2,708 research outputs found

    Using video objects and relevance feedback in video retrieval

    Get PDF
    Video retrieval is mostly based on using text from dialogue and this remains the most signi¯cant component, despite progress in other aspects. One problem with this is when a searcher wants to locate video based on what is appearing in the video rather than what is being spoken about. Alternatives such as automatically-detected features and image-based keyframe matching can be used, though these still need further improvement in quality. One other modality for video retrieval is based on segmenting objects from video and allowing end users to use these as part of querying. This uses similarity between query objects and objects from video, and in theory allows retrieval based on what is actually appearing on-screen. The main hurdles to greater use of this are the overhead of object segmentation on large amounts of video and the issue of whether we can actually achieve effective object-based retrieval. We describe a system to support object-based video retrieval where a user selects example video objects as part of the query. During a search a user builds up a set of these which are matched against objects previously segmented from a video library. This match is based on MPEG-7 Dominant Colour, Shape Compaction and Texture Browsing descriptors. We use a user-driven semi-automated segmentation process to segment the video archive which is very accurate and is faster than conventional video annotation

    Using segmented objects in ostensive video shot retrieval

    Get PDF
    This paper presents a system for video shot retrieval in which shots are retrieved based on matching video objects using a combination of colour, shape and texture. Rather than matching on individual objects, our system supports sets of query objects which in total reflect the user’s object-based information need. Our work also adapts to a shifting user information need by initiating the partitioning of a user’s search into two or more distinct search threads, which can be followed by the user in sequence. This is an automatic process which maps neatly to the ostensive model for information retrieval in that it allows a user to place a virtual checkpoint on their search, explore one thread or aspect of their information need and then return to that checkpoint to then explore an alternative thread. Our system is fully functional and operational and in this paper we illustrate several design decisions we have made in building it

    Iconic Indexing for Video Search

    Get PDF
    Submitted for the degree of Doctor of Philosophy, Queen Mary, University of London

    Multimedia Retrieval

    Get PDF

    Generative probabilistic models for image retrieval

    Get PDF
    Searching for information is a recurring problem that almost everyone has faced at some point. Being in a library looking for a book, searching through newspapers and magazines for an old article or searching through emails for an old conversation with a colleague are some examples of the searching activity. These are some of the many situations where someone; the “user”; has some vague idea of the information he is looking for; an “information need”; and is searching through a large number of documents, emails or articles; “information items”; to find the most “relevant” item for his purpose. In this thesis we study the problem of retrieving images from large image archives. We consider two different approaches for image retrieval. The first approach is content based image retrieval where the user is searching images using a query image. The second approach is semantic retrieval where the users expresses his query using keywords. We proposed a unified framework to treat both approaches using generative probabilistic models in order to rank and classify images with respect to user queries. The methodology presented in this Thesis is evaluated on a real image collection and compared against state of the art methods
    corecore