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Abstract

The ability to search video is an important and challengirabfem. This is especially
so in the surveillance domain, in which many thousands ofetasrecord real-world
action. A video search system needs to generate and stoxpeassive but also compact
indexthat can be used for a variety of tasks, such as retrospentigstigation and real-
time intervention. The index must also becommittedbecause, as it is generated, the
retrospective search tasks to be performed upon it are ginanknown.

In this thesis, inexpensive action-based features to uséorin the index. In the
first part of the thesis, frame action is extracted in the fafma cellular grid of active
cells. Furthermore, the segmentation of activities isqrenked using an adapted spatio-
temporal connected-components algorithm. These provitavel action-based repre-
sentation without the need for performing object detectind tracking. The indices are
used for theemporal segmentatiaiask using a sliding window method.

Whereas geography based representations provide inflemat the occurrence and
locality of action, they do not capture local appearancecstire and directionality. In
the second part of the thesis, action coefficients are comdpuging a localised wavelet
transform. Centroids, found by a clustering process, fomicanic visual vocabulary
then used to perform frame indexing. Temporal segmentasi@chieved by cumula-
tive analysis of the representation over time. Furthermargideosummarisations
computed using the most discriminant active pixels in thensc

It is beneficial in the search process to integrate manualjgaed semantics into a
graph for belief based browsing. This provides a semi-aatansemantic search. To
this end, a traditional competing models approach, trawigial wavelet coefficients, is
compared against a novel rank voting algorithm for seméabrevsing. Furthermore, a

Bayesian fusion network is used to perform a combinatiorvafence.
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Chapter 1

Introduction

In recent years, the potential of multimedia applicatia@nbined with significant ad-
vances in computer vision and information retrieval reskeahas led to widespread in-
terest in visual information retrieval. Efforts are focdsen the ability to efficiently,
and effectively, represent and search visual data. Theks e commonly known as
indexing and retrieval Although image analysis and retrieval are at a mature siate
development, video remains a significant challenge. Thexest in video is motivated
by rapidly growing video databases, i.e. the emergence adetfyenerated by mobile
phones, home video or surveillance security cameras, anddted by large increases
in computing power and storage capacity.

Specifically, the development of useful visual search sgsteas been significantly
hampered by thesemantic gap Whereas computer representations are numerical in
nature, search requirements are rooted in semantic meahiggtranslation from a nu-
merical representation into a semantic description, he biridging of the semantic gap,
has attracted widespread research but remains unsolvexicdrk problem is that suc-
cessful approaches for recognition, for example in facegation, are computationally
unstable, require significant clean training data, do nalss@nd consequently are over
constrained and not useful for more generic visual searairthBrmore, we find that

video captured in the critical domains, such as surveibaméten do not possess the



necessary visual cues (e.g. colour) and often lack deta¥l (&solution).

An alternative, more pragmatic, philosophy is to facikta semi-automatic visual
search. Rather than bridging the semantic gap in one leagpagiproach attempts to
minimise the effect of the gap by a combination of: a systeaviging a more intuitive
numerical description; and a user is trained to interpretdéscription and navigate the
visual data. Consequently, there is a growing need for tigci®s and tools that facilitate
semi-automatic video search that assumes some level oSkiler A semi-automatic

video investigation systeaan be used typically for a number of tasks:

Retrospective investigation.Many hours of skilled human computer operator time is
currently used in traversing the large collections of vidleat are acquired during
a typical crime analysis. Time and money could be saved ifrapeger system
could analyse the databanks automatically, and intelliggmesent pertinent in-

formation to detectives.

Scene profiling. One of the most important roles for current surveillanceteays is
the generation ofisage statistics Such figures are generated to either identify
potential hazards such as full platforms on the London Umaemnd, or to aid in

the design of new public spaces for maximum utility.

Real-time intervention. Another potential application for automated surveillarscan
alert generation systenwhereby a system monitors many surveillance streams,
identifies threatening behaviour, and prompts securitgqranel to intervene. Such
a system requires a strong recognition ability for low-gyalata and must result
in few false-positive situations. Closed circuit telewisis considered an effective

tool in crime prevention (Welsh and Farrington, 2002).

Abnormality detection. Whereas crime intervention is concerned with identifyingkn
crime behaviours, an alternative approach is to detectrataaactions in video.
The video collection itself is used as the template for ndtme&aviour. Abnormal

actions may be highlighted to a human operator for more inyatson.

Video archiving. An important, but as yet unchartered, potential applicagaists in
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the management of home video. In recent years, as videoreagéwices have
proliferated in the guise of small hand-held video recosdmnd also in mobile-
phones, the volume of home video has increased enormouskgedls to be man-

aged effectively using tools that assume low end user gbilit

For the duration of this thesis, we are more interested inré¢fv®spective investi-
gation task for common Closed Circuit Tele-Vision (CCTV)sbd surveillance video.
This area may be considered a hybrid of information rettiesarveillance and com-
puter vision, and consequently is relatively unexploretsoAin collaboration with the
DTI/EPSRC ICONS and EPSRC/MOD INSIGHT projégtsufficient video data was

made available for modelling.

1.1 Video search

Many modern computer systems are often concerned with theeireaand processing
of large amounts of data, in particular that captured froaewi capture devices. The
crucial tasks ofrepresentation(how the data is formatted, organised and compacted),
storage(how the data is physically archived and fetched), aedrch(how the data is
sifted for more important parts), must be solved. We condius the tasks of represen-
tation and search are intrinsically linked as to perforneetifze search an appropriate

representation model is needed. We focus upon:

Indexing. The process of transforming a video collection into a repnéstion that is

optimal for searching.

Retrieval. The process of performing search. It is achieved by comgaiquery rep-

resentation to the index and forming a ranking.

Browsing. The process of navigating a sequence to find content.

Traditionally, information retrievalhas been largely focused on the ability of sys-
tems to perform text-based search. Retrieval models andhanésms are well docu-

mented and are known to be successful, for example Salt@t®wr space approach

1Seeht t p: / / www. dcs. qmul . ac. uk/ r esear ch/ vi si on/
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Figure 1.1: An Eadweard Muybridge collotype plate from 188 bank of cameras were
used to record the sequential movements of a subject. Thk peevides an impression
of motion when viewed in temporal order. Used with permissod the Victoria and
Albert museum, London.
for term/query comparison (Salton, 1989). In recent yeard;-based retrieval systems
have been scaled to the World Wide Web (WWW) and have provée teffective and
massively popular. One could even argue that such systevessiméered the public con-
sciousness, for example the vedoGoogleis widely used to refer to the act of perform-
ing search using the Google engind he ability of textual search is greatly facilitated
by the numerical representation of text in documents, sgohmaerican Standard Code
for Information Interchange (ASCII), leading to efficiendimerical document represen-
tations andsimilarity metrics However, the extension of text-based systems to images
and video has proved to be more troublesome. Such an appigachlly exploits im-
age filenames, anchor text (the text in the web-page link ¢oitiage), and existing
associated textual descriptions to form a text-based septatiod. Unfortunately, this
is mostly ineffective because the fundamental content afj@s and video is interpreted
by Human cognitive visual percepti@nd cannot be adequately expressed in words.
Therefore, to perform image and video search an understgrahd translation of
the visual content is required. An image consists of a twoalisional (2D) rectangle

grid of pixels and a video consists of a number of similar iesmthat when shown in a

2Seeht t p: / / en. wi ki pedi a. or g/ wi ki / Googl e\ _(verb)
3For an example sdet t p: / / i mages. googl e. cont
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Figure 1.2: An indoor tearoom scene and extracted trajestorThe trajectories give
little indication of the content that is occurring and do podvide a discriminant context.

strict temporal ordergive the impression of a moving scene. With the added tenhpora
dimension the image sequence is considered three-dimmegRD). See Figure 1.1 for
an early sequence that illustrates this construction.

To be able to automatically interprdynamic scenedo discover and represent the
content, has become one of the main goals of a computer \sgistem. Such an ap-
proach generally requires the detection of an object in ttena and monitoring its
movement and behaviour over several frames. However, wsidenthat the common
object-detection-trackingODT) paradigm is unsuitable for video search as it provides
no useful representation that can be compared (Xiang and G®®6). For example, a
tracking system will find many simildrajectoriesin a scene but they do not provide a

useful indication of what is happening. See Figure 1.2.

1.2 The approach

The aim of this research is to address the problem of autcaiptiextracting informa-
tion about the scene from video data, and using the infoonat perform video search.
This involves the generation of a compact, efficient and esgive sequence represen-
tation, the automatic partitioning of the sequence intavssgs, image visualisation to
highlight the dynamic scene content, and the provision ofstéor semi-automatic la-

belling and investigation. More specifically, the followiproblems are addressed:
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1.2.1 Pre-attentive video feature extraction

It is difficult to compute an inexpensive reflection of theiaatcontent in a video se-
guence that is impervious to noise. Noise is caused by maiyrfa for example coding,
changing global illumination, or the visual ambiguity oktbontent. Prominent exam-
ples of visual ambiguity are found in motion analysis, foaeple (Longuet-Higgins,
1984), and in art, for example in Leonardo’s Mona Lisa (Gaeiirl995). A represen-
tation is desired that is both computationally inexpensigbust to noise, and captures

the action content effectively

1.2.2 Generating a video sequence representation

A video representation that is both compact and robust,lgetexpressive and generic,
is a significant challenge. It must be able to capture thernmsrt information about
what is occurring in the scene. It is also desirable for ther@g@ch to be expressed in
a mathematically understood format so that known metricsrandels can be used if
required. For example, if a histogram is used then metrich ssx? become available

(Lew, 2001).

1.2.3 Automatic partitioning and conceptual visualisatim

Automatic partitioning, also known @aemporal segmentatigmf a sequence into seg-
ments. Once discovered, segments provide a much more amitoaod generic search
experience and are better suited as the fundamental cdntektduring video search.
Conceptual visualisation of the video content. Using segat®n, a window onto
the video content is needed to provide the user with a uralelsig of the underlying
content without being distracted by image details captimethe entire sequence. We
consider partitioning and visualisation to be critical irforming sequence navigation

and video search.

1.2.4 Semi-automatic labelling and investigation

To perform a semi-automatic video investigation, the apib attach labels and interac-

tively examine the content using semantics is requiredhdfuser annotates a number
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of frames, or segment chunks, with a known semantic labeh the similarity of the
chunk can be used to infer the semantics of the remainderecfefuence. Therefore,

an easy mechanism is desired for integrating user assetsimena navigation tool.

1.3 Contributions

The novel contributions of this thesis are:

1. A robust temporal change model is computed for extraatmoge salient action
content in a scene. A compact descriptor is then formed #yatuces the location
of scene action using a grid-based approach. The sequgmeseatation is anal-
ysed to discover significant activities, considered asigsgamporal connected
active cells, by a process aftivity segmentatianEach activity is profiled, us-
ing spatial and temporal characteristics, and a cost-bsigathrity metric is used
to perform search. A sliding window based approach is pregdsr performing

temporal segmentation.

2. To capture localised appearance of an action, rather itsdoncation, a novel
wavelet based sequence descriptor using the Haar basigoiur{Graps, 1995)
is proposed. The transform is computed upon a local regideraporal change,
meaning that the coefficients capture the directionalitgrabteristics of the cell
action. The common coefficients, considered to be the polwagual elements in
the scene, are found by a clustering process and used to foloomic visual vo-
cabulary The vocabulary is extremely compact and is used for sceseriggon

and search.

3. To reflect the changing content in the scene, a cumulatiaéy/sis of the occur-
rence of the vocabulary elements is computed for a videoesemgu It is found
that the cumulative histograms have different charadtesidor different long-
term scenes. To focus upon important change Principal CasmgoAnalysis is
performed on the cumulative histogram to represent a comtemnge subspace.

The most important three dimensions are used to form anéhNssuaVideo scene
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trajectoryof a video sequence. In effect, the trajectory remains oootis if the
scene content remains continuous, permitting scene bteddesdiscovered at the

vertex positions of significant trajectory change.

4. A sequence visualisation approach is proposed w8egnent summary frames
are computed for each discovered segment, using a vistiatisa the the most
interesting action occurring. Interesting activity is fmuusing an analysis of its

occurrence distribution throughout the sequence.

5. A novel technique is proposed for performing semantidyaimsof video using a
small number of manual assessmentsR@nk votingapproach uses the rank po-
sitions of labelled items, produced by a content-baseckretrsystem, to vote for
their respective semantic labels. The result facilitagraisautomatic, semantic-
sensitive, video browsing and analysis. Furthermore, tmlsning of semantic
estimates is proposed using a Bayesian fusion framework @odstructive infer-

ence algorithm.

1.4 Structure of the thesis

The remaining chapters of this thesis are arranged as fsllow

Chapter 2 provides a review of related research in video indexingewidtructure dis-
covery, visualisation and the surveillance domain. Thetéittons and important

issues to be address are discussed.

Chapter 3 describes an approach for performing a robust temporatghdased fea-
ture extraction using a grid-based descriptor. Segmemtatnd profiling of sig-
nificant activities is also addressed. The problem of petfog pre-attentive par-

titioning is addressed using a cost-based activity sintyanetric.

Chapter 4 addresses the problem of forming a compact, uncommitteckseptation
for capturing scene action content. The task of analysieddhg-term continu-
ity in a sequence is addressed using a cumulative analysieatpresentation.

Automatic partitioning and segment conceptual visuabsedre performed.
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Chapter 5 address the problem of performing semi-automatic labglior facilitating

an intuitive semantic browsing system.

Chapter 6 summarises and concludes the work presented in this thEsespotential

future research directions are discussed.

Appendix contains a glossary of terms and also common mathematice¢gure.

Figure 1.3 illustrates how Chapters 3-5 relate to each otlérapter 3 presents a
pre-attentive approach. The video data is transformed lamddene action estimated.
A cost-based similarity metric is proposed and video searchtemporal segmentation
demonstrated. Chapter 4 presents an iconic approach. frheden is used to refer to
a small patch of localised activity. Activity content isiesated using a wavelet descrip-
tor. A trajectory is formed in a content change subspace aed to perform temporal
segmentation. A method is proposed for conceptual sumatamsof the discovered
segments. Chapter 5 presents a semantic approach. Thelrmasessments are used to
estimate the semantic content of a video. This is presentt#tetuser to enable interac-

tive sequence investigation.
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Input Manual
video assessments

!

Reliable ) Wavelet based
temporal change iconic descriptors

Pixel activity Coefficients
Pre-attentive Iconic video a Semantic
video index index estimation
/_____________________________‘\
! Search Temporal Conceptual Interative
\ segmentation visualisation investigation ,’

Figure 1.3: A diagram to illustrate how Chapters 3-5 rel&teChapter 3, an input video
is processed and a reliable temporal change formed. Thé resupre-attentive video
index that can be used for search and temporal segmentas&s.tIn Chapter 4, the
reliable temporal change is used to compute an iconic gesmmiusing the coefficients
produced by a Haar wavelet transform. The result is an iciowiex that can be used for
search and temporal segmentation tasks. We also proposgparaah for conceptual
visualisation. In Chapter 5, manual assessments are addeeliconic index. These are
used in a semi-semantic estimation method that permitsaictiee investigation.
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Chapter 2

Video indexing and search: A review

In this Chapter known methods for performing video indexamgl search are reviewed.
In Section 2.1 two important paradigms are introduced: Isiog and query-based re-
trieval. In Section 2.3 methods for performing textual téea-based and semantic index-
ing are described. In Section 2.4 the problem of video stinectliscovery is discussed,
also known as the problem of temporal segmentation, thatesled for partitioning a
sequence into retrievable components. In Section 2.5 #larvee indexing and the com-
mon difficulties are described. Finally, in Section 2.6 tin@tations of existing work are

summarised and used to motivate the work presented in tbsssth

2.1 Data search methodology

As new digital information is generated and stored it needset indexed for effective
and easy access and search. The essential purpose of agyatetystem is to satisfy

a user'sinformation needising a finite set of documents. Methods for text information
retrieval have progressed rapidly in the last twenty yeRisbergen, 1979; Baeza-Yates
and Ribeiro-Neto, 1999). Huge web-based textual searcimengow exist and enjoy
widespread use in society, for example, Google, Yahoo awidta. Beyond text, as the

quantity of digitised visual information has increased@xgntially, a growing need for



2.1. Data search methodologyl9

multimedia retrieval systentsas been withessed (Maybury, 1997; Bimbo, 1999; Lew,
2001). For example, the the British Broadcasting Corpora(BBC) stores “over one
and a half million items of video and film, or about 600,000 tsoof footage? in its
archives, that are used to construct programmes for futansinission. As programme
construction using existing clips is less expensive andlkprithan new clip generation,
performing effective visual search is critical. Similarip a very short space of time,
the number of Closed Circuit Tele-Vision (CCTV) camerag tieaord daily activity has
surged, leading to slow manual search during crime invagtig. A similar situation
exists with home video, for both that captured from a homewicecorder and mobile
devices. Clearly, the need for effective visual search rapaunt.

There are two main alternative paradigms for visual seaocbwsing and query-
based retrieval, as illustrated in Figure 2.1 and are dssdisn the following Sections.
A useful analogy as to the relationship between browsingratrieval was provided
by Rui and Huang (2000). In essence, a prospective readeboblahas two distinct
methods of evaluating the content without reading it atRiltstly, they can look at the
book’s table-of-contents to get a general feel of the caraend structure (browsing).

Alternatively, they can use the index page to find specifitiges of interest (retrieval).

2.1.1 Browsing, visualisation and summarisation

It is well understood that human cognition is very effectatequickly scanning visual
data for important content. However, a problem with manuahalysing image and
video collections is the sheer scale of the task. Automateding, visualisation and
summarisation systems are tasked with reducing this scaadble a user to ascertain

and evaluate the content more selectively and quickly. &types may be distinguished:
e Browsing. Permits navigation towards a search goal.

¢ Visualisation. Provides a mechanism to visually exploesvidleo documents. The

set of video in a system is known as a searchspace.

e Summarisation. Reduces the task required to understarabtient.

1Seeht t p: / / www. bbcr esear chcentral . com
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v

.................. Ranked List

Information Video
Need Sequences
I I
---> Query_ Indexing
' Formulation
. Query Index
E I—D Ranking 4—'

Figure 2.1: Two alternative frameworks for finding video temt. (top) A browsing
framework. The content is analysed and the important kayrés are shown to the
user. The user can quickly scan for interesting contentt¢bt) A query-based retrieval
framework. The user expresses a requirement as a quernystbampared against an
index using a retrieval function, to produce a ranked list.
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Browsing systems permit the user to quickly drill-down i thearch-space using a
successive fractionsearch tactic That is, by an iterative manual decision process the
space is reduced until all that remains is relevant. It neguperceptual grouping in or-
der to provide meaningful choices to the user. Visualisaigstems are similar except
that they are more focused on illustrating many items at pusig their similarities.
Summarisation systems are concerned with producing @bstod the content that can
be seen more quickly. For image systems browsing and vgatadn are more suit-
able. However, for video systems browsing and summarisaie more appropriate as
a frame is only meaningful when shown directly after anofreene (temporal context).

Considering the importance of image browsing and visuadisait is remarkable
that very few approaches are presented in modern litera®irsimple approach is to
present a grid of ordered image thumbnails to the user foewevn (Combs and Beder-
son, 1999) a zoom-able grid is used. However the optimum eu@ltimages or image
resolution remain unclear.

A more sophisticated approach is to generate a self-onggrasrangement using im-
age similarities and clustering. In (Roddetral,, 2001), a spatial arrangement is formed
using a low-dimensional similarity space (see Figure 2.2&)caption-based similar-
ity was compared with a visual-feature-based similarityalyser evaluated study. The
caption-based technique was found to produce good residisever, the required man-
ual labelling was subjective and time-consuming. On thewokiand, a visual-feature-
based approach was problematic due to that similar neigifmpimages appeared to
blend into each other, causing confusion.

A hierarchical image browsing system using visual featimalarity was proposed
by (Lai and Tait, 1999). The system performs visual featusseldl clustering using
colour. A hierarchy of similar images is presented to ther isenavigation purposes.
Unfortunately, this system is dependent on that the featistabution being meaningful
in some sense. In other words, that images close in featacesghare similar semantics
and should be presented together. However, this assumgies not always hold. In

a recent study, Heesch and Ruger (2004) proposed that eacfe iis represented as a
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vertex in a directed graph and arcs are formed between twgemd one is retrieved
as the nearest neighbour of the other using a variety of Wfeatures including colour
histograms. Furthermore, Heesch and Riger (2005) sugh#sie groups of densely
connected images exhibit semantics leading to a semaasieekbrowsing without train-
ing. However, this representation is rather large and gasttompute.

In our study, three approaches to video browsing and sunsatarn are considered:
¢ An Intelligent Fast-Forward analogous to that provided lwydeo recorder.
e A static frame-based summary of content.

e Extraction of a excerpt, called\adeo skim For a discussion of video skims, the

reader is directed to Let al. (2001).

Furthermore, these approaches are divided into thosexphtievideo structure and
those that operate on unstructured video. By video stractwe mean a meaningful
organisation into several layers of different granuldrind is widely considered benefi-
cial as it facilitates non-linear access. Whereas unstradtvideo may contain sections,
they do not reflect the content in any perceptive way.

In early work on unstructured video by Milkt al. (1992), the number of frames is
iteratively sub-sampled to reduce the quantity of informaipresented to a user. The
system is useful, butis limited because it does not conidaactual content of the video
during the drill-down. In Tonomura and Abe (1990), sevegr@aches are presented
in a single workbench environment: variable speed, samplash, a rush browser, and
space-time browser. The variable speed duplicates a leasaFd (FF) button; the sam-
pling flash shows the key-frames using detected shots; #etmowser displays periodic
frames irrespective of the structure; the space-time beowsesents a frame sample of
the structural units. However, a uniformly sampled apphodces not account for the
video content, i.e. low-action periods with little visuanation are over represented
and high-action periods are under represented. To address tssues, Srinivasahal.

