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Abstract

The ability to search video is an important and challenging problem. This is especially

so in the surveillance domain, in which many thousands of cameras record real-world

action. A video search system needs to generate and store an expressive but also compact

indexthat can be used for a variety of tasks, such as retrospectiveinvestigation and real-

time intervention. The index must also beuncommitted, because, as it is generated, the

retrospective search tasks to be performed upon it are generally unknown.

In this thesis, inexpensive action-based features to used to form the index. In the

first part of the thesis, frame action is extracted in the formof a cellular grid of active

cells. Furthermore, the segmentation of activities is performed using an adapted spatio-

temporal connected-components algorithm. These provide anovel action-based repre-

sentation without the need for performing object detectionand tracking. The indices are

used for thetemporal segmentationtask using a sliding window method.

Whereas geography based representations provide information on the occurrence and

locality of action, they do not capture local appearance structure and directionality. In

the second part of the thesis, action coefficients are computed using a localised wavelet

transform. Centroids, found by a clustering process, form an Iconic visual vocabulary

then used to perform frame indexing. Temporal segmentationis achieved by cumula-

tive analysis of the representation over time. Furthermore, a videosummarisationis

computed using the most discriminant active pixels in the scene.

It is beneficial in the search process to integrate manually assigned semantics into a

graph for belief based browsing. This provides a semi-automatic semantic search. To

this end, a traditional competing models approach, trainedwith wavelet coefficients, is

compared against a novel rank voting algorithm for semanticbrowsing. Furthermore, a

Bayesian fusion network is used to perform a combination of evidence.
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Chapter 1

Introduction

In recent years, the potential of multimedia applications,combined with significant ad-

vances in computer vision and information retrieval research, has led to widespread in-

terest in visual information retrieval. Efforts are focused on the ability to efficiently,

and effectively, represent and search visual data. These tasks are commonly known as

indexing and retrieval. Although image analysis and retrieval are at a mature stateof

development, video remains a significant challenge. The interest in video is motivated

by rapidly growing video databases, i.e. the emergence of those generated by mobile

phones, home video or surveillance security cameras, and facilitated by large increases

in computing power and storage capacity.

Specifically, the development of useful visual search systems has been significantly

hampered by thesemantic gap. Whereas computer representations are numerical in

nature, search requirements are rooted in semantic meaning. The translation from a nu-

merical representation into a semantic description, i.e. the bridging of the semantic gap,

has attracted widespread research but remains unsolved. The core problem is that suc-

cessful approaches for recognition, for example in face recognition, are computationally

unstable, require significant clean training data, do not scale, and consequently are over

constrained and not useful for more generic visual search. Furthermore, we find that

video captured in the critical domains, such as surveillance, often do not possess the
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necessary visual cues (e.g. colour) and often lack detail (low resolution).

An alternative, more pragmatic, philosophy is to facilitate a semi-automatic visual

search. Rather than bridging the semantic gap in one leap, this approach attempts to

minimise the effect of the gap by a combination of: a system providing a more intuitive

numerical description; and a user is trained to interpret the description and navigate the

visual data. Consequently, there is a growing need for techniques and tools that facilitate

semi-automatic video search that assumes some level of userskill. A semi-automatic

video investigation systemcan be used typically for a number of tasks:

Retrospective investigation.Many hours of skilled human computer operator time is

currently used in traversing the large collections of videothat are acquired during

a typical crime analysis. Time and money could be saved if a computer system

could analyse the databanks automatically, and intelligently present pertinent in-

formation to detectives.

Scene profiling. One of the most important roles for current surveillance systems is

the generation ofusage statistics. Such figures are generated to either identify

potential hazards such as full platforms on the London Underground, or to aid in

the design of new public spaces for maximum utility.

Real-time intervention. Another potential application for automated surveillanceis an

alert generation system, whereby a system monitors many surveillance streams,

identifies threatening behaviour, and prompts security personnel to intervene. Such

a system requires a strong recognition ability for low-quality data and must result

in few false-positive situations. Closed circuit television is considered an effective

tool in crime prevention (Welsh and Farrington, 2002).

Abnormality detection. Whereas crime intervention is concerned with identifying known

crime behaviours, an alternative approach is to detect abnormal actions in video.

The video collection itself is used as the template for normal behaviour. Abnormal

actions may be highlighted to a human operator for more investigation.

Video archiving. An important, but as yet unchartered, potential application exists in
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the management of home video. In recent years, as video capture devices have

proliferated in the guise of small hand-held video recorders and also in mobile-

phones, the volume of home video has increased enormously. It needs to be man-

aged effectively using tools that assume low end user ability.

For the duration of this thesis, we are more interested in theretrospective investi-

gation task for common Closed Circuit Tele-Vision (CCTV) based surveillance video.

This area may be considered a hybrid of information retrieval, surveillance and com-

puter vision, and consequently is relatively unexplored. Also, in collaboration with the

DTI/EPSRC ICONS and EPSRC/MOD INSIGHT projects1, sufficient video data was

made available for modelling.

1.1 Video search

Many modern computer systems are often concerned with the capture and processing

of large amounts of data, in particular that captured from video capture devices. The

crucial tasks ofrepresentation(how the data is formatted, organised and compacted),

storage(how the data is physically archived and fetched), andsearch(how the data is

sifted for more important parts), must be solved. We consider that the tasks of represen-

tation and search are intrinsically linked as to perform effective search an appropriate

representation model is needed. We focus upon:

Indexing. The process of transforming a video collection into a representation that is

optimal for searching.

Retrieval. The process of performing search. It is achieved by comparing a query rep-

resentation to the index and forming a ranking.

Browsing. The process of navigating a sequence to find content.

Traditionally, information retrievalhas been largely focused on the ability of sys-

tems to perform text-based search. Retrieval models and mechanisms are well docu-

mented and are known to be successful, for example Salton’s vector space approach

1Seehttp://www.dcs.qmul.ac.uk/research/vision/
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Figure 1.1: An Eadweard Muybridge collotype plate from 1887. A bank of cameras were
used to record the sequential movements of a subject. The result provides an impression
of motion when viewed in temporal order. Used with permission of the Victoria and
Albert museum, London.

for term/query comparison (Salton, 1989). In recent years,text-based retrieval systems

have been scaled to the World Wide Web (WWW) and have proved tobe effective and

massively popular. One could even argue that such systems have entered the public con-

sciousness, for example the verbto Googleis widely used to refer to the act of perform-

ing search using the Google engine2. The ability of textual search is greatly facilitated

by the numerical representation of text in documents, such as American Standard Code

for Information Interchange (ASCII), leading to efficient numerical document represen-

tations andsimilarity metrics. However, the extension of text-based systems to images

and video has proved to be more troublesome. Such an approachtypically exploits im-

age filenames, anchor text (the text in the web-page link to the image), and existing

associated textual descriptions to form a text-based representation3. Unfortunately, this

is mostly ineffective because the fundamental content of images and video is interpreted

by Human cognitive visual perceptionand cannot be adequately expressed in words.

Therefore, to perform image and video search an understanding and translation of

the visual content is required. An image consists of a two-dimensional (2D) rectangle

grid of pixels and a video consists of a number of similar images that when shown in a

2Seehttp://en.wikipedia.org/wiki/Google\_(verb)
3For an example seehttp://images.google.com/
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Figure 1.2: An indoor tearoom scene and extracted trajectories. The trajectories give
little indication of the content that is occurring and do notprovide a discriminant context.

strict temporal ordergive the impression of a moving scene. With the added temporal

dimension the image sequence is considered three-dimensional (3D). See Figure 1.1 for

an early sequence that illustrates this construction.

To be able to automatically interpretdynamic scenes, to discover and represent the

content, has become one of the main goals of a computer visionsystem. Such an ap-

proach generally requires the detection of an object in the scene and monitoring its

movement and behaviour over several frames. However, we consider that the common

object-detection-tracking(ODT) paradigm is unsuitable for video search as it provides

no useful representation that can be compared (Xiang and Gong, 2006). For example, a

tracking system will find many similartrajectoriesin a scene but they do not provide a

useful indication of what is happening. See Figure 1.2.

1.2 The approach

The aim of this research is to address the problem of automatically extracting informa-

tion about the scene from video data, and using the information to perform video search.

This involves the generation of a compact, efficient and expressive sequence represen-

tation, the automatic partitioning of the sequence into segments, image visualisation to

highlight the dynamic scene content, and the provision of tools for semi-automatic la-

belling and investigation. More specifically, the following problems are addressed:
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1.2.1 Pre-attentive video feature extraction

It is difficult to compute an inexpensive reflection of the action content in a video se-

quence that is impervious to noise. Noise is caused by many factors, for example coding,

changing global illumination, or the visual ambiguity of the content. Prominent exam-

ples of visual ambiguity are found in motion analysis, for example (Longuet-Higgins,

1984), and in art, for example in Leonardo’s Mona Lisa (Gombrich, 1995). A represen-

tation is desired that is both computationally inexpensive, robust to noise, and captures

the action content effectively

1.2.2 Generating a video sequence representation

A video representation that is both compact and robust, yet also expressive and generic,

is a significant challenge. It must be able to capture the pertinent information about

what is occurring in the scene. It is also desirable for the approach to be expressed in

a mathematically understood format so that known metrics and models can be used if

required. For example, if a histogram is used then metrics such asχ2 become available

(Lew, 2001).

1.2.3 Automatic partitioning and conceptual visualisation

Automatic partitioning, also known astemporal segmentation, of a sequence into seg-

ments. Once discovered, segments provide a much more autonomic and generic search

experience and are better suited as the fundamental contentblock during video search.

Conceptual visualisation of the video content. Using segmentation, a window onto

the video content is needed to provide the user with a understanding of the underlying

content without being distracted by image details capturedby the entire sequence. We

consider partitioning and visualisation to be critical in performing sequence navigation

and video search.

1.2.4 Semi-automatic labelling and investigation

To perform a semi-automatic video investigation, the ability to attach labels and interac-

tively examine the content using semantics is required. If the user annotates a number
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of frames, or segment chunks, with a known semantic label, then the similarity of the

chunk can be used to infer the semantics of the remainder of the sequence. Therefore,

an easy mechanism is desired for integrating user assessments into a navigation tool.

1.3 Contributions

The novel contributions of this thesis are:

1. A robust temporal change model is computed for extractingmore salient action

content in a scene. A compact descriptor is then formed that captures the location

of scene action using a grid-based approach. The sequence representation is anal-

ysed to discover significant activities, considered as spatio-temporal connected

active cells, by a process ofactivity segmentation. Each activity is profiled, us-

ing spatial and temporal characteristics, and a cost-basedsimilarity metric is used

to perform search. A sliding window based approach is proposed for performing

temporal segmentation.

2. To capture localised appearance of an action, rather thanits location, a novel

wavelet based sequence descriptor using the Haar basis function (Graps, 1995)

is proposed. The transform is computed upon a local region oftemporal change,

meaning that the coefficients capture the directionality characteristics of the cell

action. The common coefficients, considered to be the powerful visual elements in

the scene, are found by a clustering process and used to form an Iconic visual vo-

cabulary. The vocabulary is extremely compact and is used for scene description

and search.

3. To reflect the changing content in the scene, a cumulative analysis of the occur-

rence of the vocabulary elements is computed for a video sequence. It is found

that the cumulative histograms have different characteristics for different long-

term scenes. To focus upon important change Principal Component Analysis is

performed on the cumulative histogram to represent a content change subspace.

The most important three dimensions are used to form and visualise aVideo scene
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trajectoryof a video sequence. In effect, the trajectory remains continuous if the

scene content remains continuous, permitting scene breaksto be discovered at the

vertex positions of significant trajectory change.

4. A sequence visualisation approach is proposed whereSegment summary frames

are computed for each discovered segment, using a visualisation of the the most

interesting action occurring. Interesting activity is found using an analysis of its

occurrence distribution throughout the sequence.

5. A novel technique is proposed for performing semantic analysis of video using a

small number of manual assessments. ARank votingapproach uses the rank po-

sitions of labelled items, produced by a content-based retrieval system, to vote for

their respective semantic labels. The result facilitates semi-automatic, semantic-

sensitive, video browsing and analysis. Furthermore, the combining of semantic

estimates is proposed using a Bayesian fusion framework anda constructive infer-

ence algorithm.

1.4 Structure of the thesis

The remaining chapters of this thesis are arranged as follows:

Chapter 2 provides a review of related research in video indexing, video structure dis-

covery, visualisation and the surveillance domain. The limitations and important

issues to be address are discussed.

Chapter 3 describes an approach for performing a robust temporal-change based fea-

ture extraction using a grid-based descriptor. Segmentation and profiling of sig-

nificant activities is also addressed. The problem of performing pre-attentive par-

titioning is addressed using a cost-based activity similarity metric.

Chapter 4 addresses the problem of forming a compact, uncommitted representation

for capturing scene action content. The task of analysing the long-term continu-

ity in a sequence is addressed using a cumulative analysis ofthe representation.

Automatic partitioning and segment conceptual visualisation are performed.
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Chapter 5 address the problem of performing semi-automatic labelling for facilitating

an intuitive semantic browsing system.

Chapter 6 summarises and concludes the work presented in this thesis.The potential

future research directions are discussed.

Appendix contains a glossary of terms and also common mathematical procedure.

Figure 1.3 illustrates how Chapters 3-5 relate to each other. Chapter 3 presents a

pre-attentive approach. The video data is transformed and the scene action estimated.

A cost-based similarity metric is proposed and video searchand temporal segmentation

demonstrated. Chapter 4 presents an iconic approach. The term icon is used to refer to

a small patch of localised activity. Activity content is estimated using a wavelet descrip-

tor. A trajectory is formed in a content change subspace and used to perform temporal

segmentation. A method is proposed for conceptual summarisation of the discovered

segments. Chapter 5 presents a semantic approach. The manual assessments are used to

estimate the semantic content of a video. This is presented to the user to enable interac-

tive sequence investigation.
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Reliable 
temporal change 

Input 
video

Manual
assessments

Pre-attentive
video index

Search

Semantic 
estimation

Wavelet based
iconic descriptors

Iconic video
index

Conceptual
visualisation

Interative
investigation

Temporal
segmentation

Pixel activity Coefficients

Figure 1.3: A diagram to illustrate how Chapters 3-5 relate.In Chapter 3, an input video
is processed and a reliable temporal change formed. The result is a pre-attentive video
index that can be used for search and temporal segmentation tasks. In Chapter 4, the
reliable temporal change is used to compute an iconic description using the coefficients
produced by a Haar wavelet transform. The result is an iconicindex that can be used for
search and temporal segmentation tasks. We also propose an approach for conceptual
visualisation. In Chapter 5, manual assessments are added to the iconic index. These are
used in a semi-semantic estimation method that permits interactive investigation.
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Chapter 2

Video indexing and search: A review

In this Chapter known methods for performing video indexingand search are reviewed.

In Section 2.1 two important paradigms are introduced: browsing and query-based re-

trieval. In Section 2.3 methods for performing textual, feature-based and semantic index-

ing are described. In Section 2.4 the problem of video structure discovery is discussed,

also known as the problem of temporal segmentation, that is needed for partitioning a

sequence into retrievable components. In Section 2.5 surveillance indexing and the com-

mon difficulties are described. Finally, in Section 2.6 the limitations of existing work are

summarised and used to motivate the work presented in this thesis.

