157,462 research outputs found

    Mixed-integer Quadratic Programming is in NP

    Full text link
    Mixed-integer quadratic programming is the problem of optimizing a quadratic function over points in a polyhedral set where some of the components are restricted to be integral. In this paper, we prove that the decision version of mixed-integer quadratic programming is in NP, thereby showing that it is NP-complete. This is established by showing that if the decision version of mixed-integer quadratic programming is feasible, then there exists a solution of polynomial size. This result generalizes and unifies classical results that quadratic programming is in NP and integer linear programming is in NP

    最適化問題 : 線形計画と2次計画

    Get PDF

    A new approach to secure economic power dispatch

    Get PDF
    This article presents a new nonlinear convex network flow programming model and algorithm for solving the on-line economic power dispatch with N and N−1 security. Based on the load flow equations, a new nonlinear convex network flow model for secure economic power dispatch is set up and then transformed into a quadratic programming model, in which the search direction in the space of the flow variables is to be solved. The concept of maximum basis in a network flow graph was introduced so that the constrained quadratic programming model was changed into an unconstrained quadratic programming model which was then solved by the reduced gradient method. The proposed model and its algorithm were examined numerically with an IEEE 30-bus test system on an ALPHA 400 Model 610 machine. Satisfactory results were obtaine

    Multiplier-continuation algorthms for constrained optimization

    Get PDF
    Several path following algorithms based on the combination of three smooth penalty functions, the quadratic penalty for equality constraints and the quadratic loss and log barrier for inequality constraints, their modern counterparts, augmented Lagrangian or multiplier methods, sequential quadratic programming, and predictor-corrector continuation are described. In the first phase of this methodology, one minimizes the unconstrained or linearly constrained penalty function or augmented Lagrangian. A homotopy path generated from the functions is then followed to optimality using efficient predictor-corrector continuation methods. The continuation steps are asymptotic to those taken by sequential quadratic programming which can be used in the final steps. Numerical test results show the method to be efficient, robust, and a competitive alternative to sequential quadratic programming
    corecore