(1999) proposed an FF approach using non-linear frame aoiplng based upon the

2\/ideo structure is described in more detail in Section 2.4.
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Figure 2.2: Screenshots from an image and video browsingpisys (top) A self or-
ganising visualisation of image-space by (Roddeal, 2001). The images are shown
according to their positions in low-dimensional colour spa(bottom) A video brows-
ing tool by (Ruiet al, 1998). Key-frames are presented according the videotsteic
The user is able to navigate the structure and play the qresing clips.
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amount of motion in the frame. Itis claimed that the resuatde rate is between +a5
times faster than the original frame rate whilst retainimgportant content.

For structured video, a common approach is to use a key-ffameach segment,
typically the first, last or mid-frame (Lew, 2001). In Reti al. (1998) a table of contents
is produced using the first and last frame of each shot/scetieashot key-frames (see
Figure 2.2). This system is shown to be effective and prevaeiser with a suitable
navigation tool. In Uchihashi (1999), the key-frames ara@eated for importance using
their length and novelty. A comic-book style video summarthien produced by resiz-
ing the frames according to their importance, and then uaitgmporally constrained
packing algorithm. The system is shown to work well for higbktructured domains
with clean data, such as video of indoor lectures. In Arrataal. (1994), synthesised
Rframes were generated to summarise the important visopkepties of each shot. The
abstractions are generated off-line before browsing lsegtowever, they are complex
and require user ability to interpret. For example, it igidiflt to correspond the motion
data to the original video.

To present a visualisation of video activity, Zeagal. (2002) computed a motion
map for each shot using the level of temporal change. Unfiately, the motion-maps
do not capture the temporal order characteristics or thal ldicectionality of action. In
lyengar and Lipman (2000), similar to image visualisatigatems, the shots are clus-
tered and a cluster browser presented to the user. The awtgred that it is not impor-
tant whether the clusters make cognitive sense, ratheiiséecs provide a useful view
of the video. In Ma and Zhang (2000), a semi-automatic facegeition system permits
home video to be labelled and organised by the presence @irknamed faces. This
approach assumes that home video sequences usually castaiall number of repeat-
ing human faces. However, it requires manual labelling dwedslystem presented only

has 50 faces, indicating extensive labelling may not begttteorward and objective.

2.1.2 Query by example

For most document types including images, a common approgadrforming retrieval

is to adopt the query-based retrieval paradigm. Esseptabystem compares a query,
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constructed to represent the user information need, agamsdex that contains rep-
resentations of all theetrievable documentsFor each document a query-document
similarity is computed and a ranked list provided to the wgign the most similar items
first. The user then explores this list in order to find the aescontent.

The processes in the query-based retrieval system arelewsol

Indexing The data is described off-line using a representation agtiior searching.

The result is known as thadex

Query Formulation The user expresses information need in a numerical formigons

tent with the formation of the index. This expression is knas thequery.

Ranking A comparison of the query against the index using a retrigwattion. The

result is aranked listof items.

Relevance FeedbackAs retrieval is an iterative process, the user can exammgsihked
listand mark documents as eithretevantor not relevant (binary). The system can
then improve the ranking by reformulating the query usingeatrapolation. Al-

ternately, the user can reformulate the query manually.

For text-based systems, the basic unit of contetegnsior word. The query formu-
lation process consists of a user selecting a number of tdratsire required. However,
for image and video systems, there is no such generic bagioinontent. Hence,
numerous visual features are computed to produce numelecalment representations
that can be compared in a feature space. Unfortunatelyrather difficult for a user to
express the information need in this numerical form duedsdmewhat conceptually
arbitrary nature. To overcome this problem, a new paradigrs proposed and has been
widely adopted, th@uery-by-exampl@QBE). A user presents an image, or a video clip,
as an example of what is required of the system. The systesmatically computes the
features (query formulation) and performs the feature canmspns during ranking.

A perplexing problem with query-by-example is that a usesxpected to provide a

suitable example. Often, this is not easily possible bexthesuser does not possess such
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an example, or the user only has a vague idea of what they@kabpfor. The approach
is also dependent on correct feature selection and a destaetric that corresponds to
human cognitive perception. Therefore, it is consideret thtruly effective retrieval
system needs to provide both a browsing system for manualkgigg the contents of
the database and selecting a suitable example, and a attsigstem for performing

visual queries to find content (Bimbo, 1999).

2.2 The semantic gap

The Semantic gajps an important issue in many computer vision systems, baicpa
larly for indexing. It refers to the lack of coincidence be®wn machine low-level digital
representations of visual data and the human high-leveliteg understanding of the
same dath This is particularly important for the task of retrievaldasise the system
is trying to find suitable visual data that matches the usarcéeexpectations. User
studies suggest that image retrieval systems that opesatg low-level visual features
alone often do not satisfy user requirements (Enser andd®@antl995; Eakins, 1996;
Enser and Sandom, 2003; Eaketsal., 2004).

The major issues in visual indexing are characterised as:

Sensory Semantic
Gap Features are only an approxifeatures do not correspond to
mation of the real world. human understanding.
I The same thing can have manyimilar visual appearances can
Ambiguity g $» PP

different visual appearances.| have different meanings.

Related to the semantic gap, there is also the notion $ém@sory gaghat refers
to the fact that computer vision systems always deal withgéaliapproximation of a
perceived world. A gap exists between the real-world andctiraputational descrip-

tions that are derived during the recording proég&meulderset al., 2000). This gap

3The semantic gap is the lack of coincidence between therimition that one can extract
from the visual data and the interpretation that the sameeltkate for a user in a given situation”
(Smeulderst al., 2000).

4The sensory gap is the gap between the object in the readvemtl the information in a
(computational) description derived from a recording afttbcene” (Smeuldeet al., 2000)
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is amplified by quantisation noise that a vision system magbtiate during modelling.
The choice of the most suitable approximation is also cameitl as the feature selec-
tion problem. Sensory ambiguitis another problem, in that an object can have many
different appearances in feature-space but still retainglesidentity. Different appear-
ances may be due to rotation, translation or scale variarodye to different lighting
conditions. The same object often exhibits different cadoaccording to the lighting
conditions, a problem known as colour constancy.

The Semantic gapefers to the fundamental differences between a digitalhamdan
representation of content. Whereas machines are inhgrantherical, the human brain
prefers concepts. Unfortunately, it is very difficult for aanes to handle concepts and
so a machine-human semantic gap exists. For example, inea vedrieval system the
user may wish to perform a semantic search, e.g. find a vidp@t!tTony Blair at the
Whitehouse”, whereas the system only has a colour, texsin@pe and motion based
representation. The problem of associating numericalesrtations with meanings is
known as the symbol grounding or binding problem..SAmantic ambiguitproblem
also exists, in that, even if a machine were able to conversemantics, Human un-
derstanding can vary widely because of its subjectivityirgke concise definition of a
word, or semantic, is not possible in most cases, despigatedforts in the construction
of ontologies. A successful visual search system must ms@ithe effects of these four

issues, in particular the sensory and semantic gaps.

2.3 Indexing methods for visual search

The physical manifestation of an index is essentially a lopkable of
[content identifier, content descriptor]

tuples. The content identifier contains information suctphgsical file location in-
formation and, for video, the segment start and end framéipons. This enables an
application to search the index, but also find and presenai¢heal content to the user.
The content descriptor consists of a textual, or numerieaplicit explanation of the

associated content. The descriptor is used for matching.
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2.3.1 Text based approach

Owing to the success of early text-based information regifisystems, for example (Ri-
jsbergen, 1979; Salton, 1989), the first approach to visu@éxing was reliant upon
Meta-data Textual descriptions of image content are generated niignattached to
the visual data, and then a standard text-based retriestdrsycan be employed to per-
form a text query. A good example of this kind is the probatiti model (Baeza-Yates
and Ribeiro-Neto, 1999). However, it quickly became appéitieat manually generated
meta-data was insufficient due to the lack of perceptuatiseyi and the subjective na-
ture of a manual annotation (Bimbo, 1999). Also, it is somaimrealistic to expect an
armada of manual annotators to sit, watch and analyse alide® output produced for
all domains, and produce satisfactory and consistent uhetia-

Alternatively, a content-independent approach is to usefdhmat, author's name,
title, date, location, anchor text, and size as meta-datadar to perform retrieval us-
ing a deterministic matching system. To this end, the Mowngiures Expert Group
(MPEG) recently introduced the Multimedia Content Dedaoip Interface (MPEG-7)
standard to hold both facts and visual features. Howevergie of facts is not generally
considered important to visual retrieval. Rather, apphheaanay exploit text that occurs
within the visual data itself. In Lienhart (1996), artifittext is extracted from the video
frames using Optical Character Recognition (OCR). Unfaately, the majority of the
text that can be extracted is not of use. In Smeaton (2004 )Jélscribed Fischlar sys-
tem uses closed caption and teletext information from krastérs such as the British
Broadcasting Corporation (BBC) and Radio Telefis EiredRiTH).

In the Informedia project, Hauptmann and Smith (1995) dggidoa Hidden Markov
Model based speech recognition to extract a transcriptebakis of meta-data. Graves;
Graves and Lalmas (2001; 2002) also proposed a system irhvahianscript was di-
vided amongst video segments and an Inference network ageaform ranking. All of
these systems work with a degree of success. However, thbdsrd indexing paradigm
for visual search is fundamentally flawed as a text-onlyespntation cannot fully cap-

ture the perceptual properties of visual data (Bimbo, 19889pmboet al,, 1999).
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2.3.2 Image feature based approach

Much effort has been made into developing methods for ctsitased image index-
ing and retrieval. Colour and texture features are most comynused and are ef-
fective for image retrieval, whereas shape/edge featue®ffective in specialist do-
mains (Bimbo, 1999; Lew, 2001; Bimbo, 1999; Smeuldersal, 2000; Lew, 2001,
Castelli and Bergman, 2002).

In the seminal work of Swain and Ballard (1991), a colourdgsam representa-
tion was computed to support a histogram intersection anitylmetric. Histograms are
shown to offer invariance to translation, rotation, scald partial occlusions. Later, the
Query By Image Content (QBIC) system of Flickredral. (1995) adopted a weighted
histogram distance. In the VisualSEEK system of Smith andn@gh(1997), the fea-
ture space was divided by spatially localised regions leefastogram computation. In
Jain and Vailaya (1995), a histogram of edge directions deddn order to perform
combined colour and shape trademark retrieval. It was shibata more robust result
was achieved than either of the individual feature-basguicgzhes. A major problem
with colour-based systems is that changes in global illatam can drastically affect
the feature space, caused by the colour constancy problem.

Unfortunately, image retrieval based upon holistic histmg matching is vulnera-
ble to quantisation problems during the binning processedrsized histograms do not
achieve a good balance between the representation exesss and efficiency, i.e.
the representation size is constant regardless of the mmfeerceptual complexity or
importance. To overcome this problem, Rubner and Toma&iQ)lproposed a variable
sized signature representation. The signature consissef of representative feature
clusters found through vector quantisation. Additionalgimilarity metric called Earth
Mover’s Distance is used to compare signatures based updratisportation cost (Rub-
neret al, 2000). However, the estimation of the flow matrix is nongiv

An object-based image retrieval system, called Blobwaoxials proposed by Carson
et al. (1999). Firstly, a spatial image segmentation is achieyedlistering a combined

colour and texture feature space using the Expectation idigation algorithm (Demp-
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Figure 2.3: Four images and their spatial segmentationgated by the Blobworld.
For the car image, the semantic is preserved in the shape.ewowhe city, flower
and outdoor scenes result in segmentations that are natl igefetrieval. Images used

courtesy of (Lui, 2002).
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steret al, 1977). An object lookup table is then constructed for edd lising the
colour, texture and shape of the segment. Object-baseceimsgeval is achieved by
the selection of a query-blob from a user presented frame,tla@n blob comparison
(Carsonet al, 2002). The approach is dependent upon the segmentatiorafingful
blobs and on retrieval being object-dependent. In Figuefdur image segmentations
are shown. The car object produces a distinctive shapestigatid for matching however
the other segmentations are poor. Many succesful algositaist for image segmenta-
tion, for example Normalised Cuts (Shi and Malik, 2000) amel Watershed (Beucher
and Meyer, 1993), however the general problem remains ueddor all cases.

The choice of which features to use is a complex issue foyrkalbwn as the feature
selection problem. An optimal set of features are ones irclvknown different classes
are maximally separable (Sebestyen, 1962). Feature ieidot large data sets is also
affected by theCurse of dimensionalitproblem (Bellman, 1961). As the size of the
feature space increases the ability to find an optimal feagat diminishes. As a conse-
quence, it is often the case for image and video indexingalsatall number of features

are chosen that is known to perform optimally for a specifimdm.

2.3.3 Video feature based approach

Unlike an image, a video is a large, non-compact chunk of.dataing indexing, the
first task is to determine what elements are to be describéddas items. Some in-
dices are required to describe every frame, however in messgscframe groups called
segments are extracted as index items (see Section 2.4) stfucture exists, a uniform
temporal segmentation of a video can be used to provide lggiraided small temporal
units of content.

Following from the success of image retrieval systems, amomapproach to video
indexing and retrieval is to select a key-frame for a segraadtthen perform static im-
age indexing. Commonly, the first, mid, last, 8t frame of a segment is used. However,
these frames do not consider the segment content and cafdiieebe unrepresentative.
Many approaches to content-based key-frame selectionbemmereported in literature.

In early work by Gunsegt al. (1997), a mean colour histogram is computed using all of
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the frames, and the key-frame is selected as that with tlsest@olour histogram. Sim-

ilarly, in Zhuanget al. (1998) a frame content space is clustered and the centraiats f

the largest clusters used. In Wolf (1996), an assumptionadarthat camera stillness
is an indicator of frame importance. Therefore, optic-flexcomputed and the frame
associated with minimum flow field is used. Unfortunatelyclsan assumption only

holds for manually created video. In Zhabal. (2000), each frame is projected into a
content space and frames at the corners are used.

An important consideration for key-frame selection is hoany frames to employ.
One approach is to use any knowledge about the visual cleaisitts of a segment,
e.g. if the segment is zooming then the first and last framedeaused, but this both
simplistic and ad hoc. In Portet al. (2003b), several frames were selected according
to frame overlap. Frames are selected that show differeskdsaund material using a
block-based motion algorithm. Rather than employing rplétkey-frames, Sawhney
and Ayer (1996) constructed a single mosaic of the backgrdocation using the shot
frames, from which a static feature-based index is compukéalvever, this approach
does not consider foreground objects or their temporaleednt

In general, static features provide only a limited des@ipbf the segment content
because they do not consider teenporal contextTo overcome this problem, a number
of approaches have been proposed that retain the temparalatér of a video segment.
In (Vinod, 1998), a shot activity histogram is computed asddi Each frame is repre-
sented using an optic-flow based estimation of the levelash& activity. In the VideoQ
system of (Changt al., 1998a; 1998b), a Query-by-sketch (QBS) motion-trail base
retrieval system is described. The sketch may contain colexiture, shape or a spatial
relationship between primitives, and their transformabeer time. The QBS paradigm
is attractive because it can solve the initialisation peabbf QBE, described in Section
2.1.2. Unfortunately, it requires that the user has somi&kkey ability and a clear visu-
alisation of the requirements. In Bimlab al. (2000), 3D colour flows (blobs) are found
and used. It requires that each frame is segmented to igeagfons of homogeneous

colour that are tracked over time. The approach is used texitelevision advertise-
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ments that have a large amount of dynamic colour informat&imilarly, in Sivic and

Zisserman (2003), viewpoint invariant regions are found tacked.

2.3.4 Semantic based approach

A semantic indexing system attempts to make the impliciviedge in the scene ex-
plicit. This requires the detection and labelling of distimbjects, e.g. faces, cars or
pedestrians, and behaviours, e.g. walk or run. Two classssmantic may be distin-

guished:

Holistic semantics refer to the entire image, video, video frame or segment.ekam-
ple, the whole image or video may labelled as indoor or outddack-and-white

or colour, have human faces or not.

Localised semanticsrefer to a particular spatial and/or temporal location. &ample,

a human face is present@ty,t) or a waving gesture occurs betweeh t2].

In Vailayaet al. (2001), images are classified as either indoor or outdoogusdom-
peting density estimations of visual features. Furtheenonce classified, pairs of clas-
sifiers are recursively applied to find more specific subsifecstions. Unfortunately, as
the image progresses down the hierarchy, the error-ratsadas to unmanageable lev-
els. Itis also clear that a binary holistic classificatiomat useful for searching a large
search space. In Wargg al. (2001), a holistic image classification is used to prune a
gigantic search space prior to a more specific and expensapgesbased matching.

To avoid the use of hand-labelled data in supervised legrn¥ie et al. (2003)
adopted a video mining approach to automatically group aadnl content phases in
video. Low-level colour-based features are extracted amérarchical hidden Markov
model was employed to perform temporal grouping and lafglliThe classification
rates were compared favourably against a hidden Markov mioai@ed with hand-
labelled data. However, the domain used was very consttaind the model size was
small. It remains unclear as to whether the approach wilescamore meaningful data.

The ImageScape image retrieval system (Buijs and Lew, 119898;and Sebe, 2000;

Lew, 2000; Queries, 2002) learns a small number of locabsedantics, such as [human
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face, sky, stone, tree, water], using supervised trainifige image descriptor consists
of several spatial semantic indicators and retrieval iSeaad using a Query-by-icon

(QBI) paradigm: the user arranges a number of icons thaespand to the semantics
on a palette; it is matched to the index using presencefoiaéc and spatial-position.
Unfortunately, the small number of rather simple semangssilt in a lack of expres-

siveness in the query language and matching process.

In Fenget al. (2002), pixels are labelled using a Multiple-Layered Pptan (MLP)
trained with hand-labelled outdoor data. To improve thailtessing spatial context,
i.e. the sky occurs towards the top of an image, the locakifleation results are re-
processed through a Tree-Structured Belief Network tichureeng Maximum Likelihood
(ML). Connected-components algorithm is used to find lalgedof similarly labelled
pixels that become the semantics. Unfortunately, the gmbrsuffers from large quan-
tisation problems because of the enforced structure oféheflmetwork.

The discovery of localised semantics in video is akin to ayitescene understanding
(Ullman, 2000; Gonggt al,, 2000; Ng, 2002). An approach is required to perform back-
ground maintenance, object detection and tracking, anadabgect or activity recogni-
tion. The detection of changing pixels, callEmporal changeprovides information
about the spatial positions of moving objects. However Wulerable to noise. Back-
ground maintenance reduces noise by modelling expectedronf scene appearance,
for example by a Gaussian Mixture model for each pixel (Seaugnd Grimson, 2000).

In Bobick and Davis (2001), the temporal characteristiat strape of pixel changes
are modelled using a moment feature space and is used toniseaggerobic exercises.
Unfortunately, the system requires clearly distinguidbailstivities given in clean datasets.
It is not clear whether the approach could be trained usingemealistic data. Hidden
Markov Models (HMM) are a popular graph model used for temapogcognition be-
cause they offer dynamic time warping, efficient trainingaalthms, and clear Bayesian
semantics (Rabiner, 1989). HMMs are known to perform weltamtrolled environ-
ments such as with gestures (Psaredual, 2002), but are dependent upon a strict

temporal order in the observed action. In (Bragidal, 1997; Oliveret al, 2000), a
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Video Sequence

Scene Scene Scene
Shot Shot Shot Shot Shot |Shot |Shot

Figure 2.4: The four-level video structure. The frames amiged into shots; the shots
are grouped into scenes. Shot-breaks occur at camera eagisoontinuity, whereas
scene-breaks occur at semantic discontinuity. The toptievthe sequence.

Coupled HMM is used to successfully label outdoor actisiti€imilarly, in Gong and
Xiang (2003), blobs of connected temporal change are founoutdoor surveillance
data. These are identified using a dynamic Bayesian beltefank - with the features
primarily based upon spatial location and the size/shajleobounding box. Unfortu-

nately, the approach was limited to semi-structured scestesepeating activity.

2.4 \Video structure discovery

A video sequence consists of a set of temporally ordereddsatinat, when shown se-
quentially, theHuman Vision Systemterpret as a moving image. Neighbouring frames
are often similar, especially when a high number of framassgeond was captured,
leading to computational and perceptual difficulties. Agridm understanding corre-
sponds better to smaller and more semantic units and theamfesir-level hierarchy
illustrated in Figure 2.4 is widely employed (Bimbo, 200@wi, 2001).

At the lowest level, the set of frames, a physical sequenogaEmented. Arameis
an atomic unit in the temporal domain and cannot be furtheddd. Ashotis a group of
frames that are captured continuously from the same cam#érawtinterruption. Shots
are prevalent in highly structured video domains, such agsoasts, adverts, drama,
entertainment, but less so in other domains such as sporswandillance. However,

for semantic-sensitive applications, shots still presetdo low-level unit for Human
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understanding. Shots are therefore grouped stEnes A scene is a set of shots that
exhibit a common semantic, thread or story-line. This hidna exploits the idea that,
in most structured video, a sequence is artificially builtingia manual editing process.
As shots and scenes have the same physical structure,eyebdith consist of a group
of neighbouring frames, the generic tesegments used.

The first step in video indexing is to automatically discongistructure. The inter-
mediate levels, shots and scenes, are discovered drimgoral segmentatin Here,
the important works are now reviewed. For a comprehensivieweof shot transition

detection the reader is directed to (Lefeeteal., 2003).

2.4.1 Shot transition detection

The detection of shots has received widespread attentioe #ie early 1990s with most
effort concentrated on more commercial domains, for exanmpdrama and television

advertisements. We distinguish between two main typesaiftsnsition:
e A sharp break, or cut, occurs when the change between shaissaostantly.

e A gradual break occurs when, in the editing suite, an aljoriis used to visually

enhance the transition, for example a wipe, fade or dissolve

A robust method needs to address both transition types. riarge shot transition de-
tection can be classified into five categories: pixel-bakistipogram-based, block-based,
compressed-domain, and model-based.