2.1 Data search methodology

As new digital information is generated and stored it needs to be indexed for effective

and easy access and search. The essential purpose of any retrieval system is to satisfy

a user’sinformation needusing a finite set of documents. Methods for text information

retrieval have progressed rapidly in the last twenty years (Rijsbergen, 1979; Baeza-Yates

and Ribeiro-Neto, 1999). Huge web-based textual search engines now exist and enjoy

widespread use in society, for example, Google, Yahoo or Altavista. Beyond text, as the

quantity of digitised visual information has increased exponentially, a growing need for
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multimedia retrieval systemshas been witnessed (Maybury, 1997; Bimbo, 1999; Lew,

2001). For example, the the British Broadcasting Corporation (BBC) stores “over one

and a half million items of video and film, or about 600,000 hours of footage”1 in its

archives, that are used to construct programmes for future transmission. As programme

construction using existing clips is less expensive and quicker than new clip generation,

performing effective visual search is critical. Similarly, in a very short space of time,

the number of Closed Circuit Tele-Vision (CCTV) cameras that record daily activity has

surged, leading to slow manual search during crime investigation. A similar situation

exists with home video, for both that captured from a home video recorder and mobile

devices. Clearly, the need for effective visual search is paramount.

There are two main alternative paradigms for visual search,browsing and query-

based retrieval, as illustrated in Figure 2.1 and are discussed in the following Sections.

A useful analogy as to the relationship between browsing andretrieval was provided

by Rui and Huang (2000). In essence, a prospective reader of abook has two distinct

methods of evaluating the content without reading it at all.Firstly, they can look at the

book’s table-of-contents to get a general feel of the content and structure (browsing).

Alternatively, they can use the index page to find specific sections of interest (retrieval).

2.1.1 Browsing, visualisation and summarisation

It is well understood that human cognition is very effectiveat quickly scanning visual

data for important content. However, a problem with manually analysing image and

video collections is the sheer scale of the task. Automated browsing, visualisation and

summarisation systems are tasked with reducing this scale to enable a user to ascertain

and evaluate the content more selectively and quickly. Three types may be distinguished:

• Browsing. Permits navigation towards a search goal.

• Visualisation. Provides a mechanism to visually explore the video documents. The

set of video in a system is known as a searchspace.

• Summarisation. Reduces the task required to understand thecontent.

1Seehttp://www.bbcresearchcentral.com/
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Figure 2.1: Two alternative frameworks for finding video content. (top) A browsing
framework. The content is analysed and the important key-frames are shown to the
user. The user can quickly scan for interesting content. (bottom) A query-based retrieval
framework. The user expresses a requirement as a query, thatis compared against an
index using a retrieval function, to produce a ranked list.
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Browsing systems permit the user to quickly drill-down in the search-space using a

successive fractionssearch tactic. That is, by an iterative manual decision process the

space is reduced until all that remains is relevant. It requires perceptual grouping in or-

der to provide meaningful choices to the user. Visualisation systems are similar except

that they are more focused on illustrating many items at once, using their similarities.

Summarisation systems are concerned with producing abstracts of the content that can

be seen more quickly. For image systems browsing and visualisation are more suit-

able. However, for video systems browsing and summarisation are more appropriate as

a frame is only meaningful when shown directly after anotherframe (temporal context).

Considering the importance of image browsing and visualisation, it is remarkable

that very few approaches are presented in modern literature. A simple approach is to

present a grid of ordered image thumbnails to the user for review. In (Combs and Beder-

son, 1999) a zoom-able grid is used. However the optimum number of images or image

resolution remain unclear.

A more sophisticated approach is to generate a self-organising arrangement using im-

age similarities and clustering. In (Roddenet al., 2001), a spatial arrangement is formed

using a low-dimensional similarity space (see Figure 2.2).A caption-based similar-

ity was compared with a visual-feature-based similarity bya user evaluated study. The

caption-based technique was found to produce good results.However, the required man-

ual labelling was subjective and time-consuming. On the other hand, a visual-feature-

based approach was problematic due to that similar neighbouring images appeared to

blend into each other, causing confusion.

A hierarchical image browsing system using visual feature similarity was proposed

by (Lai and Tait, 1999). The system performs visual feature based clustering using

colour. A hierarchy of similar images is presented to the user for navigation purposes.

Unfortunately, this system is dependent on that the featuredistribution being meaningful

in some sense. In other words, that images close in feature space share similar semantics

and should be presented together. However, this assumptiondoes not always hold. In

a recent study, Heesch and Rüger (2004) proposed that each image is represented as a
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vertex in a directed graph and arcs are formed between two images if one is retrieved

as the nearest neighbour of the other using a variety of visual features including colour

histograms. Furthermore, Heesch and Rüger (2005) suggested that groups of densely

connected images exhibit semantics leading to a semantic-based browsing without train-

ing. However, this representation is rather large and costly to compute.

In our study, three approaches to video browsing and summarisation are considered:

• An Intelligent Fast-Forward analogous to that provided by avideo recorder.

• A static frame-based summary of content.

• Extraction of a excerpt, called avideo skim. For a discussion of video skims, the

reader is directed to Liet al. (2001).

Furthermore, these approaches are divided into those that exploit video structure and

those that operate on unstructured video. By video structure, we mean a meaningful

organisation into several layers of different granularity2 and is widely considered benefi-

cial as it facilitates non-linear access. Whereas unstructured video may contain sections,

they do not reflect the content in any perceptive way.

In early work on unstructured video by Millset al. (1992), the number of frames is

iteratively sub-sampled to reduce the quantity of information presented to a user. The

system is useful, but is limited because it does not considerthe actual content of the video

during the drill-down. In Tonomura and Abe (1990), several approaches are presented

in a single workbench environment: variable speed, sampling flash, a rush browser, and

space-time browser. The variable speed duplicates a Fast-Forward (FF) button; the sam-

pling flash shows the key-frames using detected shots; the rush browser displays periodic

frames irrespective of the structure; the space-time browser presents a frame sample of

the structural units. However, a uniformly sampled approach does not account for the

video content, i.e. low-action periods with little visual variation are over represented

and high-action periods are under represented. To address these issues, Srinivasanet al.

(1999) proposed an FF approach using non-linear frame sub-sampling based upon the

2Video structure is described in more detail in Section 2.4.
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Figure 2.2: Screenshots from an image and video browsing system. (top) A self or-
ganising visualisation of image-space by (Roddenet al., 2001). The images are shown
according to their positions in low-dimensional colour space; (bottom) A video brows-
ing tool by (Ruiet al., 1998). Key-frames are presented according the video structure.
The user is able to navigate the structure and play the corresponding clips.
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amount of motion in the frame. It is claimed that the result frame rate is between 10−15

times faster than the original frame rate whilst retaining important content.

For structured video, a common approach is to use a key-framefor each segment,

typically the first, last or mid-frame (Lew, 2001). In Ruiet al. (1998) a table of contents

is produced using the first and last frame of each shot/scene as the shot key-frames (see

Figure 2.2). This system is shown to be effective and provides a user with a suitable

navigation tool. In Uchihashi (1999), the key-frames are evaluated for importance using

their length and novelty. A comic-book style video summary is then produced by resiz-

ing the frames according to their importance, and then usinga temporally constrained

packing algorithm. The system is shown to work well for highly structured domains

with clean data, such as video of indoor lectures. In Armanet al. (1994), synthesised

Rframes were generated to summarise the important visual properties of each shot. The

abstractions are generated off-line before browsing begins. However, they are complex

and require user ability to interpret. For example, it is difficult to correspond the motion

data to the original video.

To present a visualisation of video activity, Zenget al. (2002) computed a motion

map for each shot using the level of temporal change. Unfortunately, the motion-maps

do not capture the temporal order characteristics or the local directionality of action. In

Iyengar and Lipman (2000), similar to image visualisation systems, the shots are clus-

tered and a cluster browser presented to the user. The authors argued that it is not impor-

tant whether the clusters make cognitive sense, rather the clusters provide a useful view

of the video. In Ma and Zhang (2000), a semi-automatic face recognition system permits

home video to be labelled and organised by the presence of known/named faces. This

approach assumes that home video sequences usually containa small number of repeat-

ing human faces. However, it requires manual labelling and the system presented only

has 50 faces, indicating extensive labelling may not be straightforward and objective.

2.1.2 Query by example

For most document types including images, a common approachto performing retrieval

is to adopt the query-based retrieval paradigm. Essentially, a system compares a query,
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constructed to represent the user information need, against an index that contains rep-

resentations of all theretrievable documents. For each document a query-document

similarity is computed and a ranked list provided to the userwith the most similar items

first. The user then explores this list in order to find the desired content.

The processes in the query-based retrieval system are as follows:

Indexing The data is described off-line using a representation optimal for searching.

The result is known as theindex.

Query Formulation The user expresses information need in a numerical form consis-

tent with the formation of the index. This expression is known as thequery.

Ranking A comparison of the query against the index using a retrievalfunction. The

result is aranked listof items.

Relevance FeedbackAs retrieval is an iterative process, the user can examine the ranked

list and mark documents as eitherrelevantor not relevant (binary). The system can

then improve the ranking by reformulating the query using anextrapolation. Al-

ternately, the user can reformulate the query manually.

For text-based systems, the basic unit of content istermor word. The query formu-

lation process consists of a user selecting a number of termsthat are required. However,

for image and video systems, there is no such generic basic unit of content. Hence,

numerous visual features are computed to produce numericaldocument representations

that can be compared in a feature space. Unfortunately, it israther difficult for a user to

express the information need in this numerical form due to its somewhat conceptually

arbitrary nature. To overcome this problem, a new paradigm was proposed and has been

widely adopted, theQuery-by-example(QBE). A user presents an image, or a video clip,

as an example of what is required of the system. The system automatically computes the

features (query formulation) and performs the feature comparisons during ranking.

A perplexing problem with query-by-example is that a user isexpected to provide a

suitable example. Often, this is not easily possible because the user does not possess such
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an example, or the user only has a vague idea of what they are looking for. The approach

is also dependent on correct feature selection and a distance metric that corresponds to

human cognitive perception. Therefore, it is considered that a truly effective retrieval

system needs to provide both a browsing system for manually gauging the contents of

the database and selecting a suitable example, and a retrieval system for performing

visual queries to find content (Bimbo, 1999).

2.2 The semantic gap

TheSemantic gapis an important issue in many computer vision systems, but particu-

larly for indexing. It refers to the lack of coincidence between machine low-level digital

representations of visual data and the human high-level cognitive understanding of the

same data3. This is particularly important for the task of retrieval because the system

is trying to find suitable visual data that matches the user search expectations. User

studies suggest that image retrieval systems that operate using low-level visual features

alone often do not satisfy user requirements (Enser and Sandom, 1995; Eakins, 1996;

Enser and Sandom, 2003; Eakinset al., 2004).

The major issues in visual indexing are characterised as:

Sensory Semantic

Gap
Features are only an approxi-

mation of the real world.

Features do not correspond to

human understanding.

Ambiguity
The same thing can have many

different visual appearances.

Similar visual appearances can

have different meanings.

Related to the semantic gap, there is also the notion of aSensory gapthat refers

to the fact that computer vision systems always deal with a digital approximation of a

perceived world. A gap exists between the real-world and thecomputational descrip-

tions that are derived during the recording process4 (Smeulderset al., 2000). This gap

3“The semantic gap is the lack of coincidence between the information that one can extract
from the visual data and the interpretation that the same data have for a user in a given situation”
(Smeulderset al., 2000).

4“The sensory gap is the gap between the object in the real world and the information in a
(computational) description derived from a recording of that scene” (Smeulderset al., 2000)
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is amplified by quantisation noise that a vision system must negotiate during modelling.

The choice of the most suitable approximation is also considered as the feature selec-

tion problem. Sensory ambiguityis another problem, in that an object can have many

different appearances in feature-space but still retain a single identity. Different appear-

ances may be due to rotation, translation or scale variance,or due to different lighting

conditions. The same object often exhibits different colours according to the lighting

conditions, a problem known as colour constancy.

TheSemantic gaprefers to the fundamental differences between a digital andhuman

representation of content. Whereas machines are inherently numerical, the human brain

prefers concepts. Unfortunately, it is very difficult for machines to handle concepts and

so a machine-human semantic gap exists. For example, in a video retrieval system the

user may wish to perform a semantic search, e.g. find a video clip of “Tony Blair at the

Whitehouse”, whereas the system only has a colour, texture,shape and motion based

representation. The problem of associating numerical representations with meanings is

known as the symbol grounding or binding problem.. ASemantic ambiguityproblem

also exists, in that, even if a machine were able to converse in semantics, Human un-

derstanding can vary widely because of its subjectivity. A single concise definition of a

word, or semantic, is not possible in most cases, despite recent efforts in the construction

of ontologies. A successful visual search system must minimise the effects of these four

issues, in particular the sensory and semantic gaps.

2.3 Indexing methods for visual search

The physical manifestation of an index is essentially a lookup table of

[content identifier, content descriptor]

tuples. The content identifier contains information such asphysical file location in-

formation and, for video, the segment start and end frame positions. This enables an

application to search the index, but also find and present theactual content to the user.

The content descriptor consists of a textual, or numerical,explicit explanation of the

associated content. The descriptor is used for matching.
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2.3.1 Text based approach

Owing to the success of early text-based information retrieval systems, for example (Ri-

jsbergen, 1979; Salton, 1989), the first approach to visual indexing was reliant upon

Meta-data. Textual descriptions of image content are generated manually, attached to

the visual data, and then a standard text-based retrieval system can be employed to per-

form a text query. A good example of this kind is the probabilistic model (Baeza-Yates

and Ribeiro-Neto, 1999). However, it quickly became apparent that manually generated

meta-data was insufficient due to the lack of perceptual saliency and the subjective na-

ture of a manual annotation (Bimbo, 1999). Also, it is somewhat unrealistic to expect an

armada of manual annotators to sit, watch and analyse all thevideo output produced for

all domains, and produce satisfactory and consistent meta-data.

Alternatively, a content-independent approach is to use the format, author’s name,

title, date, location, anchor text, and size as meta-data inorder to perform retrieval us-

ing a deterministic matching system. To this end, the MovingPictures Expert Group

(MPEG) recently introduced the Multimedia Content Description Interface (MPEG-7)

standard to hold both facts and visual features. However, the use of facts is not generally

considered important to visual retrieval. Rather, approaches may exploit text that occurs

within the visual data itself. In Lienhart (1996), artificial text is extracted from the video

frames using Optical Character Recognition (OCR). Unfortunately, the majority of the

text that can be extracted is not of use. In Smeaton (2001), the described Físchlár sys-

tem uses closed caption and teletext information from broadcasters such as the British

Broadcasting Corporation (BBC) and Radio Telefís Éireann (RTE).

In the Informedia project, Hauptmann and Smith (1995) deployed a Hidden Markov

Model based speech recognition to extract a transcript as the basis of meta-data. Graves;

Graves and Lalmas (2001; 2002) also proposed a system in which a transcript was di-

vided amongst video segments and an Inference network used to perform ranking. All of

these systems work with a degree of success. However, the text-based indexing paradigm

for visual search is fundamentally flawed as a text-only representation cannot fully cap-

ture the perceptual properties of visual data (Bimbo, 1999;Colomboet al., 1999).
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2.3.2 Image feature based approach

Much effort has been made into developing methods for content-based image index-

ing and retrieval. Colour and texture features are most commonly used and are ef-

fective for image retrieval, whereas shape/edge features are effective in specialist do-

mains (Bimbo, 1999; Lew, 2001; Bimbo, 1999; Smeulderset al., 2000; Lew, 2001;

Castelli and Bergman, 2002).

