positivity constraints fmn ≥ 0 for all n and m
(23). Such a linear program can be solved computation-
ally using several algorithms. In this example the simplex
method was used and the following values for the proba-
bility flows were determined

f =

 0.25 0.48 0
0 0.02 0

0.25 0 0

 . (C8)

These are illustrated in figure 6, where it can be verified
that they correctly account for the change in probability
distribution from Pn to P ′m, and satisfy all constraints
given by (10)-(13) as we would expect.

FIG. 6. For the example considered, the graphs on the left
and right show the initial and final probability distributions
Pn and P ′m respectively,and the central graph shows the prob-
ability flows fmn.