A number of early works detected sharp shot transitionsgutiie level of differ-
ence in the pixels between frames. Early methods dete@aditions by comparing the
sum of intra-frame pixel-differences against a threshdldgasaka and Tanaka, 1991;
Kikukawa and Kawafuchi, 1992). Similarly in (Zhareg al, 1993), the number of
pixels with change above a threshold is used. Such pixedebasmparison methods

are highly sensitive to object and camera motions. As sutkZhanget al, 1993) a

5In literature, this process may be referred to as video siragarsing, shot detection, scene
detection, camera-break detection or shot transitionctiete
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3x3 smoothing filter is first applied to the image. Alternatiyeh (Shahraray, 1995) a
motion-compensated pixel difference is computed.

To provide greater perceptual robustness, a histograneseptation can be used. A
histogram can be computed for each frame, using either ggaie or colour informa-
tion, and is robust to camera and object motions. Frame cosgpacan then be made
using a metric such as the histogram intersectioryddistance (Lew, 2001). In the
seminal work by Zhangt al. (1993), a twin comparison method was proposed to find
sharp and gradual transitions in a single pass. Howeverp@auof sensitive thresh-
olds are needed to obtain a good result: one threshold tatdiie sharp transitions;
another to detect the gradual transitions using cumuldiiference. This method is of-
ten reported in literature and is considered successfué¥ample (Boreczky and Rowe,
1996). However global histogram methods are known to fagmfiames from different
shots are close in representation space. Consequentii},aften miss a transition.

As pixel-based methods are considered too sensitive t@ r@amid global histogram-
based methods too sensitive to similar looking shots, arnmtdiate approach can be
adopted by splitting the image into blocks. A block-basepraach also has computa-
tional advantages. Nagasaka and Tanaka (1991) proposedersien to their pixel-
based approach that operated on frames divided into bldckz® 4x 4. A transition
is detected by (a) computing all the distances between gpeotive block histograms,
(b) ordering the distances and retaining the lowest eigid, @) comparing the aver-
age retained distance against a threshold. In a recent, 2adteret al. (2003a) used
block-based motion estimation to track blocks through aisage and to identify gradual
transitions. It attempts to distinguish changes causedangitions from those caused
by camera and object motions at block-level. However, théhoekis not invariant to
multiple different motions within a block. It is also comptibnally expensive.

A number of approaches have been proposed that partiti@owda compressed do-
main using, for instance, the standards from the MovingueecExperts Group (MPEG).
This is potentially advantageous because the motion fesane already computed dur-

ing the temporal compression process. In Arnedral. (1993), the normalised inner
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product of the coefficients between frames is compared. |&ilyiin Zhanget al.
(1994), the coefficients from corresponding blocks betwieames are compared, us-
ing a number of thresholds in a modified twin comparison metha both cases, the
algorithms operate on the I-franfelgading to a loss of temporal precision. In Meeiy
al. (1995), the B-frame information is used.

Itis important to note that all of the approaches above priesbottom-up style solu-
tion to the problem. A top-down approach is also possiblesnehy implicit knowledge
about the appearance of a gradual transition is encodeceandmised. For example, in
(Hampapuret al, 1995) a number of gradual transition types are modelledwvéver,

we consider that such an approach is invalid in most uncaingtd non-artificial cases.

2.4.2 Scene change detection

Once the set of shots is established, the next task is to exafmem for semantic sim-
ilarities in order to perform perceptual grouping into seenin general, there are three
approaches: model-based, visual-similarity based, angaeal-context based.

In Aigraineet al. (1997), scene breaks are found using domain specific ruksg
to editing techniques and film theory. For example, certgoes of shot transition may
indicate that the next shot is the beginning of a new sceneweMer, such rules are
inflexible, require significant knowledge about the domaing are only applicable to
constrained sequences. A model-based approach is oftelep@mdent on video content
following pre-determined expectations.

Numerous works have proposed using visual-similarity idquen a bottom-up shot
merging, in order to form scenes. In Ratial. (1998), the first and last frames in the shot
are used as key-frames. Colour histograms are extracted alith a measure of global
shot activity. Shot similarity is then defined as a combimaf feature similarity and
temporal attraction. Shot groups and scenes are found astimge adaptive merging
algorithm. The approach provides a basis for semi-autanséttucture discovery using

visual features. However, it is over dependant on coloutifeato structural errors. In

5Refer to MPEG for more details on the compressed video fartmeghort, an I-frame is a
complete image frame that occurs periodically in order tovjate basis. A B-frame is encoded
relative to the basis provided in both directions.
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Hanjalic et al. (1999) it is argued that movies are organised around evants that
shots are either a part of an event (event shots) or servésfdescription (descriptive
shots), for example by showing the location of where an eisatiaiking place. Links are
formed between visually similar descriptive shots usingdaptive threshold. The shot
transitions over which a low number of links pass is identifés a scene-break. This
approach assumes that shot groups are encapsulated lyrsihats. However, this does
not often hold.

It is not sufficient to use visual-similarity alone when merhing shot grouping,
because shots in different scenes can be close in the feggace. In the literature, a
number of approaches (Yeuergal.,, 1996; Kender and Yeo, 1998; Lin and Zhang, 2000;
Lin et al, 2001) use temporal context when performing shot-scenigrasgent. By
temporal context, we mean the examination of shot contemti@tion to its near and far
neighbours over time. Once shots have been detected, a e@gtebe represented as a
sequence of symbols, e. ABABCDCD where each letter corresponds to a shot label.
Intuitively, the process of scene detection is requiredtd fhe points at which the future
no longer looks like the past. So, in the example, the break isne instant 4 because
As andBs becomeCs andDs. Such an approach requires shot clustering, labellindj, an
then a temporal analysis to discover the scene breaks.

In Yeunget al. (1996), the shots are represented using visual primitiaed, hier-
archical clustering is performed where, at each step, tleenhwst similar clusters are
merged. Shot similarity is computed using a feature-basetticrand a temporal con-
straint. Ascene transition grapls then constructed with nodes representing the clusters
and edges capturing the level of temporal transition betwesles. The previous ex-
ample is decomposed into a graph= B = C < D. This graph is typically dense.
Scene-transitions are identified where the graph is then,im this example, betwedh
andC, which is correct. A temporal constraint is introduced todil@ longer sequences
with repeating shot types. This approach was applied safidgsto videos of situation
comedy. However, it is a fundamentally discrete procesantbn accurate shot clus-

tering and labelling. If small variations in visual feataread to a different shot label
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assignment, the graph can be distorted and produce errors.

In Kender and Yeo (1998), a continuous approach is presehttdat each shot,
estimates the level of similarity between the past and thedu As the video is parsed,
a model of short-term memory is maintained using a shot hu&er shots are leaked
from the buffer in a non-linear time-ordered manner. A slecttl value is computed for
the incoming shot, that captures the similarity betweemd the buffer. A normalised
shot recall is used to compute a normalised measure of videerence. Minima in
coherence are identified as the scene-transitions. Umfatdly, the choice of buffer
size has severe consequences for the results. Also, penfpmmany shot-shot content
comparisons can be computationally demanding.

A conceptually similar but simpler approach was proposetibynd Zhang (2000).
The dominant colour motion in a shot is estimated and repteddan a histogram. The
histogram intersection distance is used for shot comparisbo establish the scene
boundaries, at each shot the left and right shot attraci@omputed using a local tem-
poral context of three shots. If the attraction of a shot frihra right (the future) is
greater than the attraction from the left (the past), thema is allocated to a new scene.
In their extended work (Liret al., 2001), the force competition approach, the ratio of
the left and right attraction is used as a splitting force.ofplementary merging force
is computed using the similarity of the right shots to the &fots. Scene boundaries
are generally found when the splitting force is at a maximuna #the merging force is
at a minimum. The approach is elegant. However, it reliesaour information being
present and useful, and on a small temporal context. Thacatfns of context size are
not evaluated.

The shot and scene detection techniques outlined abovealdefor constrained,
well-structured broadcast quality sequences, such asrigws and sport programmes.
However, the assumption that structure exists, and thatdh&ber of shots exceeds the
number of scenes, do not necessarily hold for unstructusethihs, such as home video
or in surveillance. For example, during 24 hours of contimicapture, a surveillance

camera may capture many natural scenes but will have norsimgitions.
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2.5 Surveillance

In the digital age, Closed Circuit Tele-Vision (CCTV) suillence cameras are ubiqui-
tous. Although the exact number of cameras in the United #angis not known, it is
estimated to be around 4 million with 4@DO0 of these in London (McCahill and Norris,
2002). These cameras exist to monitor and record activityrasults in an extremely
large amount of footage needing to be stored, sorted aneégsed reliably, in order to
satisfy its purpose. The cognitive skills required by a gssful surveillance operative
include physical capacity, sensory recognition, percagitocessing, observation skills
and sustained attention (Donald, 1999). Currently, th&sks are compromised by re-
lentless expansion. A fully automated or semi-automatci@i surveillance system is
highly desirable and, in recent years, has attracted hemagiment

In particular, current research is interested in the deiradbf abnormal phases of
content. In Dee and Hogg (2004), an attempt is made to explamal human be-
haviours in a car-park scene using a goal-based approads.astsumed that human
behaviour is always explainable, for example a person irstieme must walk to one of
the exits or paying stations. However, the approach doasreeqnanual labelling and
configuration. In Nait-Charif and McKenna (2004), unusizhdties are detected in a
home supportive environment, for example an elderly patias stopped moving in a
particular zone and intervention is required. This is aebieby, firstly, extracting object
motion trajectories by grouping pixels of temporal charaygajectory speed feature ex-
traction, and then clustering to find spatial-zones of etgubzero-motion. A rule based
detection is then used to detect important zero-motiontsyer. if the speed is less
than a predetermined threshold in a particular zone thestttas is abnormal.

One problem in surveillance scenes is that they often conteany static struc-

tures that cause occlusion, and so hampering trackingitdigms. Consequently, many

"The following projects are indicativ&keTRIEVE - RealtimE Tagging and Retrieval of Images
Eligible for use as Video EvidencegvealL - Recovering Evidence from Video by fusing Video
Evidence Thesaurus and Video Meta-Datanerick - Generation, Encoding and Retrieval of
CCTV-derived Knowledgerons- Incident Recognition for Surveillance and SecunitygIiLANT
- Intelligent Real-time Storage and Retrieval of Survaitla Video)nsigHT - Video Analysis and
Selective Zooming using Semantic Models of Human Presemgéativity.
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surveillance video indexing systems avoid activity madelland instead exploit only
spatial and geometric information about the scene, for @@ifMakris and Ellis, 2002;
Zhonget al., 2004). In Greenhilet al. (2004), an occlusion landscape is built for a scene
using a depth-based probability density function to modehepixel. The depth space
is populated using estimates of moving object ground pmssti The landscape is used

during inter-frame correspondence to reduce occlusiacedf

2.6 Discussion

There is an urgent need for systems that can perform autoaradiysis and pre-attentive
filtering of surveillance video. Unfortunately, indexing problematic owing to signifi-

cant sensory issues:

e The quality of the scene capture can sometimes be poor becétse recording
device and storage medium used. This leads to a weak feanidsdape. For
example, it has been suggested that very little useful iébion exists in the

colour space captured by commercial CCTV (Gong and Xian@320

e Surveillance system operate in all weather conditions,&#sa day. This causes

very large changes in scene appearance. (See examplesiie Ei§).

e The rough nature of the domain: low-bandwidth during traission; camera
shake; dirty lens (although modern camera mounts may bepediwith wash-

wipe facilities), all contribute to poor data quality.

e Elaborative multi-media data (synchronised audio, text aideo) is not avail-
able. Multi-modal techniques, for example that exploitiaudformation, are not

possible.

These issues are exacerbated by the fact that capturedseguse often very long, and
contain little or no interesting content. Many visual reg@etation approaches exploit
colour, shape and texture information. However, in sulaede such features do not

correspond to the main requirement (*what is happeningg)therefore are not useful.
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Figure 2.5: Four frames from a road junction scene showiageffect of different light-
ing conditions. (top) The scene in normal conditions witlfiudie lighting. (bottom left)
The scene with direct sunlight. Strong shadows occur andlaagly seen. This ef-
fect hampers object detection in dark areas and also aatestunwanted tree motions.
(bottom right) The scene at night. It presents a signifigadifferent visual appearance
to the daylight scene.

Figure 2.6: An illustrative frame from two different outdosurveillance scenes. Vehi-
cles in the scene are constrained to operate on road sudadgsarticular paths leading
to very little useful trajectory information. Pedestriazemn operate more freely but are
small in the visual field leading to detection difficulties.
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An active research area in computer vision is tracking. @ligh tracking will pro-
vide information on object motions in real-time, it is notngputationally feasible to
apply tracking algorithms, such asnpensartion (Isard and Blake, 1998), to such large-
scale data. Also, segmented motion trails are not alwaysnmdtive when performing
visual search. (See Figure 1.2 on page 12 for an examplejettoaies that can be ex-
tracted from an indoor scene. See Figure 2.6 for examplesitooor scenes in which
trajectories are difficult to extract and constrained). fiefeérajectory information could
be extracted reliably, it would almost always follow the satrail, as in surveillance
situations object motion often follows a similar constesdnpath. For example, cars
are constrained to follow roads and pedestrians will uguallow the most sensible
route that satisifies their objective (Dee and Hogg, 20043ygtem that performs video
analysis without specifically modelling object-level cent or performs tracking can be
highly effective and also computationally more robust.

As described in Section 2.4, temporal segmentation is amitapt initial phase of
indexing. However, in a surveillance situation no artifiigjanduced structure exists,
i.e. there are no sharp/gradual shot transitions or meéuisgot groupings. We are
therefore required to find a more subtle and fundamentaltyrabcontent change in
long continuous video using action features. Nevertheléssatural structure can be
found in surveillance video it could be used to provide coheecess and visualisation.

In Chapter 3, an approach is presented for extracting adgatures from surveil-
lance video. A video index is constructed that is used fotdkks of search and temporal
segmentation. The approach is considered tpreeattentivebecause it makes no as-
sumptions about the scene content. In Chapter 4, a repatigenis presented that uses
a wavelet-based descriptor to extract information abocalloegions (cells) of activity.
An Iconic indexis constructed that is used for temporal segmentation amaesee vi-
sualisation. An approach for video summarisation is algs@nted. In Chapter 5, an
approach for the integrating of manual assessments witinthex is presented. This

forms aSemantic graplthat is then used for sequence browsing.
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Chapter 3

Pre-attentive video processing

Large volumes of surveillance video data exist and preseahaiderable and important
indexing challenge. We consider the developmentmieaattentivesystem for indexing
is a critical first step needed to facilitate visual searcly. pBe-attentive, we refer to a
method that can operate quickly on large volumes of datanbgsrior knowledge or
artificial expectations of the content, and is able to ogevathout supervision. Such
a system must determine what is pertinent and generate ar gufficient for later use
by more directed algorithms. In effect, the system shoutdrfibut a large quantity of
information while retaining the crucial parts.

As such, in this Chapter an action-based approach is prdghaégenerates a com-
pact index, that is used for visual search, browsing and teatgegmentation. Firstly,
in Section 3.2.1, a measure of temporal change is definedstlests sensitive to sensory
problems and is sufficiently efficient and scalable. In ®#c8.2.2, a frame representa-
tion is described that captures the spatio-temporal actorext using a cellular grid. In
Section 3.3, spatio-temporal connected cells, that ar@@icator of scene content, are
found and profiled to form an action-based index. In SectidntBe visual structure and
temporal context of scene action is compared and a costisasdarity metric formed.

Finally, outdoor surveillance scenes are used to demaasita approach.
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3.1 A sequence and its segmentation

To begin, the termsceneandsequencare clarified: a scene is a real-world environment
in which action occurs; a sequence is a digital approxinmatibthe scene content as
observed and captured from a digital capture device. Toopmriscene analysis, it is
approximated, digitised and stored into a number of seesené video sequence is

defined as a set dfames

F={F.R,....F}={R:Vte[Ln} (3.1)

wheren is the number of framés Note thatvt refers to all frames. When the frames
are viewed in strict sequential order they provide a digigroximation of the scene

content. Each frame consists of a square grid of pixel posti

R ={R(xY):vxe[LX];¥ye[LY]} (3.2)

whereVx andVy to refer to the full spatial ranges. For clarity, a pixel gmsi is referred
to ask(x,y) = F(x,y,t).

Considering the need for video structure as discussed iiddez.4, in this Chap-
ter we form an index and perform temporal segmentation. €hgpbral segmentation

consists of a number of break positions:

B={b:Vie[l,m;m<n;b €[1ln]} (3.3)

where each break positidnis the frame number of a discontinuity in the sequence, i.e.
eachb; is in the rangd1, n]. The number of breaks is less than the number of frames
n. The frames in the rangé, bj1] are known as aegmentind provides a larger and

more semantic unit of sequence content (than a frame).

1Set notation is used throughout this thesis. For examfle,{x; : Vi € [1,n]} indicates the
setX is comprised oh items. The ternjl,n| is used to refer to all values in the range 1nto
Constraints appear after the colon and multiple conssairg separated by a semi-colon.
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To perform a comparison of two temporal segmentations, @agity metric is de-
fined that considers the number of close break positions:

i<m

Z (min({|pi —aj| : Vj € [1,m}) > Tuithin) (3.4)

whereP andQ are the segmentations being comparad the number of breaks in each,
and Tyithin iS @ matching distance for breaks. The result of the metrixetsveen0, m|
representing the number of mis-aligned breaks. Alignednsegations will produce a
low score. To compute the similarity between a segmentainaha set of segmentations,

all the similarities are computed and the mean used.

3.2 Frame based video indexing

Owing to the nature of surveillance, and as we are more istedan “what is happening”
in the scene rather than “what is present”, we focus on adiased feature extraction
methods. In the following Sections our approach for indgxarsurveillance sequences

at the frame level is described. We use the scenes illudtnatéigure 3.1.

3.2.1 A measure of reliable temporal change

The first task is to extract important features from a seqedrycprocessing each frame
in turn. Each pixel is initially represented as a veckoix,y,t) = (RGB), that represent
the intensity of red, green and blue captured at that positito begin, the frame is

converted to the Hue Saturation Value (HSV) colour space:

0.5(R—G) + (R—B)

=180 R_G7+ (R—B)(G- B2 &9
S:l—mmin(R,G, B) (3.6)
V= @ (3.7)

The values of Hueil € [0,36(°], and Saturatior$ € [0, 1], provide perceptually mean-

ingful colour information, and Valud/ € [0,255, records the brightness.
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TheWaving handgcene shows a number of hand signals - squares, figure didrigles
- used to simulate changing content behaviour.

The Pets carparkscene, obtained from the Performance Evaluation of Trackind
Surveillance workshop (PETS), shows a carpark scene congecar, bicycle and pedes-
trian activity. See (Ferryman, 2003).

An Aircraft docking stationn a busy airport scene, obtained during the Incident Recog-
nition for Surveillance and Security project (ICONS), stsoan aircraft docking station

at Heathrow airport, London. The sequence shows aircnafehand departure, unload-
ing, loading, and many other natural activity content. Sg&I(UL, 2002).

Figure 3.1: Three different scenes used.



3.2. Frame based video indexingt9

By observation, we find that the colour information compuiteeutdoor surveil-
lance scenes is not expressive or consistent enough (atwahsthe majority of the
current analogue systems). This is due to changeable ibdigiting conditions such
as cloud coverage, the poor quality camera equipment usatgdsurveillance capture,
and frequently reused storage media. We also find that siavee frames are mainly
grey due to a high proportion of concrete, brick, tarmac atneles furniture content.
Consequently, it can be argued that colour is not sufficientvisual search tasks in
outdoor video. This lack of useful colour is illustrated ilgére 3.2. The HS space
computed for ten images from an image dataset is comparée td$ space computed
for ten frames from an Aircraft docking scene. It can be s, in contrast to that
computed for the images, the colour information computedte surveillance frames
is lacking richness. Henceforth, in this work, the HS infatian is discarded and the
approach is built using the brightness information, V. Itshbe stated that numerous
other colour spaces and brightness estimation techniqusts fer example YUV. How-
ever, we use the HSV brightness value due to its computdtsom@licity and common
use in literature (Bimbo, 1999; Gorg al., 2000).

Assuming a fixed camera position, as commonly found for sllianee mounts, a
sequence action is approximated using pixel-wise diffezdretween successive frames.

The thresholdetemporal differencas computed for frame
{(‘F(X7y7t) - F(X7y7t_1)‘ > Tdiff) 1Vx e [17X]1vy€ [17Y]} (3.8)

provides the position, shape and intensity of activity ia ftene at a frame Tgis+ IS

a threshold that can be tuned according to the applicationh &n approach is popular
in literature because of its and inexpensive cost (Bobiak Bavis, 2001; Gong and
Xiang, 2003) in comparison with a background maintenangeageh such as (Stauffer
and Grimson, 2000). Unfortunately, as seen in Figure 38 atbproach is vulnerable
to sensory problems that produce rogue active pixels. Thiduie to camera shake,
image coding and transmission errors, quantisation angkagproblems, and also the

potential presence of a surveillance time-stamp and othéedded meta-data.
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(a) A mountain scene.

(c) Hue-Saturation for a. (d) HS for a and b.

R ‘M;ﬂ{x(‘.".]‘l:-n Ll l“lhl N A i

*I“MW@E‘\ R L R e
(e) HS for an Aircraft frame. (f) HS for 10 Aircraft frames.