In the seminal work of Swain and Ballard (1991), a colour histogram representa-

tion was computed to support a histogram intersection similarity metric. Histograms are

shown to offer invariance to translation, rotation, scale and partial occlusions. Later, the

Query By Image Content (QBIC) system of Flickneret al. (1995) adopted a weighted

histogram distance. In the VisualSEEK system of Smith and Chang (1997), the fea-

ture space was divided by spatially localised regions before histogram computation. In

Jain and Vailaya (1995), a histogram of edge directions is added in order to perform

combined colour and shape trademark retrieval. It was shownthat a more robust result

was achieved than either of the individual feature-based approaches. A major problem

with colour-based systems is that changes in global illumination can drastically affect

the feature space, caused by the colour constancy problem.

Unfortunately, image retrieval based upon holistic histogram matching is vulnera-

ble to quantisation problems during the binning process. Fixed sized histograms do not

achieve a good balance between the representation expressiveness and efficiency, i.e.

the representation size is constant regardless of the content’s perceptual complexity or

importance. To overcome this problem, Rubner and Tomasi (1999) proposed a variable

sized signature representation. The signature consists ofa set of representative feature

clusters found through vector quantisation. Additionally, a similarity metric called Earth

Mover’s Distance is used to compare signatures based upon the transportation cost (Rub-

neret al., 2000). However, the estimation of the flow matrix is nontrivial.

An object-based image retrieval system, called Blobworld,was proposed by Carson

et al. (1999). Firstly, a spatial image segmentation is achieved by clustering a combined

colour and texture feature space using the Expectation Maximisation algorithm (Demp-
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Figure 2.3: Four images and their spatial segmentations computed by the Blobworld.
For the car image, the semantic is preserved in the shape. However, the city, flower
and outdoor scenes result in segmentations that are not useful for retrieval. Images used
courtesy of (Lui, 2002).
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steret al., 1977). An object lookup table is then constructed for each blob using the

colour, texture and shape of the segment. Object-based image retrieval is achieved by

the selection of a query-blob from a user presented frame, and then blob comparison

(Carsonet al., 2002). The approach is dependent upon the segmentation of meaningful

blobs and on retrieval being object-dependent. In Figure 2.3, four image segmentations

are shown. The car object produces a distinctive shape that is good for matching however

the other segmentations are poor. Many succesful algorithms exist for image segmenta-

tion, for example Normalised Cuts (Shi and Malik, 2000) and the Watershed (Beucher

and Meyer, 1993), however the general problem remains unsolved for all cases.

The choice of which features to use is a complex issue formally known as the feature

selection problem. An optimal set of features are ones in which known different classes

are maximally separable (Sebestyen, 1962). Feature selection for large data sets is also

affected by theCurse of dimensionalityproblem (Bellman, 1961). As the size of the

feature space increases the ability to find an optimal feature set diminishes. As a conse-

quence, it is often the case for image and video indexing thata small number of features

are chosen that is known to perform optimally for a specific domain.

2.3.3 Video feature based approach

Unlike an image, a video is a large, non-compact chunk of data. During indexing, the

first task is to determine what elements are to be described asindex items. Some in-

dices are required to describe every frame, however in most cases frame groups called

segments are extracted as index items (see Section 2.4). If no structure exists, a uniform

temporal segmentation of a video can be used to provide equally divided small temporal

units of content.

Following from the success of image retrieval systems, a common approach to video

indexing and retrieval is to select a key-frame for a segmentand then perform static im-

age indexing. Commonly, the first, mid, last, or nth frame of a segment is used. However,

these frames do not consider the segment content and can therefore be unrepresentative.

Many approaches to content-based key-frame selection havebeen reported in literature.

In early work by Gunselet al. (1997), a mean colour histogram is computed using all of
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the frames, and the key-frame is selected as that with the closest colour histogram. Sim-

ilarly, in Zhuanget al. (1998) a frame content space is clustered and the centroids from

the largest clusters used. In Wolf (1996), an assumption is made that camera stillness

is an indicator of frame importance. Therefore, optic-flow is computed and the frame

associated with minimum flow field is used. Unfortunately, such an assumption only

holds for manually created video. In Zhaoet al. (2000), each frame is projected into a

content space and frames at the corners are used.

An important consideration for key-frame selection is how many frames to employ.

One approach is to use any knowledge about the visual characteristics of a segment,

e.g. if the segment is zooming then the first and last frames can be used, but this both

simplistic and ad hoc. In Porteret al. (2003b), several frames were selected according

to frame overlap. Frames are selected that show different background material using a

block-based motion algorithm. Rather than employing multiple key-frames, Sawhney

and Ayer (1996) constructed a single mosaic of the background location using the shot

frames, from which a static feature-based index is computed. However, this approach

does not consider foreground objects or their temporal context.

In general, static features provide only a limited description of the segment content

because they do not consider thetemporal context. To overcome this problem, a number

of approaches have been proposed that retain the temporal character of a video segment.

In (Vinod, 1998), a shot activity histogram is computed and used. Each frame is repre-

sented using an optic-flow based estimation of the level of frame activity. In the VideoQ

system of (Changet al., 1998a; 1998b), a Query-by-sketch (QBS) motion-trail based

retrieval system is described. The sketch may contain colour, texture, shape or a spatial

relationship between primitives, and their transformation over time. The QBS paradigm

is attractive because it can solve the initialisation problem of QBE, described in Section

2.1.2. Unfortunately, it requires that the user has some sketching ability and a clear visu-

alisation of the requirements. In Bimboet al. (2000), 3D colour flows (blobs) are found

and used. It requires that each frame is segmented to identify regions of homogeneous

colour that are tracked over time. The approach is used to index television advertise-
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ments that have a large amount of dynamic colour information. Similarly, in Sivic and

Zisserman (2003), viewpoint invariant regions are found and tracked.

2.3.4 Semantic based approach

A semantic indexing system attempts to make the implicit knowledge in the scene ex-

plicit. This requires the detection and labelling of distinct objects, e.g. faces, cars or

pedestrians, and behaviours, e.g. walk or run. Two classes of semantic may be distin-

guished:

Holistic semantics refer to the entire image, video, video frame or segment. Forexam-

ple, the whole image or video may labelled as indoor or outdoor, black-and-white

or colour, have human faces or not.

Localised semanticsrefer to a particular spatial and/or temporal location. Forexample,

a human face is present at(x,y, t) or a waving gesture occurs between[t1, t2].

In Vailayaet al. (2001), images are classified as either indoor or outdoor using com-

peting density estimations of visual features. Furthermore, once classified, pairs of clas-

sifiers are recursively applied to find more specific sub-classifications. Unfortunately, as

the image progresses down the hierarchy, the error-rate cascades to unmanageable lev-

els. It is also clear that a binary holistic classification isnot useful for searching a large

search space. In Wanget al. (2001), a holistic image classification is used to prune a

gigantic search space prior to a more specific and expensive shape-based matching.

To avoid the use of hand-labelled data in supervised learning, Xie et al. (2003)

adopted a video mining approach to automatically group and learn content phases in

video. Low-level colour-based features are extracted and ahierarchical hidden Markov

model was employed to perform temporal grouping and labelling. The classification

rates were compared favourably against a hidden Markov model trained with hand-

labelled data. However, the domain used was very constrained and the model size was

small. It remains unclear as to whether the approach will scale to more meaningful data.

The ImageScape image retrieval system (Buijs and Lew, 1999;Lew and Sebe, 2000;

Lew, 2000; Queries, 2002) learns a small number of localisedsemantics, such as [human
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face, sky, stone, tree, water], using supervised training.The image descriptor consists

of several spatial semantic indicators and retrieval is achieved using a Query-by-icon

(QBI) paradigm: the user arranges a number of icons that correspond to the semantics

on a palette; it is matched to the index using presence-of-semantic and spatial-position.

Unfortunately, the small number of rather simple semanticsresult in a lack of expres-

siveness in the query language and matching process.

In Fenget al. (2002), pixels are labelled using a Multiple-Layered Perceptron (MLP)

trained with hand-labelled outdoor data. To improve the result using spatial context,

i.e. the sky occurs towards the top of an image, the local classification results are re-

processed through a Tree-Structured Belief Network trained using Maximum Likelihood

(ML). Connected-components algorithm is used to find large blobs of similarly labelled

pixels that become the semantics. Unfortunately, the approach suffers from large quan-

tisation problems because of the enforced structure of the belief network.

The discovery of localised semantics in video is akin to dynamic scene understanding

(Ullman, 2000; Gonget al., 2000; Ng, 2002). An approach is required to perform back-

ground maintenance, object detection and tracking, and then object or activity recogni-

tion. The detection of changing pixels, calledtemporal change, provides information

about the spatial positions of moving objects. However it isvulnerable to noise. Back-

ground maintenance reduces noise by modelling expected content of scene appearance,

for example by a Gaussian Mixture model for each pixel (Stauffer and Grimson, 2000).

In Bobick and Davis (2001), the temporal characteristics and shape of pixel changes

are modelled using a moment feature space and is used to recognise aerobic exercises.

Unfortunately, the system requires clearly distinguishable activities given in clean datasets.

It is not clear whether the approach could be trained using more realistic data. Hidden

Markov Models (HMM) are a popular graph model used for temporal recognition be-

cause they offer dynamic time warping, efficient training algorithms, and clear Bayesian

semantics (Rabiner, 1989). HMMs are known to perform well incontrolled environ-

ments such as with gestures (Psarrouet al., 2002), but are dependent upon a strict

temporal order in the observed action. In (Brandet al., 1997; Oliveret al., 2000), a
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Figure 2.4: The four-level video structure. The frames are grouped into shots; the shots
are grouped into scenes. Shot-breaks occur at camera capture discontinuity, whereas
scene-breaks occur at semantic discontinuity. The top-level is the sequence.

Coupled HMM is used to successfully label outdoor activities. Similarly, in Gong and

Xiang (2003), blobs of connected temporal change are found in outdoor surveillance

data. These are identified using a dynamic Bayesian belief network - with the features

primarily based upon spatial location and the size/shape ofthe bounding box. Unfortu-

nately, the approach was limited to semi-structured sceneswith repeating activity.

2.4 Video structure discovery

A video sequence consists of a set of temporally ordered frames that, when shown se-

quentially, theHuman Vision Systeminterpret as a moving image. Neighbouring frames

are often similar, especially when a high number of frames per second was captured,

leading to computational and perceptual difficulties. As Human understanding corre-

sponds better to smaller and more semantic units and themes,a four-level hierarchy

illustrated in Figure 2.4 is widely employed (Bimbo, 2000; Lew, 2001).

At the lowest level, the set of frames, a physical sequence isimplemented. Aframeis

an atomic unit in the temporal domain and cannot be further divided. Ashotis a group of

frames that are captured continuously from the same camera without interruption. Shots

are prevalent in highly structured video domains, such as newscasts, adverts, drama,

entertainment, but less so in other domains such as sport andsurveillance. However,

for semantic-sensitive applications, shots still presenta too low-level unit for Human
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understanding. Shots are therefore grouped intoscenes. A scene is a set of shots that

exhibit a common semantic, thread or story-line. This hierarchy exploits the idea that,

in most structured video, a sequence is artificially built during a manual editing process.

As shots and scenes have the same physical structure, i.e. they both consist of a group

of neighbouring frames, the generic termsegmentis used.

The first step in video indexing is to automatically discoverits structure. The inter-

mediate levels, shots and scenes, are discovered duringtemporal segmentation5. Here,

the important works are now reviewed. For a comprehensive review of shot transition

detection the reader is directed to (Lefèvreet al., 2003).

2.4.1 Shot transition detection

The detection of shots has received widespread attention since the early 1990s with most

effort concentrated on more commercial domains, for example in drama and television

advertisements. We distinguish between two main types of shot transition:

• A sharp break, or cut, occurs when the change between shots occurs instantly.

• A gradual break occurs when, in the editing suite, an algorithm is used to visually

enhance the transition, for example a wipe, fade or dissolve.

A robust method needs to address both transition types. In general, shot transition de-

tection can be classified into five categories: pixel-based,histogram-based, block-based,

compressed-domain, and model-based.

A number of early works detected sharp shot transitions using the level of differ-

ence in the pixels between frames. Early methods detected transitions by comparing the

sum of intra-frame pixel-differences against a threshold (Nagasaka and Tanaka, 1991;

Kikukawa and Kawafuchi, 1992). Similarly in (Zhanget al., 1993), the number of

pixels with change above a threshold is used. Such pixel-based comparison methods

are highly sensitive to object and camera motions. As such, in (Zhanget al., 1993) a

5In literature, this process may be referred to as video structure parsing, shot detection, scene
detection, camera-break detection or shot transition detection.
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3×3 smoothing filter is first applied to the image. Alternatively, in (Shahraray, 1995) a

motion-compensated pixel difference is computed.

To provide greater perceptual robustness, a histogram representation can be used. A

histogram can be computed for each frame, using either grey-scale or colour informa-

tion, and is robust to camera and object motions. Frame comparison can then be made

using a metric such as the histogram intersection orχ2 distance (Lew, 2001). In the

seminal work by Zhanget al. (1993), a twin comparison method was proposed to find

sharp and gradual transitions in a single pass. However, a number of sensitive thresh-

olds are needed to obtain a good result: one threshold to detect the sharp transitions;

another to detect the gradual transitions using cumulativedifference. This method is of-

ten reported in literature and is considered successful, for example (Boreczky and Rowe,

1996). However global histogram methods are known to fail when frames from different

shots are close in representation space. Consequently, it will often miss a transition.

As pixel-based methods are considered too sensitive to noise and global histogram-

based methods too sensitive to similar looking shots, an intermediate approach can be

adopted by splitting the image into blocks. A block-based approach also has computa-

tional advantages. Nagasaka and Tanaka (1991) proposed an extension to their pixel-

based approach that operated on frames divided into blocks of size 4×4. A transition

is detected by (a) computing all the distances between the respective block histograms,

(b) ordering the distances and retaining the lowest eight, and (c) comparing the aver-

age retained distance against a threshold. In a recent study, Porteret al. (2003a) used

block-based motion estimation to track blocks through a sequence and to identify gradual

transitions. It attempts to distinguish changes caused by transitions from those caused

by camera and object motions at block-level. However, the method is not invariant to

multiple different motions within a block. It is also computationally expensive.

A number of approaches have been proposed that partition video in a compressed do-

main using, for instance, the standards from the Moving Picture Experts Group (MPEG).

This is potentially advantageous because the motion features are already computed dur-

ing the temporal compression process. In Armanet al. (1993), the normalised inner
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product of the coefficients between frames is compared. Similarly, in Zhanget al.

(1994), the coefficients from corresponding blocks betweenframes are compared, us-

ing a number of thresholds in a modified twin comparison method. In both cases, the

algorithms operate on the I-frames6 leading to a loss of temporal precision. In Menget

al. (1995), the B-frame information is used.

It is important to note that all of the approaches above present a bottom-up style solu-

tion to the problem. A top-down approach is also possible, whereby implicit knowledge

about the appearance of a gradual transition is encoded and recognised. For example, in

(Hampapuret al., 1995) a number of gradual transition types are modelled. However,

we consider that such an approach is invalid in most unconstrained non-artificial cases.

2.4.2 Scene change detection

Once the set of shots is established, the next task is to examine them for semantic sim-

ilarities in order to perform perceptual grouping into scenes. In general, there are three

approaches: model-based, visual-similarity based, and temporal-context based.

In Aigraineet al. (1997), scene breaks are found using domain specific rules relating

to editing techniques and film theory. For example, certain types of shot transition may

indicate that the next shot is the beginning of a new scene. However, such rules are

inflexible, require significant knowledge about the domain,and are only applicable to

constrained sequences. A model-based approach is often toodependent on video content

following pre-determined expectations.

Numerous works have proposed using visual-similarity to perform a bottom-up shot

merging, in order to form scenes. In Ruiet al. (1998), the first and last frames in the shot

are used as key-frames. Colour histograms are extracted along with a measure of global

shot activity. Shot similarity is then defined as a combination of feature similarity and

temporal attraction. Shot groups and scenes are found usinga time adaptive merging

algorithm. The approach provides a basis for semi-automatic structure discovery using

visual features. However, it is over dependant on colour leading to structural errors. In

6Refer to MPEG for more details on the compressed video format. In short, an I-frame is a
complete image frame that occurs periodically in order to provide basis. A B-frame is encoded
relative to the basis provided in both directions.
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Hanjalic et al. (1999) it is argued that movies are organised around events,and that

shots are either a part of an event (event shots) or serve for its description (descriptive

shots), for example by showing the location of where an eventis taking place. Links are

formed between visually similar descriptive shots using anadaptive threshold. The shot

transitions over which a low number of links pass is identified as a scene-break. This

approach assumes that shot groups are encapsulated by similar shots. However, this does

not often hold.

It is not sufficient to use visual-similarity alone when performing shot grouping,

because shots in different scenes can be close in the featurespace. In the literature, a

number of approaches (Yeunget al., 1996; Kender and Yeo, 1998; Lin and Zhang, 2000;

Lin et al., 2001) use temporal context when performing shot-scene assignment. By

temporal context, we mean the examination of shot content inrelation to its near and far

neighbours over time. Once shots have been detected, a videocan be represented as a

sequence of symbols, e.g.ABABCDCD, where each letter corresponds to a shot label.

Intuitively, the process of scene detection is required to find the points at which the future

no longer looks like the past. So, in the example, the break isat time instant 4 because

As andBs becomeCs andDs. Such an approach requires shot clustering, labelling, and

then a temporal analysis to discover the scene breaks.

In Yeunget al. (1996), the shots are represented using visual primitives,and hier-

archical clustering is performed where, at each step, the two most similar clusters are

merged. Shot similarity is computed using a feature-based metric and a temporal con-

straint. Ascene transition graphis then constructed with nodes representing the clusters

and edges capturing the level of temporal transition between nodes. The previous ex-

ample is decomposed into a graphA ⇔ B ⇒ C ⇔ D. This graph is typically dense.

Scene-transitions are identified where the graph is thin, i.e. in this example, betweenB

andC, which is correct. A temporal constraint is introduced to handle longer sequences

with repeating shot types. This approach was applied successfully to videos of situation

comedy. However, it is a fundamentally discrete process reliant on accurate shot clus-

tering and labelling. If small variations in visual features lead to a different shot label
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assignment, the graph can be distorted and produce errors.

In Kender and Yeo (1998), a continuous approach is presentedthat, at each shot,

estimates the level of similarity between the past and the future. As the video is parsed,

a model of short-term memory is maintained using a shot buffer. Older shots are leaked

from the buffer in a non-linear time-ordered manner. A shot recall value is computed for

the incoming shot, that captures the similarity between it and the buffer. A normalised

shot recall is used to compute a normalised measure of video coherence. Minima in

coherence are identified as the scene-transitions. Unfortunately, the choice of buffer

size has severe consequences for the results. Also, performing many shot-shot content

comparisons can be computationally demanding.

A conceptually similar but simpler approach was proposed byLin and Zhang (2000).

The dominant colour motion in a shot is estimated and represented in a histogram. The

histogram intersection distance is used for shot comparison. To establish the scene

boundaries, at each shot the left and right shot attraction is computed using a local tem-

poral context of three shots. If the attraction of a shot fromthe right (the future) is

greater than the attraction from the left (the past), then a shot is allocated to a new scene.

In their extended work (Linet al., 2001), the force competition approach, the ratio of

the left and right attraction is used as a splitting force. A complementary merging force

is computed using the similarity of the right shots to the left shots. Scene boundaries

are generally found when the splitting force is at a maximum and the merging force is

at a minimum. The approach is elegant. However, it relies on colour information being

present and useful, and on a small temporal context. The implications of context size are

not evaluated.

The shot and scene detection techniques outlined above are valid for constrained,

well-structured broadcast quality sequences, such as film,news and sport programmes.

However, the assumption that structure exists, and that thenumber of shots exceeds the

number of scenes, do not necessarily hold for unstructured domains, such as home video

or in surveillance. For example, during 24 hours of continuous capture, a surveillance

camera may capture many natural scenes but will have no shot transitions.
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2.5 Surveillance

In the digital age, Closed Circuit Tele-Vision (CCTV) surveillance cameras are ubiqui-

tous. Although the exact number of cameras in the United Kingdom is not known, it is

estimated to be around 4 million with 400,000 of these in London (McCahill and Norris,

2002). These cameras exist to monitor and record activity and results in an extremely

large amount of footage needing to be stored, sorted and processed reliably, in order to

satisfy its purpose. The cognitive skills required by a successful surveillance operative

include physical capacity, sensory recognition, perceptual processing, observation skills

and sustained attention (Donald, 1999). Currently, these skills are compromised by re-

lentless expansion. A fully automated or semi-automatic visual surveillance system is

highly desirable and, in recent years, has attracted heavy investment7.

In particular, current research is interested in the detection of abnormal phases of

content. In Dee and Hogg (2004), an attempt is made to explainnormal human be-

haviours in a car-park scene using a goal-based approach. Itis assumed that human

behaviour is always explainable, for example a person in thescene must walk to one of

the exits or paying stations. However, the approach does require manual labelling and

configuration. In Nait-Charif and McKenna (2004), unusual activities are detected in a

home supportive environment, for example an elderly patient has stopped moving in a

particular zone and intervention is required. This is achieved by, firstly, extracting object

motion trajectories by grouping pixels of temporal change,a trajectory speed feature ex-

traction, and then clustering to find spatial-zones of expected zero-motion. A rule based

detection is then used to detect important zero-motion events, i.e. if the speed is less

than a predetermined threshold in a particular zone then thestatus is abnormal.

One problem in surveillance scenes is that they often contain many static struc-

tures that cause occlusion, and so hampering tracking algorithms. Consequently, many

7The following projects are indicative:RETRIEVE - RealtimE Tagging and Retrieval of Images
Eligible for use as Video Evidence;REVEAL - Recovering Evidence from Video by fusing Video
Evidence Thesaurus and Video Meta-Data;GENERICK - Generation, Encoding and Retrieval of
CCTV-derived Knowledge;ICONS - Incident Recognition for Surveillance and Security;VIGILANT

- Intelligent Real-time Storage and Retrieval of Surveillance Video;INSIGHT - Video Analysis and
Selective Zooming using Semantic Models of Human Presence and Activity.
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surveillance video indexing systems avoid activity modelling and instead exploit only

spatial and geometric information about the scene, for example (Makris and Ellis, 2002;

Zhonget al., 2004). In Greenhillet al. (2004), an occlusion landscape is built for a scene

using a depth-based probability density function to model each pixel. The depth space

is populated using estimates of moving object ground positions. The landscape is used

during inter-frame correspondence to reduce occlusion effects.

2.6 Discussion

There is an urgent need for systems that can perform automatic analysis and pre-attentive

filtering of surveillance video. Unfortunately, indexing is problematic owing to signifi-

cant sensory issues:

• The quality of the scene capture can sometimes be poor because of the recording

device and storage medium used. This leads to a weak feature landscape. For

example, it has been suggested that very little useful information exists in the

colour space captured by commercial CCTV (Gong and Xiang, 2003).

• Surveillance system operate in all weather conditions, 24 hours a day. This causes

very large changes in scene appearance. (See examples in Figure 2.5).

• The rough nature of the domain: low-bandwidth during transmission; camera

shake; dirty lens (although modern camera mounts may be equipped with wash-

wipe facilities), all contribute to poor data quality.

• Elaborative multi-media data (synchronised audio, text and video) is not avail-

able. Multi-modal techniques, for example that exploit audio information, are not

possible.

These issues are exacerbated by the fact that captured sequences are often very long, and

contain little or no interesting content. Many visual representation approaches exploit

colour, shape and texture information. However, in surveillance such features do not

correspond to the main requirement (“what is happening”) are therefore are not useful.
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Figure 2.5: Four frames from a road junction scene showing the effect of different light-
ing conditions. (top) The scene in normal conditions with diffuse lighting. (bottom left)
The scene with direct sunlight. Strong shadows occur and areclearly seen. This ef-
fect hampers object detection in dark areas and also accentuates unwanted tree motions.
(bottom right) The scene at night. It presents a significantly different visual appearance
to the daylight scene.

Figure 2.6: An illustrative frame from two different outdoor surveillance scenes. Vehi-
cles in the scene are constrained to operate on road surfacesand particular paths leading
to very little useful trajectory information. Pedestrianscan operate more freely but are
small in the visual field leading to detection difficulties.
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An active research area in computer vision is tracking. Although tracking will pro-

vide information on object motions in real-time, it is not computationally feasible to

apply tracking algorithms, such asCONDENSATION (Isard and Blake, 1998), to such large-

scale data. Also, segmented motion trails are not always informative when performing

visual search. (See Figure 1.2 on page 12 for an example of trajectories that can be ex-

tracted from an indoor scene. See Figure 2.6 for examples of outdoor scenes in which

trajectories are difficult to extract and constrained). Even if trajectory information could

be extracted reliably, it would almost always follow the same trail, as in surveillance

situations object motion often follows a similar constrained path. For example, cars

are constrained to follow roads and pedestrians will usually follow the most sensible

route that satisifies their objective (Dee and Hogg, 2004). Asystem that performs video

analysis without specifically modelling object-level content or performs tracking can be

highly effective and also computationally more robust.

As described in Section 2.4, temporal segmentation is an important initial phase of

indexing. However, in a surveillance situation no artificially induced structure exists,

i.e. there are no sharp/gradual shot transitions or meaningful shot groupings. We are

therefore required to find a more subtle and fundamentally natural content change in

long continuous video using action features. Nevertheless, if natural structure can be

found in surveillance video it could be used to provide content access and visualisation.

In Chapter 3, an approach is presented for extracting actionfeatures from surveil-

lance video. A video index is constructed that is used for thetasks of search and temporal

segmentation. The approach is considered to bepre-attentivebecause it makes no as-

sumptions about the scene content. In Chapter 4, a representation is presented that uses

a wavelet-based descriptor to extract information about local regions (cells) of activity.

An Iconic indexis constructed that is used for temporal segmentation and sequence vi-

sualisation. An approach for video summarisation is also presented. In Chapter 5, an

approach for the integrating of manual assessments with theindex is presented. This

forms aSemantic graphthat is then used for sequence browsing.
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Chapter 3

Pre-attentive video processing

Large volumes of surveillance video data exist and present aconsiderable and important

indexing challenge. We consider the development of apre-attentivesystem for indexing

is a critical first step needed to facilitate visual search. By pre-attentive, we refer to a

method that can operate quickly on large volumes of data, hasno prior knowledge or

artificial expectations of the content, and is able to operate without supervision. Such

a system must determine what is pertinent and generate an index sufficient for later use

by more directed algorithms. In effect, the system should filter out a large quantity of

information while retaining the crucial parts.

As such, in this Chapter an action-based approach is proposed that generates a com-

pact index, that is used for visual search, browsing and temporal segmentation. Firstly,

in Section 3.2.1, a measure of temporal change is defined thatis less sensitive to sensory

problems and is sufficiently efficient and scalable. In Section 3.2.2, a frame representa-

tion is described that captures the spatio-temporal actioncontext using a cellular grid. In

Section 3.3, spatio-temporal connected cells, that are an indicator of scene content, are

found and profiled to form an action-based index. In Section 3.4, the visual structure and

temporal context of scene action is compared and a cost-based similarity metric formed.

Finally, outdoor surveillance scenes are used to demonstrate our approach.
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3.1 A sequence and its segmentation

To begin, the termssceneandsequenceare clarified: a scene is a real-world environment

in which action occurs; a sequence is a digital approximation of the scene content as

observed and captured from a digital capture device. To perform scene analysis, it is

approximated, digitised and stored into a number of sequences. A video sequence is

defined as a set offrames:

F = {F1,F2, . . . ,Fn} = {Ft : ∀t ∈ [1,n]} (3.1)

wheren is the number of frames1. Note that∀t refers to all frames. When the frames

are viewed in strict sequential order they provide a digitalapproximation of the scene

content. Each frame consists of a square grid of pixel positions:

Ft = {Ft(x,y) : ∀x∈ [1,X];∀y∈ [1,Y]} (3.2)

where∀x and∀y to refer to the full spatial ranges. For clarity, a pixel position is referred

to asFt(x,y) = F(x,y, t).

Considering the need for video structure as discussed in Section 2.4, in this Chap-

ter we form an index and perform temporal segmentation. The temporal segmentation

consists of a number of break positions:

B = {bi : ∀i ∈ [1,m];m< n;bi ∈ [1,n]} (3.3)

where each break positionb is the frame number of a discontinuity in the sequence, i.e.

eachbi is in the range[1,n]. The number of breaksm is less than the number of frames

n. The frames in the range[bi,bi+1] are known as asegmentand provides a larger and

more semantic unit of sequence content (than a frame).

1Set notation is used throughout this thesis. For example,X = {xi : ∀i ∈ [1,n]} indicates the
setX is comprised ofn items. The term[1,n] is used to refer to all values in the range 1 ton.
Constraints appear after the colon and multiple constraints are separated by a semi-colon.
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To perform a comparison of two temporal segmentations, a similarity metric is de-

fined that considers the number of close break positions:

i≤m

∑
i=1

(

min
({

|pi −q j | : ∀ j ∈ [1,m]
})

> Twithin
)

(3.4)

whereP andQ are the segmentations being compared,m is the number of breaks in each,

andTwithin is a matching distance for breaks. The result of the metric isbetween[0,m]

representing the number of mis-aligned breaks. Aligned segmentations will produce a

low score. To compute the similarity between a segmentationand a set of segmentations,

all the similarities are computed and the mean used.

3.2 Frame based video indexing

Owing to the nature of surveillance, and as we are more interested in “what is happening”

in the scene rather than “what is present”, we focus on action-based feature extraction

methods. In the following Sections our approach for indexing a surveillance sequences

at the frame level is described. We use the scenes illustrated in Figure 3.1.