Figure 3.2: A comparison of the colour space available ingeneetrieval with visual
surveillance scene. In (a) we show a mountain scene fromaseladf images. Nine
more images are shown in (b). We computed the Hue-Saturstabre (HSV) for each
image and we show the HS colour space for a the mountain soegeiin (c) and all
ten images in (d). Value is discarded because it is concemitedorightness rather than
colour. The x-axis corresponds to Hue (0-3pand the y-axis corresponds to Saturation
[0,1]. In (c) it can be seen that the mountain scene contains aclise formulation of
colour saturation. Furthermore, in (d) it can be seen trevé#miation of colour saturation
amongst the dataset is high. This clearly illustrates tb&iwr is able to discriminate
in this dataset. In (e) we show the HS colour space for a frantieeaAircraft docking
scene shown in Figure 3.1 and in (f) we show the HS colour spairguted for ten such
frames (that were not close in temporal space). It can betbagmbhe saturation is low,
meaning that very little colour information exists. It isalseen that the addition of new
frames provides little new information from which to disoihate. This is because all
the frames contain highly similar colour content due to fambvackground information.
We conclude that colour is insufficient for searching thisrse
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Figure 3.3: The computation of action features illustrate@n extract from the Pets
scene. (top) Two frames showing a car moving through theescéecond row) The

temporal difference. Although it captures the position ahdpe characteristics of the
motion, it is vulnerable to noise. (third row) The thresheddtemporal difference as
in Equation (3.8). The important information is filtered,wever noise is prevalent.

(bottom) The Sustained temporal change as in Equation. (32gan be seen that the
position and shape characteristics are present, and saissbved. Crucially, the same
action in the scene can be observed to produce a similar sehtoires.
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The total scene action for 1000 frames at the Pets scene.

Total Action

The total scene action for 1000 frames at the Aircraft scene.

Figure 3.4: An illustration of the total scene action meticEquation (3.10). We show
the total scene action for two outdoor scenes computed 6idg frames. We also show
the frame and Sustained temporal change content from Exuggi9) for 5 equidistant

positions. (Pets) The peak in scene action is seen to ocoem tWo cars negotiate over
a carpark place. (Aircraft) The peak in the scene actionas $e occur when the aircraft
arrives. In both cases, the measure provides a useful tedioAwhen the scene was

active and when the scene wast This can be used to either focus a search towards or

away from particular frames.
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We achieve noise reduction using independent spatio anplatfiltering. Firstly,
frames are spatially smoothed using an approximated Gaus§#er in order to reduce
the effect of pixel outliers caused by the sensory probldmexpensive temporal filter-

ing is then employed to smooth the result:

min(Dan(X,y,t—l)—f-a,l) if |F(X7y7t)_F(X7y7t_l)|>Tdiff
DC{,B(Xayvt) = )
maxDg (X Y,t—1)—B,0)  otherwise

(3.9)
wherea andf are accumulation and decay factors. The computation iglisiéd with
zero actionDy g(X,y,0) = 0;¥x; Vy. The choice of parameters, B andTg;s+, is made
according to domain and computational factors. A suitakledion is discussed in
Section 3.6. The result valug, 5 is between0, 1] where a high value indicates that a
period ofsustained changkas taken place. Henceforf, g is called the “Sustained
temporal change”. The approach provides a robust featadstape for outdoor scenes
as seen in Figure 3.3. Also, the independent spatial andaehfitering is efficient
compared to a combined spatio-temporal filtering, for exiantipe approach by Chomat
et al. (2000). This is because the computation at each frame useseshlt of the
previous frame, meaning that little computation is dugkca

We also compute the following estimate of total scene action

TotalD, g(t) = % i Da g(Xyt) (3.10)

as seen in Figure 3.4. It provides an indication of the frameghich no action is

occurring and is a useful pre-attentive indicator.

3.2.2 Grid based frame descriptor

As regions provide greater spatial context than indivighiedls and correspond better to
the moving object content, the image space is divided inegalar, static grid of square

cells of equal size. A binary measure of cell activity is cargal for each cell using a
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The Sustained temporal change. The grid with cellgize 4.

The grid with cellsizeA = 8. The grid with cellsize\ = 16.

The grid with cellsizeA = 32. The grid with cellsizé = 64.

Figure 3.5: The grid computed using various cellsizes. {yHue Pets scene extract from
Figure 3.3. It can be seen that the grid preserves the lotatid shape context of the

activity. The finer granularity - those with a smaller cetksi provide more detail, at the
cost of being a larger representation and more computdlyogmgensive.
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The Sustained temporal change. The history with cellgize4.

The history with cellsizel = 8. The history with cellsizd = 16.

The history with cellsizé& = 32. The history with cellsizé = 64.

Figure 3.6: The history grid computed using various ceflsiz Using the Pets scene

extract from Figure 3.3. It can be seen that the history pvesea temporal memory
of recent occurrence. The lighter colour squares corregporthe current grid action,
as Figure 3.5. The darker colour squares correspond toqus\action in memory: the
darker the square the more distant the cell action.
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ratio-of-occupancy of active to inactive pixels:

<A j<A
Celly g2 (cx.cyt) (Z) Z) a.p(CXA +i,CyA + ], t) > Tp,xe|)> > Teenn  (3.11)

whereA is the cellsizecx andcy are the cell spatial positiofyixel andTcey are a pair
of thresholds used that ensure the block is marked actiwe ibobnsiderable activity
is present. A suitable choice is discussed in Section 3.6s selected according to
the desired coarseness of the representation: a largez patwluces a more compact
representation suitable for large-scale surveillancexnty. The result is an efficient
and compact indicator of scene action. An example of thdtrasing different cellsizes

can be seen in Figure 3.5. We also compute the total numbetigéaells as:

cxcy
TotalCell, g A (t) = zzCeIImB,A(cxcy,t) (3.12)

whereCX andCY are the number of cells in each dimension.

3.2.3 Frame spatio-temporal context

Whereas Equation (3.11) captures the spatial position edstructure of active cells
in the scene, an important consideration is the history bfacgivity. The history pro-

vides information on the spatio-temporal context of acion improves the potential
understanding of neighbouring cells. We therefore computeeasure for each cell

using a temporal displacement of previous cell activity:

Historyy g A (cx.Cy,t) =
t —max({i: Vi € [t — Tgelayt — 1];Celly g a (cX Cy,i) = 1})

(3.13)

resulting in a value in the rang®, Tqelay. A low value indicates recent cell activity, a
high value indicates cell inactivity, and a valueTykiay indicates that the cell has not
been active within current memorygelay is the largest delay permitted. An example of

the computation can be seen in Table 3.1 and the result cagebarsFigure 3.6.
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O 0 o0 1 o0 1 1

1 1 0 0 1 1 1

1 0 1 1 0 O 3

1 1 0 0 0 O 5

0O 0 O O O o Taelay
t6 t5 t4 t3 t2 t1 History

Table 3.1: An illustration of the computation of the cell toiy. We show the value
of Cell from Equation (3.11) for the positiorjs— 6,t — 1] and theHistory result from
Equation (3.13). It can be seen that recently active cetidyce a low result.

t=1 t=2 t=n
TotalD(t) TotalD(t) TotalD(t)
Cell(x,y,t) Cell(x,y,t) Cell(x,y,t)
History(x,y,t) History(x,y,t) History(x,y,t)

Table 3.2: A summary of the frame index. For each frame in &ggience, an index item
is computed using the total frame activity from Equatiorl(3, the cellular grid from
Equation (3.11), and the cell history from Equation (3.13).

To summarise, we compute and stored a frame-based iRderelndexF, 0) for
a sequencer as illustrated in Table 3.2. The tuning parameters and tiotds 6 =
{Taitt,a, B, A, Tpixel, Teell, Taelay} are summarised in Table 3.5. In Figure 3.7 a number
of index items computed for the Aircraft scene are shown. eNbat for pragmatic
purposes, index items are omitted if the frame has littlesagti.e. if TotalDis low or

TotalCell(t) = 0.
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Figure 3.7: A demonstration of the frame index approachHterAircraftl scene. (left)
The scene content, as seen in the frames, shows an aircpatiaghing and docking
with the docking station. (right) The index captures theslaf activity in the scene, the
current action, and the temporal context of action. Theaftclocking activity is clearly
seen, however we also see the remnants of previous scear alitiwing interpretation
to be achieved in context.
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3.3 Activity based video indexing

Although the cellular frame descriptors of Section 3.2.8uase that each frame con-
tains independent action, in reality the content of a scetieramay span both spatial
and temporal dimensions. The following Sections descriveapproach for indexing a

surveillance sequence at the activity level.

3.3.1 Significant activity segmentation over space and time

We consider a scene activity to consist of a set of spatigpteally connected and over-
lapping active cells. To this end, and to reduce representltsparseness, a temporally
extended connected-components algorithm is employedidgtatts, osegmentsactiv-
ities from the sequence. As input, the binary cellular gregatiption from Equation
(3.11) computed for each frame is used. The result is a settwityg descriptors, each
comprised of an activity identifier, start and end times, prafile. The segmentation

algorithm is described below and detailed in Algorithm 3nlpage 59:
1. Aresult set and curremhemoryof activities are initialised as empty sets.

2. The active cells are computed for the next frame as Equédid 1). The regions of
connected active cells are found using the 4-way connectegonents algorithm

(Gonzalez and Woods, 1992).

3. Each region of active cells is compared against the menitwyregion is assigned
to the activity in memory with the most spatial overlap in gnevious time instant.
If no overlap exists, a new activity is initialised using thegion and added to
memory. At this point the activity representation is a daligrid where a value

of 1 indicates that the cell is active and connected to theigct

4. Each activity is analysed to see whether it has finished i&rsd, whether it is
significant enough to be added to the index. An activity tikaglive in frame
(t —1) but not the current frameis evaluated for spatial size usifgpatia and

temporal duration usin@emporar
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procedure ActivitySegmentation(Sequence)
Initialise Result
Initialise Memory
for Each framedo
Compute the activity grid for the frame
Regions = Compute the connected components for the grid
for Each region r in Regiondo
Activity = best matching activity in Memory and Regions]r]
if No matching activity founthen
Memory.AddActivity(new Activity(Regionslr]))

endif
else
Activity.AddRegionToActivity(Regions[r])

endif
endfor

for Each activity a in Memorgo
if a exists in frame (t-1) but notthen
if Memory[a].Size > Thresholdhen
Result. AddActivity(Current[a])

endif
Memory.RemoveActivity(a)

endif
endfor
endfor
return Result

Algorithm 3.1: An algorithm to extract (segment) spatioagorally connected ‘ac-
tivities’ from a set of frame cell grids. For each frame, thgagithm performs a
standard spatio connected components algorithm to findueected regions. Each
region is assessed: if it matches the spatial position okestieg activity it is added
to it; otherwise, it is assigned to a new activity. The detecbf an activity is fin-
ished if no regions in the current frame are assigned to its-then assessed for size
and added to the result index if sufficient.
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Figure 3.8: An illustration of the activity segmentatioropess. The action in several
frames is estimated. Overlapping spatio-temporal actieraasigned to an activity. The
activity representation consists of a binary cell memhbersh

The result of the segmentation process is a set of activities {g; : i € [1,na]}, where
nais the number of activities. Each is describeday- {id,start,end shapé. The
shape is a binary grid indicating which cells are a membehefactivity. The activities
found during the segmentation process correspond to largenaportant scene action.
Figure 3.8 shows a number of frames and activity regiongi@paconnected active cell
positions) computed for a car parking activity in the Petngc The result activity shape

is shown, and consists of a binary indication of the cell mership to the activity.

3.3.2 Spatio-temporal activity profiling

Following the segmentation of the activities from the sewpae an activity profiling
method is used to capture the spatio-temporal characteaaf. eWe define thehape

information, found during segmentation, using a Binary@hRrofile (BSP):

1 If active and connected
BSR 4 p(cxcy,a) = _ (3.14)
0 Otherwise
where a value of 1 indicates that the cell was active and gpathporally attached to
the activitya. In other words, the cell was in a region of active cells dt&atto the
activity at some point during its duration. The temporaégiduration) of the activity is

computed a3 size= (end— start) and the spatial size &size= max({|BSR : vt € a})

which is the largest activity size at any time instant.
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lllustrative profiles computed for the Aircraft docking see

Figure 3.9: lllustration of the spatio-temporal activityfiling for two scenes. For each:
(top) The mid-frame for the activity. (middle) The computidary Shape Profile. (bot-
tom) The computed Temporal Order Profile. It is clear thatBineary Shape Profile
captures the location and visual structure of action, aediégmporal Order Profile re-
tains a time-scale invariant estimate of the temporal or@ark cells generally occur
towards the beginning and light cells towards the end.
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The BSP stores information about the presence of activitynbt its temporal char-
acter. Therefore, in order to retain the temporal order wwitim activity (to capture the
directionality) each cell’s typical activation time withan activity context is computed
as the Temporal Order Profile (TOP):

whenCellActivécxcy,a) BSRcxcy,a) =1
TOPR, o p(cxcy,a) = (end-starf) (3.15)

0 otherwise

where(end— start) is the temporal length of an activity, amchereCellActives a func-

tion that returns the average cell activity time:

t<end t — start ifCeII,\jo,,B(cxcy,t)zl

t=start _
0 otherwise

whenCellActivécx, cy,a) = (3.16)

t<end

Zt;startcel I/\ ,a,B (va Cy, t)

wherewhenCellActiveeturns a value betwedf, (end— start)]. A low value indicates
that a cell was generally active towards the beginning oéttievity whereas a high value
indicates it was active towards the end (see Table 3.3). T Value for each cell is
scaled into a range @0, 1]. Figure 3.9 shows examples of the spatio-temporal profiling
for two outdoor scenes.

To summarise, we compute and stored an activity-based iAdgxitylndexX.F, 8)
for a sequenceF as illustrated in Table 3.4. This requires the computatibrhe
cellular grid index of Section 3.2.2 upon which spatio-temgb segmentation is per-
formed to find activities. Each is then profiled. The tuningaoaeters and thresholds

0= {Tdifha,B,)\ ; Tpixel> Tcell; Tspatials Ttemporal} are summarised in Table 3.5.

3.4 Similarity metrics for visual search

In Sections 3.2 and 3.3 frame-based and an activity-basketiing methods were devel-
oped. However, in order to perform search, a metric is reglihat is able to compute
the perceptual similarity between index items. Our appndado initially compute an

inexpensive comparison of item spatial location and vistialcture. Then, temporal
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(4+6)/2=5
(1+2+5+6)/4=35
(143+44)/3=2.67
(1+2)/2=15

O 0 O O o0 o 0

t=1 t=2 t=3 t=4 t=5 =6 whenCellActive
Table 3.3: An illustration of the computation of the averamg activity time. We
show the value ofCell from Equation (3.11) for the position$ — 6,t — 1] and the

whenCellActivaesult from Equation (3.16). It can be seen that cells gdiyemzore
active towards the end of the activity=€ 6) produce a higher score.

a=1 a=2 a=m
[start, endl [start, endl [start, end
[Ssize, Tsizp [Ssize, Tsizg [Ssize, Tsizp
BSP(a) BSP(a) BSP(a)
TOP(a) TOP(a) TOP(a)

Table 3.4: A summary of the activity index. For each actigggmented from sequence,
an index item is computed using the starting and end posititye spatial and temporal
sizes, the Binary Shape Profile and the Temporal Order Profile
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Taift A threshold used during the computation of temporal chandeguation (3.8).

a An accumulation factor used in Equation (3.9). Used to higtilpixels ex-
hibiting sustained change.

B A decay factor used in Equation (3.9). Used to de-highligkels that are no
longer active.

A The grid cell-size first used in Equation (3.11).

Toixel A threshold used to determine whether a pixel is active orawobrding to its
current level of sustained change. Used in Equation (3.11).

Teen A threshold used to determine whether a cell is active or nobaling to the
number of active pixels that it contains. Used in Equatiab 13

(a) Parameters used for the computation of action features.

Tgelay The maximum time delay since last cell action. Used duriagii profiling in
Equation (3.13).

(b) Parameters used for the computation of a frame index.

Tspatial A spatial threshold used to reduce the number of activigésimed during seg-
mentation. Activities with a maximum spatial size less thiaa threshold are
not retained.

Ttempora A temporal threshold used to reduce the number of activieégined during
segmentation. Activities with a temporal length less tHanthreshold are not
retained.

(c) Parameters used for the computation of an activity index

Table 3.5: A summary of the tuning parameters used duringdrand activity indexing.
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features are used to provide temporal context. To summadhisdollowing features are

used to provide context in each index:

Spatial context Temporal context

Framelndex | Cell from Equation (3.11) Historyfrom Equation (3.13)

Activitylndex | BSP from Equation (3.14) TOP from Equation (3.15)

In the following Sections the ternf® andQ are used to refer to the two items that
are being compared. For mismatching binary cell posititsx cy) # Q(cx.cy), aZ
is used to refer to the grid with zero action cell. In other dgyrif there is a activity

mismatch therZ = P if P(cx cy) = 0 andZ = Qif Q(cx,cy) = 0.

3.4.1 Spatial similarity using transformation cost

The first step is establish a similarity using the geograptgation of action and its
visual structure. The result &imilarity(P, Q) will be high for two items if they exhibit

similar features. The following evidence based metric agppoised:

(3.17)

Similarity(P,Q) = exp<_W)

PositiveP, Q)
to evaluate the ratio dflegativeevidence (the two structures are not similarPusitive
evidence (the two structures are similar). The use of twodsy unlike usingPositive
alone, provides a framework in which an evaluation of theam&etween two structures
is counter-balanced by the evaluation of non-match. Thise richer structures to be

compared and also provides size invariance. Furthermaelefine:

CXCY

PositivgP,Q) = 5 % |P(cx.cy) = Q(cx cy) =1 (3.18)
CXCY

NegativéP, Q) = > % [P(cx.cy) # Q(cx.cy)| (3.19)

meaning semantically thRbsitiveis the “number of matching active cells” ahggative

evidence is the “number of non-match cells” (one active, imaetive). The similarity
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Pos=5 Pos=3 Pos=1
Focus Shape Neg=2 Neg=6 Neg=10
Sim=0.67 Sim=0.14 Sim=0.00

Figure 3.10: An illustration of the evidence based simiyametric. For a given Shape,
we show three similar shapes along with the values of the Ipasitive evidence (match-
ing active cells) and negative evidence (number of mis-magrcells). For example, for
the first shape, there are five matching active cells and tWontg-matches. As the sec-
ond and third shapes become less similar, so this is refleot#iae similarity score.
However, it is clear that the approach is vulnerable to ssyakial translations.

Focus Shape (@-18=0.12 (b)1-$=0.33 (c)1-3=1.00

Figure 3.11: An illustration of the estimation of negatiwedence accounting for small
spatial translations. Considering only the middle cellha Focus Shape, we show how
the surrounding cell contents is used. In (a) all the surdougncells are active, so the
mis-match is explained by a local neighbourhood transtagiod the negative evidence
is low. In (b) some surrounding cells are active. In (c) thare no surrounding cells
active, so the mis-match cannot be explained and the negatidence is high. The
overall result is that the estimation of negative eviderc@variant to small spatial
translations.

HEEN HEEEEE EEEEE EEEEN
HEEEEE H BEEN EEEEE EEEEN
HEEEEE HEEEENE BN BN EEEEE
HEEEE HEEEE EEEEE EEEE

Focus Shape V12412=141 22+22=283 /42432 =5

Figure 3.12: An illustration of the estimation of negativadence account for large

spatial translations. Considering the active cell in theegiShape, the negative increases
if the corresponding closest active cell is distant.
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result is therefore high if the number of matching cells ighthand the number of mis-
matching cells is low. See Figure 3.10. As can be seen, athaouteria (3.18) and
(3.19) are able to identify similar content, the binary mataf theNegativeevidence is
vulnerable to small spatial translations. We thereforgopse using the level of localised

activity when estimating the negative impact of each invaatnis-matching cell:
CXCY | Scordcxcy) if P(cx.c CX, C
NegativéP.Q) = 3 5 gCx, cy) (cx.cy) # Q(ex.cy) (3.20)

0 otherwise

< |:—1Zif 1 (CX—}—i,Cy—i—j))
9

Scorécx, cy) = (3.22)

For each such mis-matching cell with zero activity, a scereamputed using the level
of action in its local neighbourhood. If those cells are inexalso, the negative score
will remain high. However, if the cells are active, the mistich can be explained as a
local translation, and the negative score is lower. Seergigul1 for an illustration.
Alternatively, to consider a larger spatial context at sagge computational cost:

min({dist(cxcy,i, j) : Vi € [1,CX];V] € [1,CY];
dist(1,1,CX,CY)

Scoré(cx,cy) = 20,1)=1}) (3.22)

wheredist is a ground distance between cell positions such as thed&aclidistance,

dist(x1,y1,x2,y2) = 1/(x1 —x2)2+ (y1—y2)2. The result is that the negative score for
each mis-matching cell as the scaled distance to the neatast cell. See Figure 3.12

for an illustration.

3.4.2 Exploiting temporal context

Although the spatial approach is able to identify similddgated and overlapping ac-
tion, it does not yet exploit the temporal information stbie the index. Temporal infor-
mation is now proposed to enhance the result. When compiéemg in the Framelndex,

the cell's Negative evidence can be reduced if the cell wéseam recent history. An
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adjustment is therefore computed using:

History(cx.cy,Z) .
CXCY if P(cx c CX,C
0 otherwise

whereHistory, defined in Equation (3.13), is the time delay since the inaatell was
last active. The result is a boost to the similarity of frameeax items in which there is

a temporal translation of action.

When comparing items in the Activitylndex the temporal ondeused:

TOPSIn{P,Q) + TOPSIntQ, P)

TOPAd justP,Q) = 5

(3.24)

5CX 5CY 1—dist(cx.cy,i, j) if P(cx.cy) >0

0 otherwise

XY P(ex cy) > 0

TOPSIN{P,Q) = (3.25)

where TOP is the Temporal Order Profile from Equation (3.18)e selection ofi, j)

is the cell position irQ with the closest temporal order to the cell being examine@, in
i.e. that minimisegT OP(x,y,P) — TOF(i, j,Q)|. The overall result is that items with
similar temporal order produce a higher similarity.