3.2.1 A measure of reliable temporal change

The first task is to extract important features from a sequence by processing each frame

in turn. Each pixel is initially represented as a vector,F(x,y, t) = 〈RGB〉, that represent

the intensity of red, green and blue captured at that position. To begin, the frame is

converted to the Hue Saturation Value (HSV) colour space:

H = 180
0.5(R−G)+(R−B)

((R−G)2+(R−B)(G−B))1/2
(3.5)

S= 1− 3
R+G+B

min(R,G,B) (3.6)

V =
R+G+B

3
(3.7)

The values of Hue,H ∈ [0,360o], and Saturation,S∈ [0,1], provide perceptually mean-

ingful colour information, and Value,V ∈ [0,255], records the brightness.
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TheWaving handscene shows a number of hand signals - squares, figure eights,triangles
- used to simulate changing content behaviour.

The Pets carparkscene, obtained from the Performance Evaluation of Tracking and
Surveillance workshop (PETS), shows a carpark scene containing car, bicycle and pedes-
trian activity. See (Ferryman, 2003).

An Aircraft docking stationin a busy airport scene, obtained during the Incident Recog-
nition for Surveillance and Security project (ICONS), shows an aircraft docking station
at Heathrow airport, London. The sequence shows aircraft arrival and departure, unload-
ing, loading, and many other natural activity content. See (QMUL, 2002).

Figure 3.1: Three different scenes used.
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By observation, we find that the colour information computedin outdoor surveil-

lance scenes is not expressive or consistent enough (at least with the majority of the

current analogue systems). This is due to changeable holistic lighting conditions such

as cloud coverage, the poor quality camera equipment used during surveillance capture,

and frequently reused storage media. We also find that surveillance frames are mainly

grey due to a high proportion of concrete, brick, tarmac and street furniture content.

Consequently, it can be argued that colour is not sufficient for visual search tasks in

outdoor video. This lack of useful colour is illustrated in Figure 3.2. The HS space

computed for ten images from an image dataset is compared to the HS space computed

for ten frames from an Aircraft docking scene. It can be seen that, in contrast to that

computed for the images, the colour information computed for the surveillance frames

is lacking richness. Henceforth, in this work, the HS information is discarded and the

approach is built using the brightness information, V. It must be stated that numerous

other colour spaces and brightness estimation techniques exist, for example YUV. How-

ever, we use the HSV brightness value due to its computational simplicity and common

use in literature (Bimbo, 1999; Gonget al., 2000).

Assuming a fixed camera position, as commonly found for surveillance mounts, a

sequence action is approximated using pixel-wise difference between successive frames.

The thresholdedtemporal differenceas computed for framet:

{(

|F(x,y, t)−F(x,y, t−1)|> Tdi f f
)

: ∀x∈ [1,X];∀y∈ [1,Y]
}

(3.8)

provides the position, shape and intensity of activity in the scene at a framet. Tdi f f is

a threshold that can be tuned according to the application. Such an approach is popular

in literature because of its and inexpensive cost (Bobick and Davis, 2001; Gong and

Xiang, 2003) in comparison with a background maintenance approach such as (Stauffer

and Grimson, 2000). Unfortunately, as seen in Figure 3.3, the approach is vulnerable

to sensory problems that produce rogue active pixels. This is due to camera shake,

image coding and transmission errors, quantisation and sampling problems, and also the

potential presence of a surveillance time-stamp and other embedded meta-data.



3.2. Frame based video indexing50

(a) A mountain scene. (b) Nine further natural images.

(c) Hue-Saturation for a. (d) HS for a and b.

(e) HS for an Aircraft frame. (f) HS for 10 Aircraft frames.

Figure 3.2: A comparison of the colour space available in image retrieval with visual
surveillance scene. In (a) we show a mountain scene from a dataset of images. Nine
more images are shown in (b). We computed the Hue-Saturation-Value (HSV) for each
image and we show the HS colour space for a the mountain scene image in (c) and all
ten images in (d). Value is discarded because it is concernedwith brightness rather than
colour. The x-axis corresponds to Hue (0-360o) and the y-axis corresponds to Saturation
[0,1]. In (c) it can be seen that the mountain scene contains a distinctive formulation of
colour saturation. Furthermore, in (d) it can be seen that the variation of colour saturation
amongst the dataset is high. This clearly illustrates that colour is able to discriminate
in this dataset. In (e) we show the HS colour space for a frame at the Aircraft docking
scene shown in Figure 3.1 and in (f) we show the HS colour spacecomputed for ten such
frames (that were not close in temporal space). It can be seenthat the saturation is low,
meaning that very little colour information exists. It is also seen that the addition of new
frames provides little new information from which to discriminate. This is because all
the frames contain highly similar colour content due to similar background information.
We conclude that colour is insufficient for searching this scene.
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Figure 3.3: The computation of action features illustratedin an extract from the Pets
scene. (top) Two frames showing a car moving through the scene. (second row) The
temporal difference. Although it captures the position andshape characteristics of the
motion, it is vulnerable to noise. (third row) The thresholded temporal difference as
in Equation (3.8). The important information is filtered, however noise is prevalent.
(bottom) The Sustained temporal change as in Equation (3.9). It can be seen that the
position and shape characteristics are present, and noise is removed. Crucially, the same
action in the scene can be observed to produce a similar set offeatures.
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The total scene action for 1000 frames at the Pets scene.

The total scene action for 1000 frames at the Aircraft scene.

Figure 3.4: An illustration of the total scene action metricof Equation (3.10). We show
the total scene action for two outdoor scenes computed using1000 frames. We also show
the frame and Sustained temporal change content from Equation (3.9) for 5 equidistant
positions. (Pets) The peak in scene action is seen to occur when two cars negotiate over
a carpark place. (Aircraft) The peak in the scene action is seen to occur when the aircraft
arrives. In both cases, the measure provides a useful indicator of when the scene was
active and when the scene wasnot. This can be used to either focus a search towards or
away from particular frames.
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We achieve noise reduction using independent spatio and temporal filtering. Firstly,

frames are spatially smoothed using an approximated Gaussian filter in order to reduce

the effect of pixel outliers caused by the sensory problems.Inexpensive temporal filter-

ing is then employed to smooth the result:

Dα,β (x,y, t) =







min(Dα,β (x,y, t−1)+α,1) if |F(x,y, t)−F(x,y, t−1)|> Tdi f f

max(Dα,β (x,y, t−1)−β ,0) otherwise
(3.9)

whereα andβ are accumulation and decay factors. The computation is initialised with

zero action,Dα,β (x,y,0) = 0;∀x;∀y. The choice of parametersα, β andTdi f f , is made

according to domain and computational factors. A suitable selection is discussed in

Section 3.6. The result valueDα,β is between[0,1] where a high value indicates that a

period ofsustained changehas taken place. HenceforthDα,β is called the “Sustained

temporal change”. The approach provides a robust feature landscape for outdoor scenes

as seen in Figure 3.3. Also, the independent spatial and temporal filtering is efficient

compared to a combined spatio-temporal filtering, for example the approach by Chomat

et al. (2000). This is because the computation at each frame uses the result of the

previous frame, meaning that little computation is duplicated.

We also compute the following estimate of total scene action:

TotalDα,β (t) =
X

∑
Y

∑Dα,β (x,y, t) (3.10)

as seen in Figure 3.4. It provides an indication of the framesin which no action is

occurring and is a useful pre-attentive indicator.

3.2.2 Grid based frame descriptor

As regions provide greater spatial context than individualpixels and correspond better to

the moving object content, the image space is divided into a regular, static grid of square

cells of equal size. A binary measure of cell activity is computed for each cell using a



3.2. Frame based video indexing54

The Sustained temporal change. The grid with cellsizeλ = 4.

The grid with cellsizeλ = 8. The grid with cellsizeλ = 16.

The grid with cellsizeλ = 32. The grid with cellsizeλ = 64.

Figure 3.5: The grid computed using various cellsizes. Using the Pets scene extract from
Figure 3.3. It can be seen that the grid preserves the location and shape context of the
activity. The finer granularity - those with a smaller cellsize - provide more detail, at the
cost of being a larger representation and more computationally expensive.
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The Sustained temporal change. The history with cellsizeλ = 4.

The history with cellsizeλ = 8. The history with cellsizeλ = 16.

The history with cellsizeλ = 32. The history with cellsizeλ = 64.

Figure 3.6: The history grid computed using various cellsizes. Using the Pets scene
extract from Figure 3.3. It can be seen that the history preserves a temporal memory
of recent occurrence. The lighter colour squares correspond to the current grid action,
as Figure 3.5. The darker colour squares correspond to previous action in memory: the
darker the square the more distant the cell action.
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ratio-of-occupancy of active to inactive pixels:

Cellα,β ,λ (cx,cy, t) =

(

i<λ

∑
i=0

j<λ

∑
j=0

(

Dα,β (cxλ + i,cyλ + j, t) > Tpixel
)

)

> Tcell (3.11)

whereλ is the cellsize,cx andcy are the cell spatial position,Tpixel andTcell are a pair

of thresholds used that ensure the block is marked active only if considerable activity

is present. A suitable choice is discussed in Section 3.6.λ is selected according to

the desired coarseness of the representation: a larger value produces a more compact

representation suitable for large-scale surveillance indexing. The result is an efficient

and compact indicator of scene action. An example of the result using different cellsizes

can be seen in Figure 3.5. We also compute the total number of active cells as:

TotalCellα,β ,λ(t) =
CX

∑
CY

∑Cellα,β ,λ (cx,cy, t) (3.12)

whereCX andCY are the number of cells in each dimension.

3.2.3 Frame spatio-temporal context

Whereas Equation (3.11) captures the spatial position and visual structure of active cells

in the scene, an important consideration is the history of cell activity. The history pro-

vides information on the spatio-temporal context of actionand improves the potential

understanding of neighbouring cells. We therefore computea measure for each cell

using a temporal displacement of previous cell activity:

Historyα,β ,λ (cx,cy, t) =

t−max
({

i : ∀i ∈ [t −Tdelay, t−1];Cellα,β ,λ (cx,cy, i) = 1
})

(3.13)

resulting in a value in the range[0,Tdelay]. A low value indicates recent cell activity, a

high value indicates cell inactivity, and a value ofTdelay indicates that the cell has not

been active within current memory.Tdelay is the largest delay permitted. An example of

the computation can be seen in Table 3.1 and the result can be seen in Figure 3.6.
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0 0 0 1 0 1 1

1 1 0 0 1 1 1

1 0 1 1 0 0 3

1 1 0 0 0 0 5

0 0 0 0 0 0 Tdelay

t-6 t-5 t-4 t-3 t-2 t-1 History

Table 3.1: An illustration of the computation of the cell history. We show the value
of Cell from Equation (3.11) for the positions[t −6, t −1] and theHistory result from
Equation (3.13). It can be seen that recently active cells produce a low result.

t=1

TotalD(t)

Cell(x,y,t)

History(x,y,t)

t=2

TotalD(t)

Cell(x,y,t)

History(x,y,t)

. . .

t=n

TotalD(t)

Cell(x,y,t)

History(x,y,t)

Table 3.2: A summary of the frame index. For each frame in the sequence, an index item
is computed using the total frame activity from Equation (3.10), the cellular grid from
Equation (3.11), and the cell history from Equation (3.13).

To summarise, we compute and stored a frame-based indexFrameIndex(F ,θ) for

a sequenceF as illustrated in Table 3.2. The tuning parameters and thresholdsθ =
{

Tdi f f ,α,β ,λ ,Tpixel,Tcell,Tdelay
}

are summarised in Table 3.5. In Figure 3.7 a number

of index items computed for the Aircraft scene are shown. Note that for pragmatic

purposes, index items are omitted if the frame has little activity, i.e. if TotalD is low or

TotalCell(t) = 0.
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450 0.00

500 0.10

525 0.43

550 0.13

600 −0.14

t Frame TotalD Cell History

Figure 3.7: A demonstration of the frame index approach for the Aircraft1 scene. (left)
The scene content, as seen in the frames, shows an aircraft approaching and docking
with the docking station. (right) The index captures the level of activity in the scene, the
current action, and the temporal context of action. The aircraft docking activity is clearly
seen, however we also see the remnants of previous scene action allowing interpretation
to be achieved in context.
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3.3 Activity based video indexing

Although the cellular frame descriptors of Section 3.2.2 assume that each frame con-

tains independent action, in reality the content of a scene action may span both spatial

and temporal dimensions. The following Sections describe our approach for indexing a

surveillance sequence at the activity level.

3.3.1 Significant activity segmentation over space and time

We consider a scene activity to consist of a set of spatio-temporally connected and over-

lapping active cells. To this end, and to reduce representational sparseness, a temporally

extended connected-components algorithm is employed thatdetects, orsegments, activ-

ities from the sequence. As input, the binary cellular grid description from Equation

(3.11) computed for each frame is used. The result is a set of activity descriptors, each

comprised of an activity identifier, start and end times, andprofile. The segmentation

algorithm is described below and detailed in Algorithm 3.1 on page 59:

1. A result set and currentmemoryof activities are initialised as empty sets.

2. The active cells are computed for the next frame as Equation (3.11). The regions of

connected active cells are found using the 4-way connected components algorithm

(Gonzalez and Woods, 1992).

3. Each region of active cells is compared against the memory. The region is assigned

to the activity in memory with the most spatial overlap in theprevious time instant.

If no overlap exists, a new activity is initialised using theregion and added to

memory. At this point the activity representation is a cellular grid where a value

of 1 indicates that the cell is active and connected to the activity.

4. Each activity is analysed to see whether it has finished and, if so, whether it is

significant enough to be added to the index. An activity that is alive in frame

(t −1) but not the current framet is evaluated for spatial size usingTspatial and

temporal duration usingTtemporal.
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procedure ActivitySegmentation(Sequence)

Initialise Result

Initialise Memory

for Each framedo

Compute the activity grid for the frame

Regions = Compute the connected components for the grid

for Each region r in Regionsdo

Activity = best matching activity in Memory and Regions[r]

if No matching activity foundthen

Memory.AddActivity(new Activity(Regions[r]))

endif

else

Activity.AddRegionToActivity(Regions[r])

endif
endfor

for Each activity a in Memorydo

if a exists in frame (t-1) but not tthen

if Memory[a].Size > Thresholdthen

Result.AddActivity(Current[a])

endif

Memory.RemoveActivity(a)

endif
endfor

endfor
return Result

Algorithm 3.1: An algorithm to extract (segment) spatio-temporally connected ‘ac-
tivities’ from a set of frame cell grids. For each frame, the algorithm performs a
standard spatio connected components algorithm to find the connected regions. Each
region is assessed: if it matches the spatial position of an existing activity it is added
to it; otherwise, it is assigned to a new activity. The detection of an activity is fin-
ished if no regions in the current frame are assigned to it - itis then assessed for size
and added to the result index if sufficient.
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Figure 3.8: An illustration of the activity segmentation process. The action in several
frames is estimated. Overlapping spatio-temporal action are assigned to an activity. The
activity representation consists of a binary cell membership.

The result of the segmentation process is a set of activities, A = {ai : i ∈ [1,na]}, where

na is the number of activities. Each is described bya = {id,start,end,shape}. The

shape is a binary grid indicating which cells are a member of the activity. The activities

found during the segmentation process correspond to large and important scene action.

Figure 3.8 shows a number of frames and activity regions (spatially connected active cell

positions) computed for a car parking activity in the Pets scene. The result activity shape

is shown, and consists of a binary indication of the cell membership to the activity.