To illustrate the similarity metrics, Figure 3.13 shows @nuactivity with the four
most similar other activities found in an Aircraft dockingaggience. The spatial context
similarity finds activities that occur in a similar spatiaichtion to the query. This is
considered a good result considering the conceptual stibpbf the metric. For the
temporal context similarity, those elements with a moreilsindirectionality (top-right
to bottom-left in the figure) are ranked higher. One advaatafglecomposing the simi-
larity estimation into two separate steps is that the temgmmparison can be restricted
to items that are found to have similar spatial similaritgr Example, in our system the
spatial similarity is computed for all items and the tempa@djustment computed only

for the most similar 25%. This can reduce the search time.
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Rank 1 (Query) Rank 2 Rank 3 Rank 4 Rank 5
(a) Using the Binary Shape Profile.

(b) Using the Temporal Order Profile.

Figure 3.13: Demonstration of the similarity metrics. Wewha query activity with
the top four most similar activities found in the Aircraftdong scene. Note that the
item used as the query is ranked first in all cases. (a) The aosgn is made using the
metric in Equation (3.17) using the spatial criteria givarEiquations (3.18) and (3.19)
in Section 3.4.1. For the activities we show the Binary SHqmdile. It can be seen that
the similarity metric produces good results considering $patial location of activity.
(b) The comparison is made using the temporal adjustmepngiv Equation (3.24) in
Section 3.4.2. For the activities we show the Temporal ORtefile. It can be seen that
the similarity metric produces good matches consideriegiirectionality of action.
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3.5 Explanation based partitioning

Let us now consider how to use an index for performing temipgegmentation on a
long, continuous sequence. In essence, we wish to discovaspf temporal disconti-
nuity in the sequence - at which the “future bears little nelskance to the past” - where

these breaks provide key points for defining the structunadsdo content.

3.5.1 Localised temporal coherence

In traditional multimedia indexing, frames are automdbcgrouped into shots that are
then grouped into scenes, thus providing a rich structureeMshots exist, they can be
extracted and grouped using the correlation between th@pdguture (Kender and Yeo,
1998; Linet al,, 2001). Reported approaches have proved successful fee geguences
in which several sources are manually chopped and editathtdate a story. However,
surveillance video is fundamentally different. We are remtanstructing a sequence that
was artificially constructed, rather a completely natudre is being captured from
which content is extracted without prior knowledge. Sultaece video is continuous,
with no shot breaks, hence it is proposed to monitor the oaity of scene action in
order to discover the points of discontinuity.

A generic measure of video coherence is computed at each itahe:

s W/2 mediar(V‘f’ﬁSimilarity(lt_i, |t+j))
w/2

Coherencé) = (3.26)

wherew is the window size); is theit" index item, andSimilarity is a metric. The
similarity between the padt—w/2,...,t—1} and the future{t+1,...,t+w/2} items is
computed and modelled using the median. The median is usadibe it is known to be
less sensitive to outliers (Weisstein, 2006b). The resllias are in the rangé, 1] with
a high value indicating sequence continuity.

When using Framelndex, the computation of coherence i€ptibte to low levels of
scene action due to the linear population of the buffer. Afames are used, including

those with little or no action, the buffer will eventuallylfivith unimportant content.
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This leads to bias in the level of coherence. We thereford@rgn expanding window
solution illustrated in Figure 3.14. The total scene actialue is normalised using the
approach in Appendix B and frames with a valu® are considered eligible to enter the
buffer. The buffer window is expanded in either directiorilihis filled. As can be seen
in Figure 3.14 (c), the approach is more robust to period®wfdction. Furthermore,
the buffer is populated with a sub-sample of frames.

Note that when using the Activitylndex the coherence for dhsvities in the se-
guence is discovered, however to obtain a correspondingdeahlocationt in the se-

guence we use the starting point of the activity.

3.5.2 Finding significant coherence minima

Once the coherence is computed, the minima are automgticaihd and marked as
these are the breaks in continuity. An approach often usétémture is asliding win-
dow method, for example (Sundaram and Chang, 2000), wherebyn@owi is used to

provide a local context during analysis. The following nueths used:

e Candidate minima are discovered. A window of fixed size is atb&across the
graph of coherence values. Points at which the central valegual to the lowest

in the window are used.

e Candidate minima that are too close are resolved. Thist®tuaccurs when
multiple candidate minima have the same value, for exampknwhe coherence
has a wide minima. The candidate is retained that is thedattiiom a candidate

in the opposite direction.

e Candidate minima are pruned. The minima are ordered by eabervalue and the
desired number retained. This is selected according tcetingth of the sequence

and the required granularity of content, i.e. how many sseme to be detected.

The process requires the number of desired breaks as inpufind/that retaining the

number of breaks according to sequence size is sufficient.
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Total activity
\,—1'-,.'\
\\‘N
(a) A linearly populated buffer.

Total activity L/

\__5

\_._f/
(b) A sub-sampled buffer.

Total activity

(c) A thresholded buffer. Frames are only included if thermalised total activity is
above a threshold.

otal activity _// \_________\

(d) A sub-sampled thresholded buffer.

Figure 3.14: The frame buffering using a window size of 10(dhwe see a normally

populated buffer where 5 frames in either direction are u¥eel use vertical bars to in-
dicate the frames included in the buffer. In (b) we show tlyaditb-sampling the frames
included in the buffer we can achieve much wider window cager This corresponds
to an increase in the temporal context during the buffer aaiadpon. In (c) we show the

thresholded approach. Frames are only included if theyatorat level of action. This

removes the low-action frames that occur frequently in lsagveillance sequences. In
(d) we show a combination of the sub-sampled thresholdegl das able to provide a

wide and meaningful temporal context.
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3.6 Experiments

In this Chapter approaches have been presented for theagistmof action features

from a sequence (Sections 3.2.1-3.2.2), the computatiariraine-based index (Section
3.2.3), the computation of an activity-based index (Sec&#®) , and the computation of
a coherence based temporal segmentation (Sections 3.4¥85now demonstrate the

indexing and temporal segmentation approach.

A sequence and its manual segmentation

We captured a long surveillance sequence that observesitbef docking station
scene shown in Figure 3.1. The sequence is roughliyhturs of footage, sampled and
digitised at 2Hz, resulting in 1000 frames of size 320240. Let us call this sequence

Aircraftl. Upon manual inspection, the following eightisat scenes were identified:

frames 0-400 empty dock
400-600 aircraft arrival
600-2,700 passengers dis-embark and unloading
2,700-5,700 plane re-stocked
5,700-7,500 period of inactivity
7,500-8,750 final loading
8,750-9,500 engines examined
9,500-11,000 aircraft departure

In the sequence, a plane arrives at the dock, is restockadeth examined, and then
departs. An illustrative frame from each of these manuagntified scenes is shown in
Figure 3.15. Unsurprisingly, it is extremely difficult toadtify the scene content from
such a static frame presentation even though this appreachommonly employed for
video summarisation.

Note that a manual segmentation is subjective, not guasdrtte be correct, and
not guaranteed to be consistent with segmentations prddogether observers. To
demonstrate, four manual segmentations were collected @bservers that were not

familiar with the scene. In Figure 3.16, the positions of lineaks in the ground truth
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Figure 3.15: An illustrative frame from each of the eight malty identified scenes. It
is difficult to determine the scene content.
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I I I I grc;und truth
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Figure 3.16: An illustration of the manual segmentationsthe Aircraftl sequence.
(top row) We show the ground truth, as explained on page &4galith frame position
indicators that correspond to the eight frames shown infeigul5. (second+ rows)
We show four manual segmentations produced by differenérobss with no previ-
ous surveillance or segmentation experience. Each maegalentation is semantically
meaningful as each break point required justification duthee experiment. It can be
seen that segmentations are consistent with each othewsarttkaused for evaluation.

I
activity coherence

0 2000 4000 g000 go0o0 10000

Figure 3.17: The activity coherence result for the Airctasequence. In comparison
to the manual breaks of Figure 3.16, we can see that the br@akspare well posi-
tioned. In particular, the activity coherence breaks atapproximate frame positions
t € {1100240Q05000 10100 are located at manual breaks.
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Figure 3.18: A similarity matrix that shows the intra-setlanter-set similarities be-

tween five manual and five random segmentations. Positiertsdre the manual seg-
mentations and 610 the random segmentations. Each position shows the simyila
between the items, where black is similar and white disdsimEach item is identical

to itself as seen on the identity diagonal (top-left to bettaght). It can be seen that the
manual segmentations are similar to each other (as showmeypp-left quarter of the

matrix having dark cells), the random segmentations aresimoitar to each other, and
also the intra-set similarity is low.

and four manual segmentations are shown (for the 11,00@Hesggjuence). It can be
seen that the segmentations have some similar and disstaml@encies.

In order to examine the consistency of the five manually pcedutemporal seg-
mentations (ground truth plus four manual alternativestimaed above), five random
segmentations were generated and then a similarity matmpated between the ten.
See Figure 3.18. Each random segmentation was generategdraadom numbers be-
tween[1, n| for each break, with the additional constraint that bre&iauitd be more than
20 positions distant from each other. During the similacibynputation a matching dis-
tance ofTyithin = 50 was used in Equation (3.4). It can be seen that the martuaisat
similarities are high (as indicated by the dark cells at tpeleft of the matrix) whereas
the random intra-set similarities are low and the interesetalso low. This illustrates

that the manual segmentations are consistent and can béoussdluation.
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Computation of action features using generic parameters

The first task was to compute the action features, namely #sore of reliable tem-
poral change in Section 3.2.1 and the grid based frame géscfrom Section 3.2.2.
This requires a selection of tuning parameters summarisdélle 3.5 (a). To find a
suitable and generic set of parameters, a number of predipiexperiments were con-
ducted using sequences showing the Hand waving, Pets kagyat Aircraft docking
scenes (see Figure 3.1 on page 48), in which the parametersvalere varied. It was
found that, with the exception of the cellsize the value of each parameter does not
effect the computation time and so a generic choice is plessithe following settings

provide a good result in all scenes:

Taits =5
50
a=P=75
Tpixel =50
Teenn = 15%

Also, changing the parameters by small values produce weriles results meaning that
the approach is not overly parameter sensitive.

The choice of cellsiza determines the computation time and available storage ca-
pacity. A generic choice of = 16 was found to capture sufficient detail in the different
scenes, however it can be changed according to the anadigae of moving object

content within the scene and the computational and stonagations.

Frame indexing and temporal segmentation

For the Aircraftl sequence, a Framelndex was computed tiseéngarameters described
above andyelay = 255. This value was chosen as it provides a sufficiently sstry
(255 frames at 2Hz equals approximately 2 minutes of actowl) also corresponds to
255 grey-levels stored and displayed using an image rasteat. The frame similarity
metric used was defined in Section 3.4 by Equations (3.17)8)3(3.21) and (3.23).

In order to perform partitioning, frame coherence was cotagusing a window size
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Figure 3.19: The frame coherence result for the Aircrafusace. (top) The frame co-
herence using subsample sizé bR, 5,10]. The sub-sampled version provides a similar
result at much reduced computational cost. (bottom) Thadraoherence result with
subsample size of 10 with the 7 detected minima giving a epording 8 scenes - as
per the manual segmentation experiment.
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Figure 3.20: A comparison of the frame coherence segmentagainst one set of man-
ual segmentations and five sets of random segmentationsh @& containing five seg-
mentations). The graph shows the mean similarity betweerirdme coherence seg-
mentation and each set, using different values for the tloldg,i;hin of Equation (3.4).
It can be seen that the frmcoh-manual comparison is not mhgxde from the frmcoh-
random comparisons.
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of w= 100 in Equation (3.26) and subsample sizeld?,5,10] as described in Section
3.5.1. It was found that increasing the size of the windowhierrwas not possible as the
number of frame similarities needed increases expongntigth window size. This is
because an increase in sizetef results in number of similarities neededwy?2, as the
new frame in the “past” must be compared against every frantiee “future” according
to Equation (3.26). The median must also be computed on arlagg requiring more
computational expense (Weisstein, 2006b).

The result computed for the different subsample sizes i&/sho Figure 3.19 (top).
It can be seen that sub-sampling can be used to produce arsiesiuilt at a fraction of the
computational cost. The detected breaks are shown in FRya& (bottom) as vertical
bars. It can be seen that the frame coherence approach i®giaeition the sequence,
but is sensitive to level of activity. The impact of a smalhdow size is that the temporal
context considered in the coherence computation is smdiiis [Bads to temporally
localised discontinuity detection rather than long-teoontent change detection.

In order to evaluate the temporal segmentation autombtipabduced using the
frame coherence, it is compared against the manual and maiséts using a varying
matching distance in the segmentation similarity metri€gé@iation (3.4). The segmen-
tation was compared against one manual set and five randspeaeh consisting of five
segmentations. In Figure 3.20 the similarities are showe:xtaxis corresponding to
the increase in the size of the matching distance; the yiaxise the mean similarity
between the frame coherence segmentation and the test sésivable result is one
in which the similarity falls quickly, as this correspondsrmore breaks being aligned
within a smaller match distance. In the Figure, it can be sleaithe manual result is not
easily discernible from the five random results, althougiegcends more quickly than
most. This suggests that the frame coherence segmentataansimilar to the manual

segmentations as those randomly generated.
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Activity indexing and temporal segmentation
For the Aircraftl sequence, the Activitylndex was compuisithg the parameters used

previously for the frame indexing along with activity thhedds:

Ts patial = 3

Ttem poral — 10

used in the spatio-temporal activity cropping of Sectid B. We found through initial
experimentation that these were sufficient for retainingfacgent number of activities in
the index. The activity segmentation is able to find and segithe scene action efficient
and effectively. For the Aircraftl sequence a total of 368vétes were discovered, a
number of which are displayed in Figure 3.21.

Owing to the compactness of our index representation, al smraow size can be
used during the computation of the coherence. The actiuntylaity metric used was
defined in Section 3.4 by Equations (3.17), (3.18), (3.2224) and (3.25). Figure 3.22
shows the activity coherence produced using the windovssi#el2 and 20. It can be
seen that the larger window sizes produce a more consisterd,9ecause as more ac-
tivities are added to the buffer’s past and future elemdmgpiast-future comparison is
more robust to short-term action changes. By observatierfownd that a window size
of 12 performed sufficiently well for a number of differeneses, so is used for experi-
ments. To illustrate the coherence computation, in Figu28 ghe maxima and minima
are marked and five activity Temporal Order Profiles (TOPjritie buffer past/future
are shown for these positions. For the maxima, it can be desrthe activities have
similar spatial locations, visual structure and direcéility. For the minima, the past
action bears little resemblance to the future, leading éddkv video coherence score.

We used the activity coherence to compute eight scenes ssvgn minima. In
Figure 3.24 the coherence for the 363 items is shown along thé detected minima.
The activity coherence and minima for , D0 frame positions is also shown, using
the coherence value for an activity as the value for all tlaenfes for that activity. In

Figure 3.17 on page 76, the positions of these breaks arerstmwthe same page as
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P

Figure 3.21: A number of activity Temporal Order Profiles guuted for the Aircraftl
sequence. Different activity contents - arrival, loadingloading - are clearly observed.

100 150 200 250 300 350

Figure 3.22: The activity coherence result produced witkeéhwindow sizes. We can
see that the result using the wider window is smoother, aronilar items in the
past-future comparison are found.
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(a) The activity coherence. An illustrative maxima and miaiare marked.
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Figure 3.23: An illustration of the computation of coherena) The activity coherence
produced for the Aircraftl sequence. We mark illustrativeima and maxima positions
for which we show the content of the activity buffer. Comparib) and (c), it can be
seen that the past contains little resemblance to the fulimes results in the coherence
minima. Comparing (d) and (e), it can be seen that the pasarmsimilarities with the
future. This results in a high level of coherence.
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Figure 3.24: The activity coherence as applied to frametjpos. (top) The activity
coherence computed in which the detected minima are marteddtom) The activity
coherence is displayed according to sequence frames. &lds within an activity
are given the coherence score - leading to a mini-plateacteff providing the real
temporal/frame positions of the breaks.
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Figure 3.25: A comparison of the activity coherence segatent against one set of
manual segmentations and five sets of random segmentatmmgéred to Figure 3.20).
It can be seen that the actcoh-manual comparison producaslasteeper drop than the
actcoh-random comparisons, meaning that the activityresioe segmentation is much
more aligned to the manual segmentations than those ragdganerated.
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the manual break positions for visual comparison purposésgan be seen that the
breaks reasonably lineup with the manual breaks, meangigthle activity coherence
approach is producing a temporal segmentation compam@these manually produced.
Upon further analysis, it was found that the mis-placed ks¢and to be due to an over-
segmentation that occurs during inactive periods.

Similar to the frame coherence result, the activity coheegiemporal segmentation
was compared to the manual segmentations and five randorofsstgmentations (as
computed for the frame coherence and shown in Figure 3.2 rd@sultis shown in Fig-
ure 3.25. It can be seen that the activity coherence segti@nismuch more aligned to
the manual segmentations than the random segmentatioissuggests that the activity

coherence approach produces a segmentation similar te fnoduced manually.

3.7 Discussion

In this Chapter, the important problems of forming a predativve sequence index and
performing temporal segmentation of surveillance videoansddressed. Using spatio-
temporally smoothed temporal difference - the Sustainegbteal change - a grid-based
frame descriptor was computed to explicitly represent pragial location and history of
scene action. This frame information was used to form amnxiplgawvever it was found to
be large because of representational sparseness. Wentlegrefformed spatio-temporal
activity segmentation to extract significant regions ofroected, active cells. Each ac-
tivity was profiled, to capture its spatial structure and penal-order information, and a
compact index formed.

In order to search the indices, a transformation-cost basetarity metric was pro-
posed. The metric estimates the similarity in spatial lecatind visual structure of
action using estimates of the negative and positive eviglesuad then the action asyn-
chronicity and temporal order to reduce dis-similarityimsttes. In effect, the metric
is able to explain the inconsistency between two repreentausing spatial and tem-
poral factors. It was found that the metric was able to findhgithe query-by-example

paradigm, similar activities by spatial location and direcality. However, the represen-
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tation and similarity approach are primarily dependentloa gpatial location of scene
action. Whilst useful in most situations, it can be argued tisual appearance of action
is more desirable. We will develop such an approach in thé Gbeapter.

To perform automatic video partitioning, a sliding windoaded approach was pro-
posed for comparing the past action against the future. ét pasition the coherence is
computed and the coherence minima, points at which thertlésresemblance between
the future and the past, are used as breaks in a partitiowhen using the Framelndex,
the approach was found to be computationally expensiveeaaumber of similarities
needed increases with window size. This leads to a smallawrgize with insufficient
temporal context. To overcome this obstacle, an expandingaw mechanism was
proposed. However, we conclude that a frame-based appisasuit optimal. When
using the Activitylndex, the coherence computation wasitbto be much more effi-
cient and reliable, because the index has retained onlyntpertant scene content and
is more compact. This approach is computationally undemgnadperates without the
use of colour information, requires no training and can clepeimitive scene changes
in surveillance video. The approach result was comparethsiga manual segmenta-
tion, and it performed favourably when compared to randogelyerated segmentations.
However, we note that it is difficult to perform a quantitatievaluation because of the

inherent subjectivity in manual assessments.
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Chapter 4

lconic video indexing

In this Chapter, a video representation is developed thabeaised to perform video in-
dexing of unstructured surveillance video. Rather thanayggphic location approach,
as in Chapter 3, we aim to extract and use the local visualaappee of action. This pro-
vides a translation invariant mechanism for scene actionpasison facilitating visual
search with no assumptions on scene content. This is ¢iitecdiversity of surveillance
videos with varying scene content is to be analysed.

Motion can be observed as orientations over time and can &lgs®d using orien-
tation sensitive motion-sensors (Choreatl., 2000) or through static orientation anal-
ysis of spatio-temporal image-slices (Ngbal,, 2002). However, reported approaches
operate on the scene visual appearance rather than acddindeto representational re-
dundancy. Following the success of the temporal-changedo@sproaches in literature
(Bobick and Davis, 2001; Gong and Xiang, 2003), waveleeawientation filters are
employed to analyse the appearance of local action. Conyoaelurring action types,
called icons, are used to form &onic visual vocabularyised for frame description.
Visual search is achieved using known histogram matchinigicse Temporal segmen-
tation is achieved by monitoring the cumulative appearafdée Iconic terms during
a sequence. Finally, a video summarisation is producedyusadiscriminant action in

the scene.
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4.1 The need for discriminant visual context

In order to perform successful visual search on a wide wapédifferent surveillance

search spaces, it is critical that:
¢ the index representation is uncommitted, and
e the search mechanism is efficient and generic.

By uncommittedve refer to the system having little advance knowledge, sy fesv as-
sumptions are made about the expected scene contentss Deisduse search tasks are
often retrospective, and search criteria are often deeel@ter the data has been cap-
tured and archived. Additionally, the large scale of vidatedbanks demand a compact
representation and efficient metric.

An important visual characteristic to be captured @gdstriminant visual context.e.
a local region of activity able to successfully establishtent similarity. A good dis-
criminant visual context is similar in nature to a good shaerm used in text retrieval
systems. For example, the word “visual” returns approxetyat41 million documents
when used in Google, whereas the word “the” returns apprateiy 3.4 billion docu-
ments. This demonstrates that, although “visual” retutastgul candidate documents,

it is more discriminant than “the” and is thus a better seamhtext.

4.2 A wavelet-based sequence descriptor

4.2.1 Wavelet analysis of temporal change

During indexing, we are interested in the appearanceesgions of temporal change
rather than individual pixels as they contain more contabinformation, are more se-
mantically pertinent to visual search tasks, and will prmgla more compact represen-
tation more suitable for long sequences. Firstly, a robersioral chang®, g (X, y,t) is
computed as described in Section 3.2.1. The temporal chepage is divided into a reg-
ular, static grid of square cells of equal size. The celedizletermines the granularity of

the descriptors and is chosen according to the scene lagduhdex size requirements.
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\%

Figure 4.1: The visualisation of a cell. The lines repregerthe Vertical, Horizontal
and Diagonal energies. The amount of energy is depictechydingth and colour.
Moments of Haar wavelet coefficients have been shown to leetefé for texture
analysis and provide a good compromise between compughttomplexity and effec-
tiveness (Unser, 1995). Comparable approaches such asi@adsrivatives and Gabor
wavelets offer little improvement in result (Orenal,, 1997). The action content of each

cell is described using the Haar basis function:

1 0<x<05
Wx)=4q -1 05<x<1 (4.1)
0 otherwise

applied using a wavelet transforqﬂ (X) = @(2Ix—1i), wherex input is translated using
the number of scaleg and position. The result of the wavelet is a division of input
according to four sub-bands: low-high (LH), high-low (HIbigh-high (HH) and low-
low (LL). Using the result, a 3D feature vectgy(x,y,t) = (@ ¢? ¢3), is formed using
the mean of the coefficients in the LH, HL and HH bands. The Lhdoaformation is
not used as the band result is equivalent to a sub-sample afrifiinal data. The level
of overall energy is given by the sum of the coefficiends,

When applied to the Sustained temporal change of EquatiO) i@ a cell,y pro-
vides an estimate of thection energyn the vertical, horizontal and diagonal directions.
This gives an estimate of a cell's localised visual struetand action directionality.
Henceforth, the cell action is visualised using the iconl@&xed in Figure 4.1. Figure

4.2 shows the coefficients produced for the scene extradgur® 3.3 on page 51.
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Figure 4.2: The Haar coefficients computed for an extraainftbe Pets scene from
Figure 3.3 on page 51. We show the iconic visualisation (sgar€ 4.1) for three cell-
sizes: top=32, middle=16, bottom=8. The Sustained terhmbr@ange computed for
an image is divided into a grid of equally sized cells and tteaHvavelet analysis is
performed on each. The computed coefficients correspongetamount of energy in
the vertical, horizontal and diagonal directions. It carsben that an object motion can
be holistically described using the set of coefficients cotag for it.
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4.2.2 Aniconic visual vocabulary

To provide a certain degree of perceptual robustness to atglmmg process, a com-
pact, invariant scene descriptor is now formed. A 3D feagpace is computed for a
sequence using the cell descriptors. This space is thetephalsusing mixture-model
based clustering, to find common patterns of local visual appearance. The centroids
are each called altonic term 6, because it is an important element of visual context
within the scene. The set of iconic terms form laonic visual vocabularyused for
scene descriptior® = [61, 0,,.. ., 6«]. The choice of vocabulary sizeis critical - our
approach is in Section 4.3. Each frame is described uskigrae occurrence histogram

(FOH) with elements representing the number of Iconic tecouarence:

FOH = {ft" ke [1, K]} (4.2)

K CXCY j<k
=55 <m|n(d|st(tp(cx,cy,t),6,-)) = ) (4.3)

wheret is the frame being describedk refers to all Iconic termsCX andCY are the
number of cells in each dimensions, ahdt is the Euclidean distance between the cell
feature vectony and the Iconic tern®. The result of Equation (4.3) is the number of
occurrences of icok in framet. The representation captures a translation invariant and
perceptually robust description of what is happening indtene. See Figure 4.4.

An advantage of using a histogram based frame represemtétithat a standard his-
togram similarity metric can be used for frame comparisotht@trieval. The histogram

intersection measure of Swain and Ballard (1991) is adopted

1 i min(R, Q)

i (44)

whereP = {p;:i €[1,k]|} andQ={q; :i € [1,k]|} are histograms of the same size that are
being compared. The metric is widely used for matching obuohistograms in image
retrieval systems (Lew, 2001) owing to computational efficy and low susceptibility

to the curse of dimensionality (described in detail on pafe 3
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Figure 4.3: The content of the Wavingl sequence. The sequesais generated that con-

tains three scenes for illustrative purposes. The handalsdregin with square move-
ments, then figure eight movements, then triangle movements

Figure 4.4: The computation of the Iconic visual vocabulagft) The 3D Haar co-
efficient space computed for the Wavingl sequence is cksstesing the k-means al-
gorithm. Here we show the resultant centroids. (right) Eeehtroid corresponds to a

position in the coefficient space. Each islaanic termin the vocabulary and is hence-
forth used for describing the sequence content.

Scaleg
Total

Time

Figure 4.5: An analysis of the iconic term occurrence dutheysequence. (left) A cu-
mulative histogram showing the occurrence of the Iconimgethroughout the sequence.
Variations in the histogram correspond to various contbat stimulate different coef-
ficients. (right) A projection using the first three princigmmponents. We call this
projection theVideo scene trajectorylt captures the important thematic change from
the cumulative histogram, and hence the varying scene mbnte
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Figure 4.6: The Video scene trajectory produced for the Wiglrisequence shown. The
sequence content is constructed with three scenes - sgeaybts, triangles. The vary-
ing content produces different frame histograms; capturde variations in cumulative
totals shown in Figure 4.5; the themes of which are capturele trajectory.
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4.2.3 A cumulative analysis of iconic appearance

The key to our approach is that a scene can be defined as hasginglar profile of
filter responseshroughout its period. Over a long period of time, similantant will
stimulate patterns in the iconic occurrence histogram afdfign (4.3). As content
changes, different patterns will occur. The approach faedeéng content change by
a cumulative analysis of the iconic appearance histogramew described.

A continuous representation that captures long term comieth thematic change is

formed. A scaled cumulative histogram is used:

Cumult—1,k) 4 f
Cumul(n, k)

Cumult,k) = (4.5)

whereCumult, k) gives the cumulative occurrence total at frati@r Iconic termk.
Cumul(0,k) = 0 for all classes.f¥ is the occurrence level of terkin the frame, as in
Equation (4.3). Itis clear that Cumul increases monotdlyiedth t for each class. The
resultis scaled betweg@, 1] for each point using the value at the last fram&ee Figure
4.5. One problem with the approach is that some filter resp@ase common to all
scenes and are not helpful for content change detectionu3éef a scaled cumulative

histogram is able to reduce the effect of this noise.

4.2.4 A video scene trajectory

The variations in the scaled cumulative histogram captifferdnt long-term frame con-
tent changes, however the dimensionality of the frame gescsk is high. This results
in difficulty the detection of important change. Also, mariylee Iconic terms are unim-
portant with respect to the content, for example a term thptures background noise.
Therefore, in order to provide focus, the principal subgpaithe scaled cumulative his-
togram is computed using Principal Components Analysiseth kmown technique for
data analysis and dimensionality reduction (Pegssl., 1992). The result eigenvectors
with the corresponding highest eigenvalues preserve tpertant cumulative effects.
The scaled cumulative histogram is projected into its sabspusing the firsto

eigenvectors. Whew = 3, the result is called ¥ideo scene trajectorf/ST) for the se-
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quence, because itis easily visualised as a three dimeisiajectory. Figure 4.5 shows
an Iconic term scaled cumulative histogram and a VST contpittea sequence with
three clearly distinctive periods of content. Figure 4.6\slthe trajectory along with an
example of the frame histograms that occur at the differeasps. It can be seen that the
frame histograms shown are distinctive. The result VST jgies a structure that clearly

corresponds to the changing content in the sequence.

4.3 Model order selection using entropy

The choice of vocabulary size mustmaximise the potential discrimination abilibf
the representation as search tasks must quickly discrimaraongst a large dataset. For
each candidate vocabulary, the quality of the containedsés analysed and those more
suitable for visual search are retained. Similar to textieeal where a few words are
found to possess statistical power for searching, we aimstmser the powerful visual
elements in the scene. Firstly,Tarm occurrence histografor each term is built by

concatenating the frame term occurreri¢éor each frame:

0(8¢) = {o{< Ve[l n]} (4.6)

whereok = fX. ois used to distinguish the term occurrence histogram (tbteibliition of
the term occurrence throughout the sequence) of Equati6hgad the frame occurrence
histogram (containing the number of term occurrences ihftaane) of Equation (4.2).
The histogram provides information about the distribuwéthe term occurrence in the
sequence. To allow comparison between low-frequency agta-tnequency terms, it is
scaled usingy'<"of) = 1. The total term occurrence [©(6)| = Cumuln, k).

If a term is popular, i.e. theO(6)| is high compared to other terms, it does not nec-
essarily mean that the term is good for searching. The ofpsusually the case. For
example, in text retrieval the words [“and”,“the”,"if”] air commonly but are clearly
unsuitable for searching as they lack context or any actealmmg. Similarly, unpopular

words [“bivariate”,“condition”,“giraffe”] are unsuitale because they are too infrequent.
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A prominent solution in text indexing is the removal of thelmest/lowest frequency
terms (Rijsbergen, 1979). In our approach, the most fretaet most infrequent terms
from a candidate vocabulary being assessed are removed.

A measure of a term’s discriminant ability is desired. Inttexdexing, a classic

approach is theverse document frequengomputed as:

n

id f (6) = log (-) 4.7)

Nk

wheren is the total number of documents anéy < nis the number of documents in
which termk occurs. Unfortunately, in our case the computation of ayir@n-frame
membershimg is not practical as the frames are spatially large and likelgontain
all the terms. Another possibility is the computation of th@malised fourth order
moment of the term occurrence histogram, the kurtosis, poitides a measure of the
distribution peakedness (Weisstein, 2006a). Howeves, dhproach is not possible as
the temporal order of occurrence is not significant.

Our approach is to use the homogeneity of the term occurmist@ution computed

using Entropy:

E(6k) = —tinot"bgz(ot") (4.8)
=
A term that occurs evenly throughout the sequence (e.g.gvaakd) is bad for searching
will produce a high entropy score. A term for which the distriion is peaked at certain
positions is good for searching and produces a low scoreFgeee 4.8.
A good term for searching is one that occurs frequently, semninant, and is of a
significant size. To this end, the normalised value$t6,)|, E'(6) and |{/'(6)]| are

computed using the approach in Appendix B. The tguralityis then estimated using:
Q&) =[0'(8)]+|¥'(6) —2E'(6) (4.9)

Figure 4.9 illustrates four terms, their term occurrencgdgrams from Equation (4.6),
and a textual description of their properties. It can be $katthe term quality provides

a compromise between frequently occurring terms and thegetovide maximum dis-
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criminance. During indexing, a vocabulary sigas chosen that maximises the mean
kek
term quality, by m KQ(ek).

4.4 Partitioning by trajectory approximation

For a sequence that is represented using a Video scendargjege now wish to parti-
tion the sequence into meaningful segments to solve thedshgegmentation problem.
Considering that the trajectory is smooth when the actioniertt in the scene is stable,
the key trajectory alterations are detected and theseipositised as the breaks. To this
end, a linear piecewise approximation of the trajectoryasegated that retains the key

vertices using the Discrete Curve Evolution (DCE) algamtfDeMenthoret al,, 2000):
1. Therelevanceof each vertex on the trajectory is computed using:
rel(t) = dist(t—1,t) +dist(t,t+1) — dist(t—1,t+1) (4.10)

wheredist is the Euclidean distance. The relevance scelés low if the point
can be removed from the trajectory without significantlyreasing the recon-
struction error.

2. The vertex with the least relevance is removed.

3. Repeat until the required number of vertices remain.

The final retained vertices are the points deemed most regefes reconstruction,
and are used as the break points in the temporal segmentatieralgorithm is found to
be conceptually intuitive, efficient and effective. Howgvedoes operate on the whole
trajectory at once. If an online process was required, radtiere algorithms could be
exploited (Keoglet al, 2001). We show a trajectory and its approximation in Figure
4.6. It is clear that the approximation retains the shapedadacter of the original,
using a few key points. Considering the trajectory is camuns when no change is

occurring, these points can be used as break points.
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Figure 4.7: A trajectory and it's approximation using 10msiand 5 points. It can be
seen that the shape and character of the trajectory is nredtaThe points found can
be used to divide the sequence into phases of similar dorgadtcontent.

high medium low

Figure 4.8: Three histograms corresponding to high, medameh low entropy. High
entropy indicates that the term occurrence is evenly thsted and is bad for searching.
A low entropy indicates that the term occurrence is peakedsthus discriminate.
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Figure 4.9: An illustration of the term evaluation. We shovuif iconic terms, their
scaled term occurrence histograms, and a textual dessripfihehigh occurrenceerm
corresponds to background activity. Tloev entropyterm corresponds to a highly dis-
criminate term - it matches against half the sequence and mloematch at all against
the other half. This is good for searching as the non-magchalf can be quickly dis-
counted. Théuigh qualityterm provides a balance between the two desirable propertie
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4.5 Visualisation using discriminant action

Once a sequence has been segmented, a video summary giedtéls the scene content
is required in order to solve the video visualisation probleCommonly, the first, last,
mid or n'" frame or frames are used as the segment summary. Howevéarasstatic
representation is found to be ineffective because it doedexszribe “what is happening”
in the scene. Therefore, in our approach a Segment sumnaanefis constructed for
each segment that emphasises the particular action thatredavithin it. For a segment
the set of active pixels are used that best represent itsractach pixel is evaluated

using the criteria:
1. How active the pixel is in the segment.

2. How good the pixel is for describing a segment considethiegsequence. In other

words, thediscrimination abilityof the pixel.

The motivation is that we wish to use the pixels that are misstininative, i.e. are best
for describing the unique content in the segment. This islairto theterm frequency,
inverse document frequent®rm weighting strategy in text indexing (Rijsbergen, 1979

For a sequence, each pixel position is evaluated for itgichgtation ability:

n
DiscriminationAbility(x,y) = lo 411
Wey)=log <Z{fTD(X,y,t> > Tact) @1

whereD is the Sustained temporal change from Equation (3[g},is a threshold to
determine a level of significant pixel activity. A high valulicates that the pixel is
rarely active. To compute the set of representative acikapfor segmens, each pixel
is evaluated as:

' (D(X,Y,t) > Tact)

ActivePi = - . 4.12
SegmentActivePixgt,y. ) max SegmentActivePixglx, vy, s) (4.12)

wheret € s corresponds to the set of frames in the segment. The ressdaled to the

range|0, 1] where a high value indicates that the pixel was highly adtithe segment.



4.6. Experiments 100

Each pixel is scored using

Scoréx,y) = DiscriminationAbilityx,y) SegmentActivePixgl,y, s) (4.13)

and the topr% of pixels with the highest scores are Top discriminativevacpixels
(TDAP). These provide indication of the most interestingreent action. A sequence
summary is formed by computing a Segment summary frame (88FEach segment
in the sequence. The SSF is computed using the TDAP and thérdinse from the
segment to provide a visual context:

SSHXy.S) = 255 if (x,y) € TDAP(s, 1) (4.14)

yF(x,y,s) otherwise

whereF (x,y,s) is the starting frame of activitgandy is a scalar betweejd, 1] used for
reducing the frame emphasig.= 0.5 is found to work sufficiently well. Figure 4.19
shows, for two outdoor scenes, tBéscriminationAbility Additionally, the total level
activity for a segment - i.eTotalD from Equation (3.10) - and the computed Segment
summary frame are shown for a segment detected at that siterz be seen that the

SSFs successfully summarise the most pertinent actiorcimssgment.

4.6 Experiments

In this Chapter approaches for video indexing, temporaireggation and summarisa-
tion have been presented, using the action features conhfsate a sequence. The video
index was built by computing the Haar wavelet coefficientslie scene action (Section
4.2.1), forming an Iconic visual vocabulary for scene dggin (Section 4.2.2), that

was then used to form a Video scene trajectory (Section8-4.2.4) that captures the
changing scene content. Temporal segmentation was adHhg\e process of trajectory
discretisation (Section 4.4). A video summary was formddgighe segmentation and

the discriminant scene action (Section 4.5).
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Figure 4.10: Action-based summaries for two scenes. (tty@)DiscriminationAbility.
A high/white value occurs when the pixel is rarely active aodsequently is of more
interest in the summary. (middle) THetalD. The total level of activity for a detected
segment. (bottom) The Segment summary frame. The statiefeontext is combined
with the Top discriminant active pixels (TDAP). It provideeth information about the
static visual appearance of the scene, and also the impsdane action.
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Test sequences

We tested our approach using a variety of surveillance sctra¢ show indoor, outdoor,
artificial and natural content. This variety is typical ofaeillance system and high-
lights the need for an efficient approach for partitionindg &rsualisation. The sequences

used are detailed below:

Aircraftl-5 showing the Aircraft docking scene shown in Figure 3.1 onepé8. Each
sequence is of spatial dimensig820x 240). The sequence lengths of the five

sequences atte= {11000647Q 2869 2642 2434} .

Pets1-2 showing the Pets carpark scene shown in Figure 4.11 on p&)eTlte spa-
tial dimension is(760x 540) and lengthg = {3061,3064}. The two sequences

capture the same action recorded concurrently from tworagpaamera mounts.
Pets3-4 are as Pets1-2 with= {2688 2688}.

Courtyardl shows an outdoor courtyard scene shown in Figure 4.11. Thiasli-

mension i 760x 540) and lengtht = 2982.

Selection of parameters

To avoid the need for tuning parameters to each individuglisece, the representation,
trajectory and visualisation are all computed using a sirsgit of parameters. This is
a realistic situation in that the system can process a neveslance sequence with no

knowledge or expectations of the content. Each sequencenesssed as follows:

1. We compute the Sustained temporal change developed pi€t8using the pa-
rameters from that Chapter. Namelg, = 50,3 = 50, Tyt = 5] are used when
computing Equation (3.9) to produce a reliable and efficestimate of what is

changing in the scene

2. An Iconic visual vocabulary was computed using a mediuredsicellA = 16
(see Section 4.2.1) and the number of clusiets 20 (see Section 4.2.2). These
selections were found to produce a compact frame-basedsemiation that was

able to retain important scene content.
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The Pets carparkscene, obtained from the Performance Evaluation of Trg:bimd
Surveillance workshop (PETS), shows a carpark scene congecar, bicycle and pedes-
trian activity. See (Ferryman, 2003). This view is from caaneount 1.

ThePets carparkscene. This view is from camera mount 2. The same action isrsho
as that observed from mount 1.

An Outdoor courtyardscene. The scene contains pedestrians, a fountain, antlevehi

content. The foreground also contains moving trees. Tha praiblem with interpreting
this scene is that no structured action occurs, i.e. theecdiseems almost random.

Figure 4.11: Two scenes used. Note that the Pets carpark se@fserved from two
separate camera mounts, capturing the same action conttyrre
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3. To detectlong term sequence change, the Video scenettigjevas computed (as
Section 4.2.4) using three principal componeniss 3, and approximated by the
Discrete Curve Evolution algorithm (see Section 4.4) udi@goints. Using three
dimensions produces a trajectory that is intuitive to cotaund visualise. It was
found that ten vertices are sufficient to approximate a secpievhilst capturing

the important changes, although this can be easily chargyeztjaired.

4. A video summary is produced by computing the Segment sugnirame (as

Section 4.5) for each segment using the most discriminxelgit = 25%.

We found this set of parameters through experimentationtanithg, to provide a bal-
ance between compactness, efficiency and expressiven@ssstibe stated that minor
changes in the parameter values makes little differendeetogsult, and so we consider
the choice to more about domain context and computatiomatisi To verify this asser-
tion, a Video scene trajectory was computed for the Petsdesexg using various values
of cell-size Q) and vocabulary size(). The result, shown in Figure 4.12, reinforces our

view that the approach is relatively parameter insensitive

Computation of Video scene trajectories

Figure 4.13 illustrates the result produced using the Aifit&rsequence. It shows:

e The Video scene trajectory in three dimensions.
e The trajectory approximation using ten vertices to enclgteunine scenes.

e The resultant nine Segment summary frames along with tineefr@anges for each

segment.

¢ In order to aid manual interpretation, a number of the Segrsemmary frames

are shown on the trajectory at the corresponding segmeittqes

Upon inspection of trajectory, it can be seen to contain isVeng continuous periods
of similar or continuous directionality Upon manual analysis of the sequence content,
these correspond to periods of similar content. For examplBegment 3 a large num-

ber of related unloading activities are grouped; in Segnietie loading activities are
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Figure 4.12: The robustness of cell-size) @nd vocabulary sizex() as demonstrated
using the Petsl sequence. In each case the trajectory m®mtaimilar profile, with
similar main phases and changes. This highlights that thdtris not over sensitive on
the selection of parameters.
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Segment 7: 3965-5784 Segment 8: 5784-5946 Segment 9: BH-6

Figure 4.13: The Video scene trajectory and segment basachaty produced for the

Aircraft3 sequence. The trajectory is approximated usi@gdaints leading to 9 seg-
ments. It can be seen that the approximation closely follinvgsstructure of the trajec-

tory and, assuming that the trajectory captures the scenembchange, the retained
vertices are the break points.



Figure 4.14: The trajectories and summaries produced &Atftraft1-2 sequences. Note that the segment summangeganmovide an indication
on the scene content and can be quickly interpreted by attaiperator. For example, to provide instant informatiomhanstatus of the loading
bay: empty-full loading-unloading. For a discussion of tharked summary frames, ABCDE, refer to the text.

/0T suswadx3 9y



Figure 4.15: The trajectories and summaries produced toAilcraft4-5 sequences. As Figure 4.14, the segment suyniraanes indicate the
scene content. For a discussion of the marked summary frakB&DE, refer to the text.

80T suawuadx3 9y



Figure 4.16: The trajectories and summaries produced @osdigiuences Pets1-2. The sequences are of the same saame@uent as observed
from two separate camera mounts that provide a different.&8early, the trajectories and approximations are higiitgilar meaning that the
approach is reliable. It can also be seen that the segmembhagnirames produced are correlated, i.e. they show the sation.

60T Suswuadx3 9’y



Figure 4.17: The trajectories and summaries produced @osdigiuences Pets3-4. The sequences are of the same saame@uent as observed
from two separate camera mounts that provide a differemtesgew. It can be seen that, similar to Figure 4.16, thedtajges and segmentations
are similar, and that the summaries show the same actios.ré&imforces our view that the approach produces a reliaselt.