3.3.2 Spatio-temporal activity profiling

Following the segmentation of the activities from the sequence, an activity profiling

method is used to capture the spatio-temporal character of each. We define theshape

information, found during segmentation, using a Binary Shape Profile (BSP):

BSPλ ,α,β (cx,cy,a) =







1 If active and connected

0 Otherwise
(3.14)

where a value of 1 indicates that the cell was active and spatio-temporally attached to

the activitya. In other words, the cell was in a region of active cells attached to the

activity at some point during its duration. The temporal size (duration) of the activity is

computed asTsize= (end−start) and the spatial size asSsize= max({|BSP| : ∀t ∈ a})

which is the largest activity size at any time instant.



3.3. Activity based video indexing62

Illustrative profiles computed for the Pets car-park scene.

Illustrative profiles computed for the Aircraft docking scene.

Figure 3.9: Illustration of the spatio-temporal activity profiling for two scenes. For each:
(top) The mid-frame for the activity. (middle) The computedBinary Shape Profile. (bot-
tom) The computed Temporal Order Profile. It is clear that theBinary Shape Profile
captures the location and visual structure of action, and the Temporal Order Profile re-
tains a time-scale invariant estimate of the temporal order. Dark cells generally occur
towards the beginning and light cells towards the end.
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The BSP stores information about the presence of activity, but not its temporal char-

acter. Therefore, in order to retain the temporal order within an activity (to capture the

directionality) each cell’s typical activation time within an activity context is computed

as the Temporal Order Profile (TOP):

TOPλ ,α,β (cx,cy,a) =







whenCellActive(cx,cy,a)
(end−start) BSP(cx,cy,a) = 1

0 otherwise
(3.15)

where(end−start) is the temporal length of an activity, andwhereCellActiveis a func-

tion that returns the average cell activity time:

whenCellActive(cx,cy,a) =

∑t≤end
t=start







t −start if Cellλ ,α,β (cx,cy, t) = 1

0 otherwise

∑t≤end
t=startCellλ ,α,β (cx,cy, t)

(3.16)

wherewhenCellActivereturns a value between[0,(end−start)]. A low value indicates

that a cell was generally active towards the beginning of theactivity whereas a high value

indicates it was active towards the end (see Table 3.3). The TOP value for each cell is

scaled into a range of[0,1]. Figure 3.9 shows examples of the spatio-temporal profiling

for two outdoor scenes.

To summarise, we compute and stored an activity-based indexActivityIndex(F ,θ)

for a sequenceF as illustrated in Table 3.4. This requires the computation of the

cellular grid index of Section 3.2.2 upon which spatio-temporal segmentation is per-

formed to find activities. Each is then profiled. The tuning parameters and thresholds

θ =
{

Tdi f f ,α,β ,λ ,Tpixel,Tcell,Tspatial,Ttemporal
}

are summarised in Table 3.5.

3.4 Similarity metrics for visual search

In Sections 3.2 and 3.3 frame-based and an activity-based indexing methods were devel-

oped. However, in order to perform search, a metric is required that is able to compute

the perceptual similarity between index items. Our approach is to initially compute an

inexpensive comparison of item spatial location and visualstructure. Then, temporal
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0 0 0 1 0 1 (4+6)/2= 5

1 1 0 0 1 1 (1+2+5+6)/4= 3.5

1 0 1 1 0 0 (1+3+4)/3= 2.67

1 1 0 0 0 0 (1+2)/2= 1.5

0 0 0 0 0 0 0

t=1 t=2 t=3 t=4 t=5 t=6 whenCellActive

Table 3.3: An illustration of the computation of the averagecell activity time. We
show the value ofCell from Equation (3.11) for the positions[t − 6, t − 1] and the
whenCellActiveresult from Equation (3.16). It can be seen that cells generally more
active towards the end of the activity (t = 6) produce a higher score.

a=1

[start, end]

[Ssize, Tsize]

BSP(a)

TOP(a)

a=2

[start, end]

[Ssize, Tsize]

BSP(a)

TOP(a)

. . .

a=m

[start, end]

[Ssize, Tsize]

BSP(a)

TOP(a)

Table 3.4: A summary of the activity index. For each activitysegmented from sequence,
an index item is computed using the starting and end positions, the spatial and temporal
sizes, the Binary Shape Profile and the Temporal Order Profile.
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Tdi f f A threshold used during the computation of temporal change in Equation (3.8).

α An accumulation factor used in Equation (3.9). Used to highlight pixels ex-

hibiting sustained change.

β A decay factor used in Equation (3.9). Used to de-highlight pixels that are no

longer active.

λ The grid cell-size first used in Equation (3.11).

Tpixel A threshold used to determine whether a pixel is active or notaccording to its

current level of sustained change. Used in Equation (3.11).

Tcell A threshold used to determine whether a cell is active or not according to the

number of active pixels that it contains. Used in Equation (3.11).

(a) Parameters used for the computation of action features.

Tdelay The maximum time delay since last cell action. Used during frame profiling in

Equation (3.13).

(b) Parameters used for the computation of a frame index.

Tspatial A spatial threshold used to reduce the number of activities retained during seg-

mentation. Activities with a maximum spatial size less thanthe threshold are

not retained.

Ttemporal A temporal threshold used to reduce the number of activitiesretained during

segmentation. Activities with a temporal length less than the threshold are not

retained.

(c) Parameters used for the computation of an activity index.

Table 3.5: A summary of the tuning parameters used during frame and activity indexing.



3.4. Similarity metrics for visual search66

features are used to provide temporal context. To summarise, the following features are

used to provide context in each index:

Spatial context Temporal context

FrameIndex Cell from Equation (3.11) History from Equation (3.13)

ActivityIndex BSP from Equation (3.14) TOP from Equation (3.15)

In the following Sections the termsP andQ are used to refer to the two items that

are being compared. For mismatching binary cell positions,P(cx,cy) 6= Q(cx,cy), a Z

is used to refer to the grid with zero action cell. In other words, if there is a activity

mismatch thenZ = P if P(cx,cy) = 0 andZ = Q if Q(cx,cy) = 0.

3.4.1 Spatial similarity using transformation cost

The first step is establish a similarity using the geographiclocation of action and its

visual structure. The result ofSimilarity(P,Q) will be high for two items if they exhibit

similar features. The following evidence based metric is proposed:

Similarity(P,Q) = exp

(

−Negative(P,Q)

Positive(P,Q)

)

(3.17)

to evaluate the ratio ofNegativeevidence (the two structures are not similar) toPositive

evidence (the two structures are similar). The use of two forces, unlike usingPositive

alone, provides a framework in which an evaluation of the match between two structures

is counter-balanced by the evaluation of non-match. This permits richer structures to be

compared and also provides size invariance. Furthermore, we define:

Positive(P,Q) =
CX

∑
CY

∑ |P(cx,cy) = Q(cx,cy) = 1| (3.18)

Negative(P,Q) =
CX

∑
CY

∑ |P(cx,cy) 6= Q(cx,cy) | (3.19)

meaning semantically thatPositiveis the “number of matching active cells” andNegative

evidence is the “number of non-match cells” (one active, oneinactive). The similarity
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Focus Shape
Pos=5
Neg=2

Sim=0.67

Pos=3
Neg=6

Sim=0.14

Pos=1
Neg=10

Sim=0.00

Figure 3.10: An illustration of the evidence based similarity metric. For a given Shape,
we show three similar shapes along with the values of the basic positive evidence (match-
ing active cells) and negative evidence (number of mis-matching cells). For example, for
the first shape, there are five matching active cells and two cell mis-matches. As the sec-
ond and third shapes become less similar, so this is reflectedin the similarity score.
However, it is clear that the approach is vulnerable to smallspatial translations.

Focus Shape (a) 1− 8
9 =0.12 (b) 1− 4

9 =0.33 (c) 1− 0
9 =1.00

Figure 3.11: An illustration of the estimation of negative evidence accounting for small
spatial translations. Considering only the middle cell in the Focus Shape, we show how
the surrounding cell contents is used. In (a) all the surrounding cells are active, so the
mis-match is explained by a local neighbourhood translation and the negative evidence
is low. In (b) some surrounding cells are active. In (c) thereare no surrounding cells
active, so the mis-match cannot be explained and the negative evidence is high. The
overall result is that the estimation of negative evidence is invariant to small spatial
translations.

Focus Shape
√

12+12 = 1.41
√

22+22 = 2.83
√

42 +32 = 5

Figure 3.12: An illustration of the estimation of negative evidence account for large
spatial translations. Considering the active cell in the given Shape, the negative increases
if the corresponding closest active cell is distant.
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result is therefore high if the number of matching cells is high and the number of mis-

matching cells is low. See Figure 3.10. As can be seen, although criteria (3.18) and

(3.19) are able to identify similar content, the binary nature of theNegativeevidence is

vulnerable to small spatial translations. We therefore propose using the level of localised

activity when estimating the negative impact of each inactive mis-matching cell:

Negative(P,Q) =
CX

∑
CY

∑






Score(cx,cy) if P(cx,cy) 6= Q(cx,cy)

0 otherwise
(3.20)

Score(cx,cy) =

(

∑i<=1
i=−1∑ j<=1

j=−1Z(cx+ i,cy+ j)
)

9
(3.21)

For each such mis-matching cell with zero activity, a score is computed using the level

of action in its local neighbourhood. If those cells are inactive also, the negative score

will remain high. However, if the cells are active, the mis-match can be explained as a

local translation, and the negative score is lower. See Figure 3.11 for an illustration.

Alternatively, to consider a larger spatial context at a greater computational cost:

Score′(cx,cy) =
min({dist(cx,cy, i, j) : ∀i ∈ [1,CX];∀ j ∈ [1,CY];Z(i, j) = 1})

dist(1,1,CX,CY)
(3.22)

wheredist is a ground distance between cell positions such as the Euclidean distance,

dist(x1,y1,x2,y2) =
√

(x1−x2)2+(y1−y2)2. The result is that the negative score for

each mis-matching cell as the scaled distance to the nearestactive cell. See Figure 3.12

for an illustration.

3.4.2 Exploiting temporal context

Although the spatial approach is able to identify similarlylocated and overlapping ac-

tion, it does not yet exploit the temporal information stored in the index. Temporal infor-

mation is now proposed to enhance the result. When comparingitems in the FrameIndex,

the cell’s Negative evidence can be reduced if the cell was active in recent history. An
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adjustment is therefore computed using:

HistoryAd just(P,Q) =
CX

∑
CY

∑











History(cx,cy,Z)
Tdelay

if P(cx,cy) 6= Q(cx,cy)

0 otherwise
(3.23)

whereHistory, defined in Equation (3.13), is the time delay since the inactive cell was

last active. The result is a boost to the similarity of frame index items in which there is

a temporal translation of action.

When comparing items in the ActivityIndex the temporal order is used:

TOPAd just(P,Q) =
TOPSim(P,Q)+TOPSim(Q,P)

2
(3.24)

TOPSim(P,Q) =

∑CX ∑CY







1−dist(cx,cy, i, j) if P(cx,cy) > 0

0 otherwise

∑CX ∑CYP(cx,cy) > 0
(3.25)

where TOP is the Temporal Order Profile from Equation (3.15).The selection of(i, j)

is the cell position inQ with the closest temporal order to the cell being examined inP,

i.e. that minimises|TOP(x,y,P)−TOP(i, j,Q)|. The overall result is that items with

similar temporal order produce a higher similarity.

To illustrate the similarity metrics, Figure 3.13 shows a query activity with the four

most similar other activities found in an Aircraft docking sequence. The spatial context

similarity finds activities that occur in a similar spatial location to the query. This is

considered a good result considering the conceptual simplicity of the metric. For the

temporal context similarity, those elements with a more similar directionality (top-right

to bottom-left in the figure) are ranked higher. One advantage of decomposing the simi-

larity estimation into two separate steps is that the temporal comparison can be restricted

to items that are found to have similar spatial similarity. For example, in our system the

spatial similarity is computed for all items and the temporal adjustment computed only

for the most similar 25%. This can reduce the search time.
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Rank 1 (Query) Rank 2 Rank 3 Rank 4 Rank 5

(a) Using the Binary Shape Profile.

Rank 1 (Query) Rank 2 Rank 3 Rank 4 Rank 5

(b) Using the Temporal Order Profile.

Figure 3.13: Demonstration of the similarity metrics. We show a query activity with
the top four most similar activities found in the Aircraft docking scene. Note that the
item used as the query is ranked first in all cases. (a) The comparison is made using the
metric in Equation (3.17) using the spatial criteria given in Equations (3.18) and (3.19)
in Section 3.4.1. For the activities we show the Binary ShapeProfile. It can be seen that
the similarity metric produces good results considering the spatial location of activity.
(b) The comparison is made using the temporal adjustment given in Equation (3.24) in
Section 3.4.2. For the activities we show the Temporal OrderProfile. It can be seen that
the similarity metric produces good matches considering the directionality of action.



3.5. Explanation based partitioning71

3.5 Explanation based partitioning

Let us now consider how to use an index for performing temporal segmentation on a

long, continuous sequence. In essence, we wish to discover points of temporal disconti-

nuity in the sequence - at which the “future bears little resemblance to the past” - where

these breaks provide key points for defining the structure ofvideo content.

3.5.1 Localised temporal coherence

In traditional multimedia indexing, frames are automatically grouped into shots that are

then grouped into scenes, thus providing a rich structure. When shots exist, they can be

extracted and grouped using the correlation between the past and future (Kender and Yeo,

1998; Linet al., 2001). Reported approaches have proved successful for those sequences

in which several sources are manually chopped and edited to simulate a story. However,

surveillance video is fundamentally different. We are not reconstructing a sequence that

was artificially constructed, rather a completely natural scene is being captured from

which content is extracted without prior knowledge. Surveillance video is continuous,

with no shot breaks, hence it is proposed to monitor the continuity of scene action in

order to discover the points of discontinuity.

A generic measure of video coherence is computed at each index item:

Coherence(t) =
∑w/2

i=1 median
(

∀w/2
j=1Similarity(It−i, It+ j)

)

w/2
(3.26)

wherew is the window size,Ii is the ith index item, andSimilarity is a metric. The

similarity between the past{t−w/2, . . . , t−1} and the future{t+1, . . . , t+w/2} items is

computed and modelled using the median. The median is used because it is known to be

less sensitive to outliers (Weisstein, 2006b). The result values are in the range[0,1] with

a high value indicating sequence continuity.

When using FrameIndex, the computation of coherence is susceptible to low levels of

scene action due to the linear population of the buffer. As all frames are used, including

those with little or no action, the buffer will eventually fill with unimportant content.
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This leads to bias in the level of coherence. We therefore employ anexpanding window

solution illustrated in Figure 3.14. The total scene actionvalue is normalised using the

approach in Appendix B and frames with a value> 0 are considered eligible to enter the

buffer. The buffer window is expanded in either direction until it is filled. As can be seen

in Figure 3.14 (c), the approach is more robust to periods of low action. Furthermore,

the buffer is populated with a sub-sample of frames.

Note that when using the ActivityIndex the coherence for theactivities in the se-

quence is discovered, however to obtain a corresponding temporal locationt in the se-

quence we use the starting point of the activity.

3.5.2 Finding significant coherence minima

Once the coherence is computed, the minima are automatically found and marked as

these are the breaks in continuity. An approach often used inliterature is asliding win-

dowmethod, for example (Sundaram and Chang, 2000), whereby a window is used to

provide a local context during analysis. The following method is used:

• Candidate minima are discovered. A window of fixed size is moved across the

graph of coherence values. Points at which the central valueis equal to the lowest

in the window are used.