OTT suawuadx3 9y
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Figure 4.18: The trajectory and summary produced for theisece Courtyard1l. The
scene contains no structured content and segmentationuamaha&isation is therefore
difficult. It is generally not possible to discover struawand content where none exists.
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grouped. This demonstrates a fundamental characteristieedrajectory: it does not
deviate when the scene action content remains similar. &s seFigure 4.13, the ap-
proximation is able to discover the important points of disinuity in the trajectory.
These become thareaksthat encapsulate segments. Finally, the combination ttsta
and action features in the segment summary frames sucttggxitrays the content of
the segment. The approach eases and reduces the the tinreddgu manual video
interpretation (in comparison to “watching” the sequence)

To demonstrate the consistency of the solution, similget¢taries and summaries
were computed for four other aircraft docking sequencegeraftl,2,4,5 - with the re-
sults shown in Figures 4.14 and 4.15. It can be seen thatsh#aat trajectories capture
content change and lead to an effective partitioning. Alse,summaries contain clear
action based content - with static context - and are meanlingfa trained human ob-
server and so facilitate a semi-automatic surveillancestigation system. In particular,

a number of repeating activities are highlighted:

A The plane arrival event is easily determined from both thekiof-plane in the

static context and the active pixels.
B Many unloading activities.
C Many loading activities.
D Examination of the plane engines.
E Examination of the Aircraft front wheel.

The repetition of similar actions is to be expected, as theait docking scene contains
a clear cycle of known action - arrival, unloading, loadimigparture - that a trained
observed can identify and use to establish the currentsstitthe loading bay. The
summaries contains a precis of the scene content and, iipealdon-line, can be used
for monitoring and intervention applications.

To demonstrate the approach on a more controlled envirofitnajectories and sum-

maries were produced for four sequences that show the Ppiarkacene. Figure 4.16
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(@) (b)

Figure 4.19: Three automatically detected segments/scieom the Pets scene with
alternative summaries: (a,b) the first and mid frame, (c)%4Q@d active pixels in the
scene, (d) the top 25% most active pixels, (e) the top 25%idistative pixels. The
discriminative pixel approach reduces the effect of noisgels, for example those on
the lamppost due to camera shake.

shows the results for the sequences Pets1-2, that showtigess&ne content as concur-
rently observed from two separate camera mounts. We aneestézl in the consistency
of the result produced for the same content. It can be seéthidrajectories are very
similar and that the summaries complement each other. &7 shows the result pro-
duced for the sequences Pets3-4. These are also similagtguite to the same extent.
We conclude from this experiment that - as the trajectorysamdmary produced is sim-
ilar for two sequences that observe the same action - th@apipproduces a consistent
and reliable result.

Finally, the approach is demonstrated on a complex, outdatural courtyard scene
Courtyardl that contains many unrelated, unstructurediaes. The use of discrimi-
nant pixels during the summary construction is able to redbe influence of the noise
produced by the shimmering trees in the immediate foregioufhese pixels are so
noisy that they, correctly, are not highlighted in any of degment summary frames.
The trajectory produced contains clear phases of contehtam be used for investigat-
ing the sequence. However, it may be concluded from thisrexeat that to compute

and use a temporal segmentation foruastructured sequencg not generally possible.
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Effectiveness of the summarisation

Figure 4.19 shows a frame based summary, an approach usingoit active pixels, and
our discriminative pixel approach. We find that static frande not provide information

about the action content and that the most active pixelsoagprcontains noise, in this
case due to camera shake. The use of discriminant pixelsesdbe effect of noise and

produces a clearer action based segment summary.

4.7 Discussion

We have presented a video representation used to perforn indexing of unstructured
surveillance video. A key goal of the approach is the assianpff very little knowledge
about the scene. This is necessary owing to the retrospawiture of search tasks and

also the scalability issues in the surveillance domain hi®énd, we proposed:

e An uncommitted frame representation based upon the exiragct invariants that
capture the appearance of local action. This is achieved&tyyfcomputing the
reliable action for a scene, then dividing the image spat® angrid of equally
sized cells, and finally, computing the Haar wavelet tramsftor each cell. This

provides coefficients that capture the directionality arsdial structure of action.

e The construction of an Iconic visual vocabulary for scengcdetion. The coef-
ficient space for a sequence clustered and each frame dagasing the number
of Iconic terms (the centroids) that occur within it. Theukss a very compact

and generic description of scene content.

e The model order selection, i.e. which terms to employ, wasssed by examining
the entropy of an Iconic terms occurrence in a sequence. ftiepy provides

information on the distribution of a term, and thereforediscrimination ability.

The advantages of the representation are that it does naiteesxplicit object and ac-
tivity detection and tracking, that can be problematic indmor surveillance scenes.
Tracking systems often require a rich feature landscapzudimg colour, that is not

available. In addition, the representation does not assunyepecific content when it is
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computed. This is critical if large number of videos of dseicontent are to be indexed
and retrospectively searched. We call this charactem@stisncommitted index

As discussed in Chapter 2, two important functions that aggiired in an index-
ing system are the ability to perform temporal segmentaéiod summarisation. We

therefore proposed:

e The content changes in the scene are captured by forminge ¥ickne trajectory
in which a stable, or continuous, directionality is indigatof similar content. This
is achieved by computing a cumulative analysis of the frazoeit occurrence his-
tograms to find the temporal variations in term occurrenicentthe computation
of the Principal Components Analysis, and finally the progecof the frames into
a low-dimensional subspace that captures the variatioms.rdsult is a trajectory

that captures the scene-level content change.

e The break points in a sequence are found by the discretisafithe trajectory.
The trajectory is approximated using a small number of gegtiand each retained

vertex becomes a break position.

e A video summarisation is formed by computing the most disgrative active
pixels in each detected segment and the formation of a sdgusermary frame.
The set of segment summary frames form a video summary thaege the scene

action content.

The advantage of the trajectory approach is that it is abpedvide information on how
the sequence shanging over timegas opposed to providing information on the static or
dynamic content. The result is that the approach is contelggendent. The summari-
sation approach was shown to provide pertinent action imédion for a sequence.

In the previous two chapters, two approaches were preséntemieo representation

and temporal segmentation:

e In Chapter 3, activities were segmented as spatio-temparahnected active
cells, and a temporal segmentation computed using frarseebar activity-based

sliding window.
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¢ In Chapter 4, a sequence is described using a vocabularyaramts and a trajec-
tory formed to captures the scene content changes. A tefrgeEgmentation was

computed using a trajectory discretisation.

Both chapters present an uncommitted approach, in that ntelbexpectations are
made on the scene. However, it may be argued that during aahpracess of video

investigation - for example, retrospective search - serognor knowledge, about the
scene content becomes available as the manual searchgwegiré-or example, certain
periods may be tagged as important-or-not or containisgfaantic-or-not. This is a
similar concept to that of relevance feedback in text-basedmation retrieval systems.

During pre-attentive indexing, this information cannotdssumed. However, the next
Chapter addresses the problem of how semantic informasiotbe integrated to achieve

a semi-semantic search process.
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Chapter 5

Semi-semantic analysis

In recent times, theemantic gaproblem has motivated the desire for automatic seman-
tic video analysis to detect and label content. Action msttased methods have been
reported for the recognition of indoor activities (BobickdaDavis, 2001) and complex
outdoor events (Gong and Xiang, 2003). However, they arem#gnt upon successful
training, the adequate provision of training data, anddasgmputational resources. A
temporal constraints used to improve action recognition by enforcing strichperal
order. For example, by using a hidden Markov model wherestebrrespond to differ-
ent stages of appearance transformation. Unfortunatedytemporal order assumption
is not valid in more natural scenes, and also the sensoryandrgic ambiguity is high.
In this Chapter, video analysis is performed without eitégplicit model building
or a temporal constraint. Firstly, in Section 5.2, a compgetbaussian mixture models
is described that can perform unconstrained activity radamn. However, the approach
is vulnerable to training issues. Second, in Section 5.3welmank-voting framework
is proposed for performing fast, uncommitted semanticymisland browsing of video.
The positions of labelled items in a content-based rettigrzgking are used to vote for
their respective semantic labels. Third, in Section 5.4agd8ian framework is proposed
for performing a combination of evidence to achieve fusidnconstructive inference

algorithm is also described.
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Figure 5.1: Illustration of a semantic graph. The plot shtivesconfidence in a particular
semantias it varies over time. In this example, the semantic oceurs® phases but is
most prevalent towards the end of the sequence. Such a gvaph,used by a browsing
system, permits the user to navigate towards the desirddignathe occurrence of the
semantic in the sequence).

5.1 Semantic belief based browsing

A video sequence is typically browsed by navigating its dmenical structure, or by
viewing a sub-sampled frame-set. However, if a recognisigstem is able to recognise
a semantic labelw, an alternative is to presentsemantic graptio the user with the
level of semantic belief presented over time. See Figure Such a graph highlights
the occurrence of a semantic in the sequence and permits #dousavigate towards a
desired result. It is the role of the indexing system is t@o®r the confidence levels -

or belief - for a set of semantics:

S={s(w,t) : Vie[l,m;Vvte[ln|} (5.1)

wheremis the number of semantics the number of frames, argthe level of belief in
semantiaw at time instant.

For surveillance scenes, example semantics could be “chingd, “plane arriving”,
or “tea making”, that occur at a time instant. Itis, therefa similar but distinct problem
to that of temporal segmentation discussed in Chapters 8 anghich the discontinuity
in scene semantics is required. Clearly, a classic approadiuilding a semantic graph
is to performtraining and recognition However, such approaches are often dependent
upon clean data capture, unambiguous feature spaces, acidaf hoise (Bishop, 1995)
and consequently are of limited use for outdoor scenes. ditiad, it is desirable for

the semantic graph to be adaptive because the search taskkaown when the se-
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quence is indexed. This is similar to the conceptedévance feedbadk information
retrieval systems: as a user marks documents as relevasydtemm is expected to alter

its perception (Baeza-Yates and Ribeiro-Neto, 1999).

5.2 Competing models approach

It is widely understood that recognition can be achievedraying several competing,
stochastic models to each recognise something of inteYéstpropose using the flex-
ible Mixture of Gaussians to model the Haar coefficients tgpaxd in Chapter 4, for

generating the semantic graphs.

5.2.1 Expectation maximisation training

A Gaussian Mixture Model (GMM) is a semi-parametric modetdiso estimate the
probability density function of a feature spagd The model©® consists of several
independent Gaussian distributiofghat when combined using mixing parameters
form a single result, s® = {(ai, 6)};i € [1,k] wherek is the number of components.
Each component is a Gaussidh,= (L, i), comprised of a meap and covariance
matrix 2. The model captures the expressiveness of the feature sigatge minimal
parameters. The posterior probability of a data-poinis computed as:

i<k

PXE) = 3 pix)a (5.2)

wherep(x|6) is the posterior probability of given componernit

1 1 _
p(X &) = WGXP(—E[X—M]T; 1[X—I1i]) (5.3)

whereN is the dimensionality anfk — u]" =[x — u] the Mahalanobis distance. Note
the sum of all mixing parameter&y { a;) = 1.

The Gaussian Mixture Model is a semi-parametric model forclvta number of
parameters are needed to be estimated during a model fithegss (Gongt al.,, 2000).

This can be achieved using the Expectation Maximisation)(&ligorithm (Dempsteet



5.2. Competing models approachi 20

al., 1977) that computes a Maximum Likelihood estimate of thaupeters:

L~ p(¥[0) = []px[O) 5.4)

wheren is the number of training samples. For practical purpogesetror function is
minimised:

E=—-InL(®) = —niln p(x|©) (5.5)

as the negative log is a monotonically decreasing funciitve. algorithm consists of the

following two steps that are iteratively performed untiétérror converges:

e TheExpectatiorstep. The current expectations are computed for all trgisam-

ples and all component Gaussians

pP(x/6)P(6)
P(G|x) = —~— 2/ 1/ c g
e TheMaximisationstep. The new parameters are estimated:
IJ.neW: Zj_<” POld(9||Xj)Xj 5.7)
i ZKnPOld(a‘X]‘) .
' T
gnew_ 3 "PUBIX)) [ — k"] [xj — 1 5.8
- j<n pold _ (5.8)
zl po (9||XJ)
j<npold _
P"e(6) = 2 PPR(Gix)) (5.9)

n

Unfortunately, the accuracy of EM is known to be vulnerabledriation in the ini-
tialisation procedure and to local maxima. To reduce tlgk,rihe model is initialised
using the following method adopted from (McKenretal., 1999): component means are
initialised by k-means clustering; covariance matricesiaitialised to>~ = | o wherel
is the identity matrix ana is the Euclidean distance between the mean and the closest
other mean. The initialisation approach is illustrated igufe 5.2. The correct initiali-
sation approach can minimise the risk of local minima in tkelihood function and can

speed-up convergence.
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The choice of the number of componentss critical as too few components will
not adequately capture the density, and too many componéhts/er-fit the data and
render the model unable to generalise. Many schemes exigtifomatically choosing
K. Schemes based upon the Minimum Description Length (MDinggule attempt
to balance the quality of the model fit (the likelihood) agdithe complexity of the
model. A number of candidate models are trained with ia a desirable range, then
the MDL is computed for each model, and finally, the model viiitb lowest MDL is
considering that achieving the best balance and is seléatede. Although common
in literature, we feel that the approach is unsuitable fogdascale datasets because it
requires multiple and repeated model fitting at great companal cost. Rather, an on-

line pruning approach is adopted:
e The model is initialised with a large number of components

e During the EM iterations, components are removed accoriagruningcriteria.
Components are removed if they are responsible for too fearidams or if their

mixing parameten is zero.

The model fitting and pruning process is illustrated in Fggbir3. The models are shown

at various stages of fitting. Gaussian components beingweths clearly observed.

5.2.2 Haar-based models for sequence investigation

After a mixture model of Haar coefficient distribution for a/gn scene is estimated,
using a subset of sampled video frames, a semantic graphecaaristructed for any
video sequences of the same scene from novel observatidns.isTachieved by, for
each frame, computing the posterior probability that it waeserated by the model.
Figure 5.4 shows the approach computed using a short segoéacsquare pattern
being drawn in the air: (top row) shows illustrative framgsecond row) shows the
total activity for the sequence along with an indicationtu frames that were used for
training; (third row) shows the model output from two traigimixture models; (bottom
row) shows a comparison of the model output— s that is useful for analysis. It is

clearly seen that the models are able to recognise the adtigure 5.5 shows a short
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Data Random Clustered Resized

Figure 5.2: An illustration of the model initialisation fewo datasets. (Random) 20
Gaussians are generated with random means and unary coanatrices. (Clustered)
K-means clustering is used to initialised the means. Thartawce matrices remain
unary. (Resized) Each covariance matrix is initialised dousing the distance to the
nearest other centroid and the identity matrix. It can be seen that the resized strategy
produces a good initialisation.

Iteration 1 Iteration 5 Iteration 25 Iteration 100

Figure 5.3: An illustration of the Expectation Maximisatiditting process for two
datasets. The resized initialisation of Figure 5.2 was usdte model is shown at 1,
5, 25 and 100 iterations. It can be seen that components mr@vesl if they are not
responsible for enough data, and that the result after £oétions provides a good fit.
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Figure 5.4: The competing models approach. (top) Frames fxoshort training se-
guence showing a square shape being drawn in the air. (se¢bedotal level of ac-
tivity in the scene. The peaks correspond to the left-doghtrup movements in the
sequence. Also, we highlight the 10 frames used to train gamifel. (third) The pos-
terior probability output from each model for the sequen@mttom) A comparison of
model outputs using A-B. Each model is clearly stimulatetigrraining period.
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Figure 5.5: The competing models from Figure 5.4 as appbetitovel sequence con-
taining similar action. It can be seen that the models areudéited both correctly and
incorrectly to an extent.



5.2. Competing models approacti24

\nng‘I p(x) A-B

0 100 200 300 400 500 600
(a) Waving 1: semantic graph produced by competing models.

Waling2 p(x)

0 100 200 300 400 500

(b) Waving 2: semantic graph produced by competing models.

Figure 5.6: The semantic graphs produced by the competimdetmanethod for two
novel sequences of constrained hand signal video data. rapé ghows\ — B meaning
that occurrence of semanticresults in peaks and in troughs. We highlight frames at
notable peaks and troughs. We find that the peaks and traaitfins,igh meaningful with
reference to the training data, are noisy and hence penfgyimierpretation is difficult.
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novel sequence that contains a similar square pattern andadel output. It can be seen
in Figure 5.5 that the model cannot adequately generalis@vel data. Furthermore,
Figure 5.6 shows the model output for two longer sequencéiseérsame scene and it
can be seen that, although the models are stimulated byeahffsets of coefficients
produced by the different action, the result remains unclea

It is concluded that the semantic graph obtained from a céingpenodels approach
does not justify the computational cost of model trainingioad in Section 5.2.1. Also,
as model training is requireaff-line the approach is not able to adapt to new semantics
as they arise. To overcome these problems, in Section 5.8ltamative approach is

presented that uses a voting algorithm.

5.3 The rank voting method

5.3.1 Frame-based ranking

In Chapter 4 a compact video representation was presensaay(the Iconic visual vo-
cabulary) that could be searched using a histogram inteosemetric. The process of
rankingis well understood and widely used in text, image and vidégeral systems
(Rijsbergen, 1979; Baeza-Yates and Ribeiro-Neto, 1994, P801). The ranking pro-
cess produces a ranked list of items - the ranking - with thetremnilar items at the

head. A ranking is defined as:

R=Ari : Vie[ln]} (5.10)

where each item in the ranking,is arank itemconsisting of:

' pos = | POS SiMpos, F *pos, Wpod (5.11)

wherepose [1,n] is the rank positionsimis the normalised similarity in the rang@, 1],
Fx € [1,n] is a content identifier (in our case, a pointer to a frame), @& [1,m| is a

frame label if one exists.
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5.3.2 Rank positions as votes

If a ranking is generated containing a number of labellethgigi.e. wepq = [1,m],
then, intuitively, the positions of the labelled itenms will provide an indication of
the content of the query item. A high rank position for a mad@r label is evidence
of that semantic occurring in the query frame. This idea sdu® estimate a semantic

graph by the following process using each frame as the quexyrn:

1. A small number of frames are manually analysed and stordlde index with a
label s € [1,m]. The label indicates the semantic content of the frame. Ifemo
than one content type exists, then no label is assignedintigertant to note that

all the semantics under consideration must have an equdienwhlabelled items.

2. Avideo frame with unknown semantics is used as the quemanking is gener-

ated with the frame excluded.

3. The topp rank items eacltast a votefor their semantic, if one exists. Each
semantic is scored as follows:
POS=P | log(p — pos if (Wpos= W
scorgwR) = 3 9(p — pos if (Wpos= w) (5.12)
pos=1 | O otherwise
wherep is the number of rank items at the head to consigesc [1,p] is the
rank position,wpos is the label that is checked against the class being saored
The vote, logp — po9), is only cast by labelled items and is larger for items nearer

the head.

4. The topp similarity scores are used to compute a measure of reliatwf the

interpretation. The median similarity is used:

rel(R) = median{sim : Vi € [1,p]}) (5.13)

Thescorefor a semantic will be high if items with that label appearttiigplaced in

the ranking. See Figure 5.7. The scores for the differentesgics are used to populate
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Rank 1 2 3 4 5 6 7 8
\ote 2.08 1.95 1.79 1.61 1.39 1.10 0.69 0

Query A
Query B

Figure 5.7: An illustration of the rank voting method usimgptqueries. At the top we
show the rank positions and the corresponding vote. For gaely, a ranking is gen-
erated and then the labelled items are used to generate fovdtat label. The results
for the first query aré4.97,2.30] identifying A, and for the sequence quéB/34,4.38|
identifying B.

S. The approach permits visual ambiguity because the labékens in the index can
vary in order to capture all of the visual variations of thensatic; it is quick to setup as
the user only has to select example frames; and it can bededeat any time without
difficulty. In particular, each labelled item is consider@dbe independent of other
labelled items in the same class.

The approach is illustrated in Figure 5.8 using the samet $tzord signal sequence
used for the competing models of Section 5.2. For the contiputaf the Iconic index,
the parameters outlined in the previous chapters were usedcomparison with the
competing models approach, 10 frames were labelled in thexiwith the two seman-
tics. Itis clear from the Figure 5.8 that the rank voting noetls able to identify seman-
tics at the training positions, but also able to generabsthé novel sequence in Figure
5.9. Note that to perform the algorithm on a novel sequeraidt (nust be indexed using
the same Iconic visual vocabulary as the training sequearog;(b) the labelled items
from the training sequence are added to the novel index etk voting begins. It
must also be emphasised that, in contrast to the competinigisiapproach in which a
training process must be completed in advance of the seas&h the method does not
require a prior model fitting. This renders it more usefuldéminteractivesearch task in

that labelled items may be added, removed, altered, dunmgearch.
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Figure 5.8: The rank voting approach. As in Figure 5.4, wensframes, the total level
of activity along with the frames labelled in the index, theput of the rank voting algo-
rithm, and also a comparison of the outputs for two semaniics clear that the method
is able to identify frames from which it has been trained. djlalthough the system
was labelled with the “down” semantic (B), it has potentiatlentified the similar “up”
semantic at ~ 17.

— —

.........

.........

70 80 a0 100 110 120

Figure 5.9: The rank voting algorithm result for a novel seoee. The labelled items
from the sequence in Figure 5.8 are added to the index andgbetam used to generate
the semantic graph. Unlike in the competing models casefigeree 5.5, the algorithm
is able to generalise to novel data.
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5.4 Modality fusion

In the previous Sections two approaches were described §€wng models, Rank vot-
ing) for estimating the semantic grapis However, two important pragmatics have not

been addressed:

e It may be computationally too expensive to interpret eveayrfe. Rather, it is
more tractable to only interpret sections that are consiiénteresting in some

sense, e.g. they contain a level of activity above a threshol

e The selection of the best interpretor configuration. Manteptal configurations
exist - Competing models vs Rank voting, with varying cétlesor similarity met-
ric - each of which may be optimal for some situation. A onessfits-all ap-

proach is necessarily suboptimal. Each alternative iedamodality.

In this Section, a Bayesian network is used to obtain an @tfosed result using
a number of modalities. To reduce the computational cosgrestructivealgorithm is

used for selective node population and inference.

5.4.1 Combination of evidence

It is widely understood in recognition and ranking resedtdt an optimal solution is
achieved by a statistical combination of evidence. For g@famin the Inference Net-
work retrieval model (Turtle, 1990; Graves, 2001), eachdmor a text query is prob-
abilistically scored against a document, and all the wombgbilities then combined
using statistical approximations of Boolean operators.(Sherrah and Gong, 2001;
Toyama and Horvitz, 2000) a Bayesian fusion is performedgoaver the location of
faces in video, fusing the input from several separate featatectors.

In our situation, we potentially possess a number of alter@asemantic graphs,
{81,82,..., 8}, and we desireSypiimal that considers the computational cesst(S)
and reliabilityrel(S). We therefore propose using the Bayesian fusion framewuwia
in Figure 5.10. The main node to infer is the current level elidf in a semantic, S

with a prior provided by the the previous time-step, S



5.4. Modality fusion 130

Figure 5.10: The Bayesian modality network used to perfarsiagn. The main node to
infer is the level of semantic belief at the current tirge, This is “caused” by the pre-
vious time stef_1 and contingent modalitig€s. The node is the “cause” of necessary
modalitiesN. The R nodes represent a modality reliability. The network is apto
each time step to form a semantic graph using a principledatitgdusion.

The modalities modeled in the network are either:

Contingent modalities are only indicative of potential semantic prese For example
the total scene activity is indicative of something happgrbut cannot provide

information about what.

Necessarymodalities must occur for the semantic to occur. For exapgkank voting

algorithm must have produced a good score.

In the fusion network contingent modalities are modelechv@tnodes, parents of;,S
along with reliability node R. Necessary modalities are sled with the N nodes, chil-
dren of $, along with reliability R. In the Bayesian sense, the “setita® causes the
necessary evidence to occur”. Figure 5.10 shows one C and ande, however in gen-
eral the number of modalities in the network is determinethieynumber of interpretors
in the system.

We illustrate the fusion approach in Figure 5.11 comparedn@dditive approach
(the modalities are summed). The total scene activity isl @sea contingent modality
and four separate rank-voting interpretors are used asdtessary modalities. The four
rank-voting interpretors are configured with: (k. = 10,A = 32), 2: (k =20,A = 32),
2:(k=10,A =16) and 4 :(k = 20,A = 16), in order of increased computational cost.

Figure 5.11 shows the result as more modalities are addée tcoimputation. It is clear
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Bayesian fusion approach Additive approach

Figure 5.11: The semantic graph produced as more evideracled. \WWe compare the
Bayesian fusion result with that produced by a straightardhadditive approach using
1 contingent and 4 necessary modalities as described irxthe he fusion result can
be seen to converge as more evidence is computed and addisddehmonstrates that
the fusion approach is performingammbination of evidenceAlthough the additive

framework appears to give a good result, it essentiallyilstald after a single modality
meaning that the extra information was ignored.

T T T L T T
'

0 10 20 30 40 50 g0

Figure 5.12: The constructive inference: (top) The sensagriph using all five modal-
ities computed at every timestep, and (bottom) computecigusie constructive algo-
rithm. A similar result is achieved at greatly reduced cobtapional cost.
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that fusion approach converges to a result in comparisohdatditive approach that

does not consider the extra evidence.

5.4.2 An algorithm for constructive inference

An attractive property of Bayesian networks is that not atles need to be instantiated at
a given time. This allows us to selectively add evidence éangtwork, in computational
cost order, until a conclusive result is achieved. In thédlusietwork, the inexpensive
modalities are computed and the respective nodes indkashtia the network. If the
current level of semantic beliep(S = true), is not clear, a more expensive modality
is computed and added to the network. This occurs, itedgtivatil either all of the
evidence is computed and nodes instantiated, or the levetlad#f is clear and stable.
The approach reduces overall computational cost by onlyireg the computation of
the modalities needed to make the inference.

We use a method of adding a new modality only if the currenebée in the range
(0.2,0.8), i.e. itis not clear. This range was chosen through expertiai®n and pro-
vides a good balance between stopping the computationf{i¢ismtly clear result) and
continuing (if not clear). To illustrate the approach, doastive inference was per-
formed with the five modalities of Section 5.4.1 in order tongute a semantic graph.
The result, shown in Figure 5.12, is comparable to the naorsiractive result, but was

achieved at a much reduced computational cost:

Semantic A [64 64 64 64 64] [64 64 36 7 3]
Semantic B [64 64 64 64 64] [64 64 35 8 0]
Normal Constructive
The table shows, for each semantic and inference combmaithe total number

of modalities computed to form the semantic graphs. In ottends, the constructive
inference algorithm has reduced the number of feature ctatipns and rank-voting
graphs computed to achieve the result shown in Figure 5.d2thé normal case, all five
modalities are computed for every frante< 64 is the length of the waving sequence).
For the constructive case, the most expensive modalityk4= 20,A = 16), is only

computed 3 times in total corresponding to significant sg&in computational cost.
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(b) The Tearoom scene showing “jigsaw” activity.

Figure 5.13: Two semantic activities in an indoor tearoomngc The tea-making ac-
tivity shows a subject obtaining and filling the kettle, amhgrally hovering around the
kitchen area of the tearoom. The jigsaw activity shows aestilgarticipating in a group

jigsaw on one of the foreground tables. Although the scerestaged indoors using a
number of actors, the activities themselves are non-&ztiahd resemble natural action.
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Figure 5.14: The total scene activity for the 2600 frameshef Tearoom1 sequence. It
provides a useful pre-attentive indicator but no indicatd semantic content.

0 500 1000 1500 2000 2600

Figure 5.15: The fusion result computed using the consteiabference algorithm for
sequence Tearoom1 showing an indoor tearoom scene withemvargics: A="making
tea” and B="jigsaw”. It can be seen that peaks and troughst@meulated for similar
content: we show the frames for positiod$0,1230 2060 and [850,2273. However,
we find that the result for B is more distinctive than A as “teaking” occurs in a

spatially small area leading to few action features.
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5.5 Experiments

We demonstrate Rank voting and Modality fusion using theoa scene and seman-
tics shown in Figure 5.13. The scene is comprised of an indoom, with seating
and kitchen space, in which several actors participateffarént semantic activities in-
cluding: making tea, a communal jigsaw, sitting and talkiagd also simulated theft.
Although the scene content is simulated, it contains thialdity of surveillance scenes
and provides a controlled environment in which action cacdogrolled. We captured a
sequence named Tearoom1 of length2600 with each frame of spatial sigZg20x 240)

and performed indexing as follows:

e The Sustained temporal change of Chapter 3 was computeg th&rparameters

developed previously, namelgr = = 50 andTg;s; = 5.

e The Iconic index of Chapter 4 was computed using a variatibpavameters
A €[16,32 andk € [10,20] in order to permit alternative rank-voting modalities.
Each frame is represented in each index using a histogracooid occurrence, as
Equation (4.3). Note that although all the features weremated in advance dur-

ing the experiment, a system would be optimised to computevass required.

e In order to perform Rank voting and Fusion, 3 frames werellatdor two se-

mantics as follows:

Semantic A t =[140,145150 The “tea-making” action semantic.

Semantic B t =[705742 870 The “jigsaw” action semantic.

As previously described and illustrated in Section 5.4demantic graph was gener-
ated using the total scene activity as a contingent modatityfour separate rank-voting
interpretors as the necessary modalities. The total sagivityais computed as Equation
(3.10) and the result shown in Figure 5.14. The four rankngpinterpretors, configured
as described above, are constructively added to the fugtwonk in order of increased
computational cost.

We show the fusion result using the constructive inferemgeraghm in Figure 5.15.

The semantic graph shows the subtractive result, i.e. (8&maA-Semantic B), as it
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provides a visual indication of the occurrence of both semanpeaks indicate A and
troughs indicate B. A level graph indicates that the fusesuft was similar for both and
thus insufficient discriminant context is available to @ a result. It can be seen in
the Figure that occurrences of Semantic A and Semantic Boanedf using the graph.
However, in the graph a number of extra peaks can be seensutnsised that this was
because the “tea-making” activity occurs in a small spatiah, leading to few action
features, and is not therefore distinctive enough from o#uotivities to be found. In
contrast, the result for Semantic B is clear and can be useduick semi-semantic

based browsing.

5.6 Discussion

An important problem for video search is to provide a browysmechanism for se-
guence investigation. It is desirable to present a semappecoach, in that the user can
interactively search for known contents. To this endpanpeting modelapproach was
examined with the supervised training of a number of Gaudsixture Models. It was
found that, although the approach was able to recognisebirt simple scenes, the
extraction of feature sets and the vulnerability of thertirag process limit the potential
scope. It is not desirable to train explicit content-readgn models before sequence
investigation can begin. This requires knowledge of thenmiation need in advance.

We presented our alternativank-votingapproach that exploited the presence of la-
belled items in a ranking. Using the current scene as theydoput, labelled items vote
for their semantic according to their rank position. Theragh is intuitive, completely
avoids the model fitting process, makes few assumptionstabescene content, uses
limited manual labelling and training, and is able to be ewea quickly and easily with-
out complex model upheaval. However, it does require a nuwibeems to be manually
labelled and it requires the ranking process to be perforfoedach frame.

We recognise that that the configuration of semantic ideatiin approach, for ex-
ample by the selection of tuning parameters, is problemdtnerefore, a Bayesian fu-

sion network was proposed that was able to reason aboutsbhks@roduced by several
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interpretors. The use of such network provides a principtethematical framework
for performing acombination of evidencesing the results of pre-attentive and semi-
semantic cues as input. Also, it was proposed that the fusasicomputed in a con-
structive manner - using estimates of cost and reliabilityerder to generate the fused
result but at reduced cost. It was found that the approactabasto provide a semantic
graph for browsing a complex indoor scene.

Finally, we call our approacBemi-semantibecause (a) the system is able to gener-
ate belief graphs for use during sequence investigatidr(pdthese belief graphs do not
correspond to system understanding of the content. Theappiis dependent upon the

user providing manual labels and having some understamditige sequence content.
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Chapter 6

Conclusions and Future Work

6.1 Motivation

It is apparent that as digital information is collected,ertual and visual domains, sys-
tems are required that are able to index and perform seardhelvisual domain, this is
particularly apparent for surveillance data as (a) it existhuge quantities, and (b) real-
time and retrospective scene investigation are the fundshpurpose for generation.
Unfortunately, the semantic gap is also prevalent: in thatdystem representation has
little or no correspondence with the semantic understandifrpotential users.

In this thesis a framework has been presented for perforrastpn-based scene
indexing, as it is considered that “what is happening” in eveillance scene is more
important than “what is present”. In particular, efficiemegattentive cues - such as the
level of scene action - have been used to reduce the scope asktrch task. More

specifically, the following problems have been addressed:

e Extraction of action features.
Surveillance video is often long, is captured and storedgupoor quality record-
ing devices and storage media, and also contains contens that visual distinc-
tive. These are called the sensory gap and ambiguity isslessrfbed in detail in

Section 2.2). The extraction of useful pre-attentive acteatures from a scene is
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a challenging and important issue. By pre-attentive, amagah must have little

understanding of scene content during extraction.

Forming an uncommitted representation.

An index is formed off-line in advance of any potential resppective search tasks.
It is therefore critical that the video representation - itkee format of the index
- does not make assumptions about the scene content. Waisalessirable rep-
resentation quality “uncommitted”. As sequences are slpidong with little or
no interesting content, the representation must also bgaotrand able to be

searched using efficient tools.

Temporal segmentation of surveillance video.

For search tasks, the video frame does not provide a temponaéxt that corre-
sponds to Human understanding of a scene. The automatitiqgrany of video
into larger contextual units - called “segments” - is coes&tl a highly desirable
feature of an indexing system. A challenging problem is tdquen temporal seg-
mentation using natural scene behaviours (rather thaficatibehaviours often

used in non-surveillance domains).

Action-based conceptual visualisation.

If a system is to provide quick access to video content, iughprovide a con-
ceptual visualisation that summarises the content. Viggoence visualisation is
particularly important in surveillance video, as it redsitkee the time required for

manual video interpretation (in comparison to watchingseguence).

Low-level integration of semantics.

It is clear that a semantic-based search system is highlyatdés However,
standard supervised training is not viable as it breaks tlewmmitted require-
ment (described above). Alternatively, similar to relesafeedback in text-based
search systems, semantics may become available duringhseardesirable ap-

proach is able to integrate manual assessments to faeiigahi-semantic search.



6.2. Conclusions 140

6.2 Conclusions

6.2.1 Pre-attentive processing

In order to capture the required action features, the inespe thresholded temporal
change measure of Equation (3.8) was adopted. In survedlgigeo, this approach is
vulnerable to sensory problems that produce rogue actiegi Therefore, a measure
of Sustained temporal change was computed using a spatjgstal smoothing process.
Furthermore, the image space was divided into a grid of é&gs&ded cells to capture
a larger and more useful unit of action. Our experiments gtbtiat the approach was
able to extract reliable action information from the scesee(Figures 3.3 and 3.5) and
also that a generic set of parameters could be used effdotizaevariety of scenes.

A sequence was indexed by detecting spatio-temporallyexied regions of cells
as meaningful independent activities using an adaptedemted components algorithm.
Activities were profiled to capture their spatial and tengd@haracteristics and similar-
ity metrics defined. Our experiments showed that the appre@s able to extract useful
activity events from different outdoor scenes (see Fig@résand 3.21).

A temporal segmentation for a sequence was computed usirepaure of activity
coherence. At each position in the index (frame or activaydd), the past was compared
to the future and those points of low coherence were detexdede breaks. Our exper-
iments showed that the frame-based approach was vulnémblmdow sizing issues,
however the activity-based approach produced a resultagitoi manual segmentations

(see Figures 3.16 and 3.17 on page 76).

6.2.2 Iconic indexing

In order to capture the the localised structure content eflatbe Haar wavelet transform
was computed and used to form a cell feature vector with thensmef the coefficients
in the different bands. When computed on the Sustained teahplbange the features
provide information on the directionality and visual apgeece of action (see Figure
4.2). To provide an invariant mechanism for scene desonptihe coefficients were

clustered and the centroids used to form an Iconic visuabolary. Each frame is then



6.2. Conclusions 141

described using the histogram of iconic occurrence as kmuét.2).

It was found that the frame histograms remained stable fooge of similar action
in the scene. Therefore, to perform temporal segmentatia@umulative analysis was
performed and used to generate a Video scene trajectoryrdjbetory directionality re-
mained constant if the scene content was not changing. lfouasl that a discretisation
of the trajectory - i.e. finding the vertices at which theepry directionality changes
- was able to partition a sequence into segments. Furthernmoorder to visualise the
content of the segments, a measure of pixel discriminansecamputed and the most
discriminant active pixels superimposed onto a spatiatexdras a Segment summary
frame. Experiments showed that the segmentation and 18atiah approach was able
to generate useful, repeating summaries of scene contentanety of outdoor scenes

(see Figures 4.13-4.18).

6.2.3 Semi-semantic analysis

In order to generate a semantic graph that shows the locatitre occurrence of par-
ticular semantics in a sequence, competing probabilistidets were trained using Haar
coefficients. It was found that such an approach was not aldertectly identify sim-
ilar data in a novel scene, due to training and feature setetsues. In particular, we
conclude that such an approach is not viable because it bteakuncommitted index
requirements - in other words, supervised training is nexlioff-line with knowledge in
advance of what is being searched. We conclude that a camgypetbdels paradigm is
not sufficient for searching surveillance scenes.

To integrate manual semantic assessments, a novel Ramig\agproach was pro-
posed. The positions of the manually labelled items in airapire used to determine
the content of the query item. It was found that, for consdidata, the approach was
able to work effectively and generalise to novel data (segifei 5.8). Furthermore, a
Bayesian fusion framework was proposed to effectivelygrenfa combination of pre-
attentive evidence, and a constructive inference algorpinoposed in order to reduce
computational load. Experiments showed that such a fugpnoach was able to pro-

duce a useful semantic graph for a simulated indoor sceedgere 5.15).
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6.3 Future Work

In this thesis pre-attentive, iconic and semi-semantic@gghes have been presented for
performing search of surveillance video. In particular,veéee focused on the problems
of temporal segmentation and content visualisation. Hewemhe following problems

remain to be solved.

The need for common evaluation frameworks

To perform evaluation of the temporal segmentation in G&apt a small number of
manual segmentations were obtained and used to illustrateffectiveness of the ap-
proach. However, itis more desirable for a repeating latme data-oriented evaluation
process that can be used for an objective assessment obapgerformance. For exam-
ple, in the text information retrieval community the estaliment of the Text REtrieval
Conference (TRECG)was highly influential in improving performance of retri¢ago-
rithms, of unifying the research community, and demonistgathe importance of the
work to external bodies. For the object detection and tragkiaradigm in surveillance,
the Performance Evaluation of Tracking and Surveillancekalmop (PETS) provides
a similar evaluation focus. A similar large-scale evalomatiramework is desirable for

non-tracking oriented video indexing and search tasks.

Adaptive iconic vocabularies

In the approach presented in Chapter 4 in this thesis, a $edescribed using an Iconic
visual vocabulary generated using Haar wavelet coeffisiehd achieve improved per-
formance for 24-hours-a-day surveillance video data, itlddoe beneficial to use a
number of different vocabularies. For example, the curkamabulary could be opti-

mised according to the current appearance of the scenedaygor night). The result

from different indices may be combined during the tempoegihsentation and semantic

integration tasks.

1Seehtt p://trec. ni st.gov.“Its purpose was to support research within the informa-
tion retrieval community by providing the infrastructureaessary for large-scale evaluation of
text retrieval methodologies.” TREC is co-sponsored byNadonal Institute of Standards and
Technology (NIST) and U.S. Department of Defense.



6.3. Future Work 143

Self tuning system

In this work, a number of subsystems were presented thairestiie selection of low-
level parameters, for example the choicexadnd during the computation of sustained
change in Chapter 3. To illustrate the ability of the apploaca variety of scenes, a
single set of parameters were chosen that are considerestfarmp well. However, it

may be preferable to learn these parameters over time ftr &=me.
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Appendix A

Glossary

Bayesian network A mathematical framework for modelling uncertainty. A netWw
consists of nodes that represent variables and arcs betiveerrepresenting the

dependence relationships.

Break point A point in a sequence at which it is considered that there isaage in
the underlying semantic content. For example, in struckwideo, a break point
would exist at positions at which one camera shot ended aoith@ncamera shot
begins. The video section between two break points is kn@anadeo segment.

Discovered in the process of temporal segmentation.

Curse of dimensionality The exponential growth of hyper-volume as a function of di-
mensionality. Attributed to (Bellman, 1961). As a consates numerical meth-

ods perform poorly in high-dimensional feature spaces.

Dimensionality reduction An approach for reducing the number of dimensions in a
feature space, while retaining is main character. One nadeth&rincipal compo-

nents analysis.

Entropy A measure of information quality.
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Expectation maximisation An iterative algorithm that maximises a likelihood funetio

in order to fit a Gaussian mixture model to a feature space.

Feature extraction The computation of a numerical vector that represents corde

some item being evaluated.

Gaussian mixture model A semi-parametric model that is able to approximate the{prob
ability density function of a feature space using a numbearashbined Gaussian

distributions. Also known as a Mixture of Gaussians.

Ground truth A manual estimation of a result considered to be the mostatasiout-

put from an algorithm.

Iconic indexing As proposed in this thesis, an iconic index describes a vigs#og a
set of prototypical features obtained by clustering. Tle®fis” are the important

elements in the scene.

Modality fusion A modality represents the belief in a semantic using a paeracon-
figuration. Modality fusion is a process concerned with periing a combination

of evidence from several independent modalities.

Pre-attentive features The result of a feature extraction process that has no utashels

ing of underlying content semantics and requires few coatparial resources

Ranking A list of items produced by a retrieval system in responsedoery request.
The query is compared to each item in an index using a sirnyilaretric. The

ranking is a list of item pointers ordered by similarity.

Relevance feedbacKkThe process, during the search, by which a user providesmew i
formation to the system on the quality of the current rankifigus permitting the

system to learn online from examples in order to improve dseilt.

Semantic A meaning (that occurs in video). Corresponds to Human wstdeding and

therefore subjective.
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Semantic gap The common lack of coincidence between a digital video issgr&ation
and human understanding of video content. A main problemdeorindexing
and retrieval systems. Whereas Human information neednsustc in nature, a

system video representation is numerical (i.e. featureegpa

Similarity metric A function that estimates the similarity between two itemsually,
two items in the same video index). The fundamental buildifazk of search

systems.

Temporal segmentation The process in which the break points for a video are discov-

ered. Also known as video partitioning or video structurgcdvery.

Video index A description of the video content that facilitates seaqgpli@ations. Con-

structed by the process of video parsing.

Video segmentA number of consecutive frames that contain similar contArgeman-

tic frame grouping.

Video summary A content abstraction using static frames. For exampledao/sum-

mary could be constructed using the first frame of all theatetesegments.

Video indexing The process of sequentially analysing a video to producdenvndex.

Also known as video parsing.

Wavelet transform A computation that localises a function in both space and¢ksca
For example, in this thesis we use the Haar basis functioarfalysing regions of

scene action.

Uncommitted (index) The requirement that a search index must not be constructed
with advance knowledge about the searches that are to bermed. The index

must be capable of accepting all search requests.
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Appendix B

Normalisation of a series

Given a series of real valued da¥a= {x1,X, . ..,Xn}, it is useful perform normalisation
so that it has a mean = 0 and is in the rangé-1,1]. This is achieved by computing

the mean and variance, also called the first and second om®eents, as:
X; (B.1)

2 1 2
o :N_;(Xi—ll) (B.2)

and then transforming each data value using:

X = 2_H (B.3)

producingX’ = {X,X,...,X\}
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