• Candidate minima that are too close are resolved. This situation occurs when

multiple candidate minima have the same value, for example when the coherence

has a wide minima. The candidate is retained that is the furthest from a candidate

in the opposite direction.

• Candidate minima are pruned. The minima are ordered by coherence value and the

desired number retained. This is selected according to the length of the sequence

and the required granularity of content, i.e. how many scenes are to be detected.

The process requires the number of desired breaks as input. We find that retaining the

number of breaks according to sequence size is sufficient.
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(a) A linearly populated buffer.

(b) A sub-sampled buffer.

(c) A thresholded buffer. Frames are only included if their normalised total activity is
above a threshold.

(d) A sub-sampled thresholded buffer.

Figure 3.14: The frame buffering using a window size of 10. In(a) we see a normally
populated buffer where 5 frames in either direction are used. We use vertical bars to in-
dicate the frames included in the buffer. In (b) we show that by sub-sampling the frames
included in the buffer we can achieve much wider window coverage. This corresponds
to an increase in the temporal context during the buffer computation. In (c) we show the
thresholded approach. Frames are only included if they contain a level of action. This
removes the low-action frames that occur frequently in longsurveillance sequences. In
(d) we show a combination of the sub-sampled thresholded case. It is able to provide a
wide and meaningful temporal context.
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3.6 Experiments

In this Chapter approaches have been presented for the estimation of action features

from a sequence (Sections 3.2.1-3.2.2), the computation ofa frame-based index (Section

3.2.3), the computation of an activity-based index (Section 3.3) , and the computation of

a coherence based temporal segmentation (Sections 3.4-3.5). We now demonstrate the

indexing and temporal segmentation approach.

A sequence and its manual segmentation

We captured a long surveillance sequence that observes the Aircraft docking station

scene shown in Figure 3.1. The sequence is roughly 1.5 hours of footage, sampled and

digitised at 2Hz, resulting in 11,000 frames of size 320×240. Let us call this sequence

Aircraft1. Upon manual inspection, the following eight salient scenes were identified:

frames 0-400 empty dock

400-600 aircraft arrival

600-2,700 passengers dis-embark and unloading

2,700-5,700 plane re-stocked

5,700-7,500 period of inactivity

7,500-8,750 final loading

8,750-9,500 engines examined

9,500-11,000 aircraft departure

In the sequence, a plane arrives at the dock, is restocked, loaded, examined, and then

departs. An illustrative frame from each of these manually identified scenes is shown in

Figure 3.15. Unsurprisingly, it is extremely difficult to identify the scene content from

such a static frame presentation even though this approach is a commonly employed for

video summarisation.

Note that a manual segmentation is subjective, not guaranteed to be correct, and

not guaranteed to be consistent with segmentations produced by other observers. To

demonstrate, four manual segmentations were collected from observers that were not

familiar with the scene. In Figure 3.16, the positions of thebreaks in the ground truth
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t=80 t=500

t=990 t=5200

t=7000 t=7550

t=8980 t=10400

Figure 3.15: An illustrative frame from each of the eight manually identified scenes. It
is difficult to determine the scene content.
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Figure 3.16: An illustration of the manual segmentations for the Aircraft1 sequence.
(top row) We show the ground truth, as explained on page 74, along with frame position
indicators that correspond to the eight frames shown in Figure 3.15. (second+ rows)
We show four manual segmentations produced by different observers with no previ-
ous surveillance or segmentation experience. Each manual segmentation is semantically
meaningful as each break point required justification during the experiment. It can be
seen that segmentations are consistent with each other and can be used for evaluation.

Figure 3.17: The activity coherence result for the Aircraft1 sequence. In comparison
to the manual breaks of Figure 3.16, we can see that the break points are well posi-
tioned. In particular, the activity coherence breaks at theapproximate frame positions
t ∈ {1100,2400,5000,10100} are located at manual breaks.
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Figure 3.18: A similarity matrix that shows the intra-set and inter-set similarities be-
tween five manual and five random segmentations. Positions 1−5 are the manual seg-
mentations and 6−10 the random segmentations. Each position shows the similarity
between the items, where black is similar and white dis-similar. Each item is identical
to itself as seen on the identity diagonal (top-left to bottom right). It can be seen that the
manual segmentations are similar to each other (as shown by the top-left quarter of the
matrix having dark cells), the random segmentations are notsimilar to each other, and
also the intra-set similarity is low.

and four manual segmentations are shown (for the 11,000 length sequence). It can be

seen that the segmentations have some similar and dissimilar tendencies.

In order to examine the consistency of the five manually produced temporal seg-

mentations (ground truth plus four manual alternatives mentioned above), five random

segmentations were generated and then a similarity matrix computed between the ten.

See Figure 3.18. Each random segmentation was generated using random numbers be-

tween[1,n] for each break, with the additional constraint that breaks should be more than

20 positions distant from each other. During the similaritycomputation a matching dis-

tance ofTwithin = 50 was used in Equation (3.4). It can be seen that the manual intra-set

similarities are high (as indicated by the dark cells at the top-left of the matrix) whereas

the random intra-set similarities are low and the inter-setare also low. This illustrates

that the manual segmentations are consistent and can be usedfor evaluation.
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Computation of action features using generic parameters

The first task was to compute the action features, namely the measure of reliable tem-

poral change in Section 3.2.1 and the grid based frame descriptor from Section 3.2.2.

This requires a selection of tuning parameters summarised in Table 3.5 (a). To find a

suitable and generic set of parameters, a number of preliminary experiments were con-

ducted using sequences showing the Hand waving, Pets carpark, and Aircraft docking

scenes (see Figure 3.1 on page 48), in which the parameter values were varied. It was

found that, with the exception of the cellsizeλ , the value of each parameter does not

effect the computation time and so a generic choice is possible. The following settings

provide a good result in all scenes:

Tdi f f = 5

α = β =
50
255

Tpixel = 50

Tcell = 15%

Also, changing the parameters by small values produce very similar results meaning that

the approach is not overly parameter sensitive.

The choice of cellsizeλ determines the computation time and available storage ca-

pacity. A generic choice ofλ = 16 was found to capture sufficient detail in the different

scenes, however it can be changed according to the anticipated size of moving object

content within the scene and the computational and storage limitations.

Frame indexing and temporal segmentation

For the Aircraft1 sequence, a FrameIndex was computed usingthe parameters described

above andTdelay= 255. This value was chosen as it provides a sufficiently sizedhistory

(255 frames at 2Hz equals approximately 2 minutes of action)and also corresponds to

255 grey-levels stored and displayed using an image raster format. The frame similarity

metric used was defined in Section 3.4 by Equations (3.17), (3.18), (3.21) and (3.23).

In order to perform partitioning, frame coherence was computed using a window size
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Figure 3.19: The frame coherence result for the Aircraft1 sequence. (top) The frame co-
herence using subsample size of[1,2,5,10]. The sub-sampled version provides a similar
result at much reduced computational cost. (bottom) The frame coherence result with
subsample size of 10 with the 7 detected minima giving a corresponding 8 scenes - as
per the manual segmentation experiment.

Figure 3.20: A comparison of the frame coherence segmentation against one set of man-
ual segmentations and five sets of random segmentations. (Each set containing five seg-
mentations). The graph shows the mean similarity between the frame coherence seg-
mentation and each set, using different values for the thresholdTwithin of Equation (3.4).
It can be seen that the frmcoh-manual comparison is not discernible from the frmcoh-
random comparisons.
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of w= 100 in Equation (3.26) and subsample sizes of[1,2,5,10] as described in Section

3.5.1. It was found that increasing the size of the window further was not possible as the

number of frame similarities needed increases exponentially with window size. This is

because an increase in size of+1 results in number of similarities needed byw/2, as the

new frame in the “past” must be compared against every frame in the “future” according

to Equation (3.26). The median must also be computed on a larger set requiring more

computational expense (Weisstein, 2006b).

The result computed for the different subsample sizes is shown in Figure 3.19 (top).

It can be seen that sub-sampling can be used to produce a similar result at a fraction of the

computational cost. The detected breaks are shown in Figure3.19 (bottom) as vertical

bars. It can be seen that the frame coherence approach is ableto partition the sequence,

but is sensitive to level of activity. The impact of a small window size is that the temporal

context considered in the coherence computation is small. This leads to temporally

localised discontinuity detection rather than long-term content change detection.

In order to evaluate the temporal segmentation automatically produced using the

frame coherence, it is compared against the manual and random sets using a varying

matching distance in the segmentation similarity metric ofEquation (3.4). The segmen-

tation was compared against one manual set and five random sets, each consisting of five

segmentations. In Figure 3.20 the similarities are shown: the x-axis corresponding to

the increase in the size of the matching distance; the y-axisis the the mean similarity

between the frame coherence segmentation and the test set. Adesirable result is one

in which the similarity falls quickly, as this corresponds to more breaks being aligned

within a smaller match distance. In the Figure, it can be seenthat the manual result is not

easily discernible from the five random results, although itdescends more quickly than

most. This suggests that the frame coherence segmentation is as similar to the manual

segmentations as those randomly generated.
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Activity indexing and temporal segmentation

For the Aircraft1 sequence, the ActivityIndex was computedusing the parameters used

previously for the frame indexing along with activity thresholds:

Tspatial = 3

Ttemporal= 10

used in the spatio-temporal activity cropping of Section 3.3.1. We found through initial

experimentation that these were sufficient for retaining a sufficient number of activities in

the index. The activity segmentation is able to find and segment the scene action efficient

and effectively. For the Aircraft1 sequence a total of 363 activities were discovered, a

number of which are displayed in Figure 3.21.

Owing to the compactness of our index representation, a small window size can be

used during the computation of the coherence. The activity similarity metric used was

defined in Section 3.4 by Equations (3.17), (3.18), (3.22), (3.24) and (3.25). Figure 3.22

shows the activity coherence produced using the window sizes, 4, 12 and 20. It can be

seen that the larger window sizes produce a more consistent score, because as more ac-

tivities are added to the buffer’s past and future elements the past-future comparison is

more robust to short-term action changes. By observation, we found that a window size

of 12 performed sufficiently well for a number of different scenes, so is used for experi-

ments. To illustrate the coherence computation, in Figure 3.23 the maxima and minima

are marked and five activity Temporal Order Profiles (TOP) from the buffer past/future

are shown for these positions. For the maxima, it can be seen that the activities have

similar spatial locations, visual structure and directionality. For the minima, the past

action bears little resemblance to the future, leading to the low video coherence score.

We used the activity coherence to compute eight scenes usingseven minima. In

Figure 3.24 the coherence for the 363 items is shown along with the detected minima.

The activity coherence and minima for 11,000 frame positions is also shown, using

the coherence value for an activity as the value for all the frames for that activity. In

Figure 3.17 on page 76, the positions of these breaks are shown (on the same page as
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Figure 3.21: A number of activity Temporal Order Profiles computed for the Aircraft1
sequence. Different activity contents - arrival, loading,unloading - are clearly observed.

Figure 3.22: The activity coherence result produced with three window sizes. We can
see that the result using the wider window is smoother, as more similar items in the
past-future comparison are found.
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(a) The activity coherence. An illustrative maxima and minima are marked.

v

89 91 93 95 97 99 101 103 105 107
(b) Example of the past at the minima (c) Example of the futureat the minima

v

240 242 244 246 248 250 252 254 256 258

(d) Example of the past at the maxima (e) Example of the futureat the maxima

Figure 3.23: An illustration of the computation of coherence. (a) The activity coherence
produced for the Aircraft1 sequence. We mark illustrative minima and maxima positions
for which we show the content of the activity buffer. Comparing (b) and (c), it can be
seen that the past contains little resemblance to the future. This results in the coherence
minima. Comparing (d) and (e), it can be seen that the past contains similarities with the
future. This results in a high level of coherence.
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Figure 3.24: The activity coherence as applied to frame positions. (top) The activity
coherence computed in which the detected minima are marked.(bottom) The activity
coherence is displayed according to sequence frames. All frames within an activity
are given the coherence score - leading to a mini-plateau effect - providing the real
temporal/frame positions of the breaks.

Figure 3.25: A comparison of the activity coherence segmentation against one set of
manual segmentations and five sets of random segmentations (compared to Figure 3.20).
It can be seen that the actcoh-manual comparison produces a much steeper drop than the
actcoh-random comparisons, meaning that the activity coherence segmentation is much
more aligned to the manual segmentations than those randomly generated.
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the manual break positions for visual comparison purposes). It can be seen that the

breaks reasonably lineup with the manual breaks, meaning that the activity coherence

approach is producing a temporal segmentation comparable to those manually produced.

Upon further analysis, it was found that the mis-placed breaks tend to be due to an over-

segmentation that occurs during inactive periods.

Similar to the frame coherence result, the activity coherence temporal segmentation

was compared to the manual segmentations and five random setsof segmentations (as

computed for the frame coherence and shown in Figure 3.20). The result is shown in Fig-

ure 3.25. It can be seen that the activity coherence segmentation is much more aligned to

the manual segmentations than the random segmentations. This suggests that the activity

coherence approach produces a segmentation similar to those produced manually.

3.7 Discussion

In this Chapter, the important problems of forming a pre-attentive sequence index and

performing temporal segmentation of surveillance video were addressed. Using spatio-

temporally smoothed temporal difference - the Sustained temporal change - a grid-based

frame descriptor was computed to explicitly represent the spatial location and history of

scene action. This frame information was used to form an index, however it was found to

be large because of representational sparseness. We therefore performed spatio-temporal

activity segmentation to extract significant regions of connected, active cells. Each ac-

tivity was profiled, to capture its spatial structure and temporal-order information, and a

compact index formed.

In order to search the indices, a transformation-cost basedsimilarity metric was pro-

posed. The metric estimates the similarity in spatial location and visual structure of

action using estimates of the negative and positive evidence, and then the action asyn-

chronicity and temporal order to reduce dis-similarity estimates. In effect, the metric

is able to explain the inconsistency between two representations using spatial and tem-

poral factors. It was found that the metric was able to find, using the query-by-example

paradigm, similar activities by spatial location and directionality. However, the represen-
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tation and similarity approach are primarily dependent on the spatial location of scene

action. Whilst useful in most situations, it can be argued that visual appearance of action

is more desirable. We will develop such an approach in the next Chapter.

To perform automatic video partitioning, a sliding window based approach was pro-

posed for comparing the past action against the future. At each position the coherence is

computed and the coherence minima, points at which there is little resemblance between

the future and the past, are used as breaks in a partitioning.When using the FrameIndex,

the approach was found to be computationally expensive as the number of similarities

needed increases with window size. This leads to a small window size with insufficient

temporal context. To overcome this obstacle, an expanding window mechanism was

proposed. However, we conclude that a frame-based approachis not optimal. When

using the ActivityIndex, the coherence computation was found to be much more effi-

cient and reliable, because the index has retained only the important scene content and

is more compact. This approach is computationally undemanding, operates without the

use of colour information, requires no training and can detect primitive scene changes

in surveillance video. The approach result was compared against a manual segmenta-

tion, and it performed favourably when compared to randomlygenerated segmentations.

However, we note that it is difficult to perform a quantitative evaluation because of the

inherent subjectivity in manual assessments.
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Chapter 4

Iconic video indexing

In this Chapter, a video representation is developed that can be used to perform video in-

dexing of unstructured surveillance video. Rather than a geographic location approach,

as in Chapter 3, we aim to extract and use the local visual appearance of action. This pro-

vides a translation invariant mechanism for scene action comparison facilitating visual

search with no assumptions on scene content. This is critical if a diversity of surveillance

videos with varying scene content is to be analysed.

Motion can be observed as orientations over time and can be analysed using orien-

tation sensitive motion-sensors (Chomatet al., 2000) or through static orientation anal-

ysis of spatio-temporal image-slices (Ngoet al., 2002). However, reported approaches

operate on the scene visual appearance rather than action leading to representational re-

dundancy. Following the success of the temporal-change based approaches in literature

(Bobick and Davis, 2001; Gong and Xiang, 2003), wavelet-based orientation filters are

employed to analyse the appearance of local action. Commonly occurring action types,

called icons, are used to form anIconic visual vocabularyused for frame description.

Visual search is achieved using known histogram matching metrics. Temporal segmen-

tation is achieved by monitoring the cumulative appearanceof the Iconic terms during

a sequence. Finally, a video summarisation is produced using the discriminant action in

the scene.
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4.1 The need for discriminant visual context

In order to perform successful visual search on a wide variety of different surveillance

search spaces, it is critical that:

• the index representation is uncommitted, and

• the search mechanism is efficient and generic.

By uncommittedwe refer to the system having little advance knowledge, so very few as-

sumptions are made about the expected scene contents. This is because search tasks are

often retrospective, and search criteria are often developed after the data has been cap-

tured and archived. Additionally, the large scale of video data-banks demand a compact

representation and efficient metric.

An important visual characteristic to be captured is adiscriminant visual context, i.e.

a local region of activity able to successfully establish content similarity. A good dis-

criminant visual context is similar in nature to a good search term used in text retrieval

systems. For example, the word “visual” returns approximately 141 million documents

when used in Google, whereas the word “the” returns approximately 3.4 billion docu-

ments. This demonstrates that, although “visual” returns plentiful candidate documents,

it is more discriminant than “the” and is thus a better searchcontext.

4.2 A wavelet-based sequence descriptor

4.2.1 Wavelet analysis of temporal change

During indexing, we are interested in the appearance ofregions of temporal change

rather than individual pixels as they contain more contextual information, are more se-

mantically pertinent to visual search tasks, and will produce a more compact represen-

tation more suitable for long sequences. Firstly, a robust temporal changeDα,β (x,y, t) is

computed as described in Section 3.2.1. The temporal changespace is divided into a reg-

ular, static grid of square cells of equal size. The cell-sizeλ determines the granularity of

the descriptors and is chosen according to the scene layout and index size requirements.
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D

Figure 4.1: The visualisation of a cell. The lines representto the Vertical, Horizontal
and Diagonal energies. The amount of energy is depicted by line length and colour.

Moments of Haar wavelet coefficients have been shown to be effective for texture

analysis and provide a good compromise between computational complexity and effec-

tiveness (Unser, 1995). Comparable approaches such as Gaussian derivatives and Gabor

wavelets offer little improvement in result (Orenet al., 1997). The action content of each

cell is described using the Haar basis function:

Ψ(x) =























1 0≤ x < 0.5

−1 0.5≤ x < 1

0 otherwise

(4.1)

applied using a wavelet transformφ j
i (x) = φ(2 jx− i), wherex input is translated using

the number of scalesj and positioni. The result of the wavelet is a division of input

according to four sub-bands: low-high (LH), high-low (HL),high-high (HH) and low-

low (LL). Using the result, a 3D feature vector,ψ(x,y, t) =
〈

ψ1 ψ2 ψ3
〉

, is formed using

the mean of the coefficients in the LH, HL and HH bands. The LL band information is

not used as the band result is equivalent to a sub-sample of the original data. The level

of overall energy is given by the sum of the coefficients,|ψ|.

When applied to the Sustained temporal change of Equation (3.9) for a cell,ψ pro-

vides an estimate of theaction energyin the vertical, horizontal and diagonal directions.

This gives an estimate of a cell’s localised visual structure and action directionality.

Henceforth, the cell action is visualised using the icon explained in Figure 4.1. Figure

4.2 shows the coefficients produced for the scene extract in Figure 3.3 on page 51.



4.2. A wavelet-based sequence descriptor90

Figure 4.2: The Haar coefficients computed for an extract from the Pets scene from
Figure 3.3 on page 51. We show the iconic visualisation (see Figure 4.1) for three cell-
sizes: top=32, middle=16, bottom=8. The Sustained temporal change computed for
an image is divided into a grid of equally sized cells and the Haar wavelet analysis is
performed on each. The computed coefficients correspond to the amount of energy in
the vertical, horizontal and diagonal directions. It can beseen that an object motion can
be holistically described using the set of coefficients computed for it.
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4.2.2 An iconic visual vocabulary

To provide a certain degree of perceptual robustness to any matching process, a com-

pact, invariant scene descriptor is now formed. A 3D featurespace is computed for a

sequence using the cell descriptors. This space is then clustered using mixture-model

based clustering, to findκ common patterns of local visual appearance. The centroids

are each called anIconic term, θ , because it is an important element of visual context

within the scene. The set of iconic terms form anIconic visual vocabularyused for

scene description,Θ = [θ1,θ2, . . . ,θκ ]. The choice of vocabulary sizeκ is critical - our

approach is in Section 4.3. Each frame is described using aFrame occurrence histogram

(FOH) with elements representing the number of Iconic term occurrence:

FOHt =
{

f k
t : ∀k∈ [1,κ]

}

(4.2)

f k
t =

CX

∑
CY

∑
(

j<κ
min

(

dist
(

ψ(cx,cy, t),θ j
))

= k

)

(4.3)

wheret is the frame being described,∀k refers to all Iconic terms,CX andCY are the

number of cells in each dimensions, anddist is the Euclidean distance between the cell

feature vectorψ and the Iconic termθ . The result of Equation (4.3) is the number of

occurrences of iconk in framet. The representation captures a translation invariant and

perceptually robust description of what is happening in thescene. See Figure 4.4.

An advantage of using a histogram based frame representation, is that a standard his-

togram similarity metric can be used for frame comparison and retrieval. The histogram

intersection measure of Swain and Ballard (1991) is adopted:

1− ∑κ
i min(Pi,Qi)

∑κ
i qi

(4.4)

whereP= {pi : i ∈ [1,κ]} andQ= {qi : i ∈ [1,κ]} are histograms of the same size that are

being compared. The metric is widely used for matching of colour histograms in image

retrieval systems (Lew, 2001) owing to computational efficiency and low susceptibility

to the curse of dimensionality (described in detail on page 31).
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Figure 4.3: The content of the Waving1 sequence. The sequence was generated that con-
tains three scenes for illustrative purposes. The hand signals begin with square move-
ments, then figure eight movements, then triangle movements.

ψ1

ψ2

ψ3

Figure 4.4: The computation of the Iconic visual vocabulary. (left) The 3D Haar co-
efficient space computed for the Waving1 sequence is clustered using the k-means al-
gorithm. Here we show the resultant centroids. (right) Eachcentroid corresponds to a
position in the coefficient space. Each is anIconic termin the vocabulary and is hence-
forth used for describing the sequence content.

Time

Scaled
Total

ω1

ω2

ω3

Figure 4.5: An analysis of the iconic term occurrence duringthe sequence. (left) A cu-
mulative histogram showing the occurrence of the Iconic terms throughout the sequence.
Variations in the histogram correspond to various content that stimulate different coef-
ficients. (right) A projection using the first three principal components. We call this
projection theVideo scene trajectory. It captures the important thematic change from
the cumulative histogram, and hence the varying scene content.
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Figure 4.6: The Video scene trajectory produced for the Waving1 sequence shown. The
sequence content is constructed with three scenes - squares, eights, triangles. The vary-
ing content produces different frame histograms; capturedin the variations in cumulative
totals shown in Figure 4.5; the themes of which are captured in the trajectory.
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4.2.3 A cumulative analysis of iconic appearance

The key to our approach is that a scene can be defined as having asimilar profile of

filter responsesthroughout its period. Over a long period of time, similar content will

stimulate patterns in the iconic occurrence histogram of Equation (4.3). As content

changes, different patterns will occur. The approach for detecting content change by

a cumulative analysis of the iconic appearance histograms is now described.

A continuous representation that captures long term content and thematic change is

formed. A scaled cumulative histogram is used:

Cumul(t,k) =
Cumul(t−1,k)+ f k

t

Cumul(n,k)
(4.5)

whereCumul(t,k) gives the cumulative occurrence total at framet for Iconic termk.

Cumul(0,k) = 0 for all classes.f k
t is the occurrence level of termk in the frame, as in

Equation (4.3). It is clear that Cumul increases monotonically with t for each class. The

result is scaled between[0,1] for each point using the value at the last framen. See Figure

4.5. One problem with the approach is that some filter responses are common to all

scenes and are not helpful for content change detection. Theuse of a scaled cumulative

histogram is able to reduce the effect of this noise.

4.2.4 A video scene trajectory

The variations in the scaled cumulative histogram capture different long-term frame con-

tent changes, however the dimensionality of the frame descriptorsκ is high. This results

in difficulty the detection of important change. Also, many of the Iconic terms are unim-

portant with respect to the content, for example a term that captures background noise.

Therefore, in order to provide focus, the principal subspace of the scaled cumulative his-

togram is computed using Principal Components Analysis, a well known technique for

data analysis and dimensionality reduction (Presset al., 1992). The result eigenvectors

with the corresponding highest eigenvalues preserve the important cumulative effects.

The scaled cumulative histogram is projected into its subspace using the firstω

eigenvectors. Whenω = 3, the result is called aVideo scene trajectory(VST) for the se-
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quence, because it is easily visualised as a three dimensional trajectory. Figure 4.5 shows

an Iconic term scaled cumulative histogram and a VST computed for a sequence with

three clearly distinctive periods of content. Figure 4.6 show the trajectory along with an

example of the frame histograms that occur at the different phases. It can be seen that the

frame histograms shown are distinctive. The result VST provides a structure that clearly

corresponds to the changing content in the sequence.

4.3 Model order selection using entropy

The choice of vocabulary sizeκ mustmaximise the potential discrimination abilityof

the representation as search tasks must quickly discriminate amongst a large dataset. For

each candidate vocabulary, the quality of the contained terms is analysed and those more

suitable for visual search are retained. Similar to text retrieval where a few words are

found to possess statistical power for searching, we aim to discover the powerful visual

elements in the scene. Firstly, aTerm occurrence histogramfor each term is built by

concatenating the frame term occurrencef i for each frame:

O(θk) =
{

ok
t : ∀t ∈ [1,n]

}

(4.6)

whereok
t = f k

t . o is used to distinguish the term occurrence histogram (the distribution of

the term occurrence throughout the sequence) of Equation (4.6) and the frame occurrence

histogram (containing the number of term occurrences in that frame) of Equation (4.2).

The histogram provides information about the distributionof the term occurrence in the

sequence. To allow comparison between low-frequency and high-frequency terms, it is

scaled using(∑t<nok
t ) = 1. The total term occurrence is|O(θk)| = Cumul(n,k).

If a term is popular, i.e. the|O(θi)| is high compared to other terms, it does not nec-

essarily mean that the term is good for searching. The opposite is usually the case. For

example, in text retrieval the words [“and”,“the”,“if”] occur commonly but are clearly

unsuitable for searching as they lack context or any actual meaning. Similarly, unpopular

words [“bivariate”,“condition”,“giraffe”] are unsuitable because they are too infrequent.
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A prominent solution in text indexing is the removal of the highest/lowest frequency

terms (Rijsbergen, 1979). In our approach, the most frequent and most infrequent terms

from a candidate vocabulary being assessed are removed.

A measure of a term’s discriminant ability is desired. In text indexing, a classic

approach is theinverse document frequency, computed as:

id f (θk) = log

(

n
nk

)

(4.7)

wheren is the total number of documents and 0≤ nk ≤ n is the number of documents in

which termk occurs. Unfortunately, in our case the computation of a binary icon-frame

membershipnk is not practical as the frames are spatially large and likelyto contain

all the terms. Another possibility is the computation of thenormalised fourth order

moment of the term occurrence histogram, the kurtosis, as itprovides a measure of the

distribution peakedness (Weisstein, 2006a). However, this approach is not possible as

the temporal order of occurrence is not significant.

Our approach is to use the homogeneity of the term occurrencedistribution computed

using Entropy:

E(θk) = −
t<n

∑
t=1

ok
t log2(o

k
t ) (4.8)

A term that occurs evenly throughout the sequence (e.g. background) is bad for searching

will produce a high entropy score. A term for which the distribution is peaked at certain

positions is good for searching and produces a low score. SeeFigure 4.8.

A good term for searching is one that occurs frequently, is discriminant, and is of a

significant size. To this end, the normalised values of|O′(θi)|, E′(θi) and |ψ ′(θi)| are

computed using the approach in Appendix B. The termquality is then estimated using:

Q(θi) = |O′(θi)|+ |ψ ′(θi)|−2E′(θi) (4.9)

Figure 4.9 illustrates four terms, their term occurrence histograms from Equation (4.6),

and a textual description of their properties. It can be seenthat the term quality provides

a compromise between frequently occurring terms and those that provide maximum dis-
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criminance. During indexing, a vocabulary sizeκ is chosen that maximises the mean

term quality, by max∑
k∈κ Q(θk)

κ .

4.4 Partitioning by trajectory approximation

For a sequence that is represented using a Video scene trajectory, we now wish to parti-

tion the sequence into meaningful segments to solve the temporal segmentation problem.

Considering that the trajectory is smooth when the action content in the scene is stable,

the key trajectory alterations are detected and these positions used as the breaks. To this

end, a linear piecewise approximation of the trajectory is generated that retains the key

vertices using the Discrete Curve Evolution (DCE) algorithm (DeMenthonet al., 2000):

1. Therelevanceof each vertex on the trajectory is computed using:

rel(t) = dist(t−1, t)+dist(t, t+1)−dist(t−1, t+1) (4.10)

wheredist is the Euclidean distance. The relevance scorerel is low if the point

can be removed from the trajectory without significantly increasing the recon-

struction error.

2. The vertex with the least relevance is removed.

3. Repeat until the required number of vertices remain.

The final retained vertices are the points deemed most necessary for reconstruction,

and are used as the break points in the temporal segmentation. The algorithm is found to

be conceptually intuitive, efficient and effective. However, it does operate on the whole

trajectory at once. If an online process was required, alternative algorithms could be

exploited (Keoghet al., 2001). We show a trajectory and its approximation in Figure

4.6. It is clear that the approximation retains the shape andcharacter of the original,

using a few key points. Considering the trajectory is continuous when no change is

occurring, these points can be used as break points.
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Figure 4.7: A trajectory and it’s approximation using 10 points and 5 points. It can be
seen that the shape and character of the trajectory is maintained. The points found can
be used to divide the sequence into phases of similar directional content.

high medium low

Figure 4.8: Three histograms corresponding to high, mediumand low entropy. High
entropy indicates that the term occurrence is evenly distributed and is bad for searching.
A low entropy indicates that the term occurrence is peaked and is thus discriminate.

High occurrence

Low entropy

High quality

Figure 4.9: An illustration of the term evaluation. We show four iconic terms, their
scaled term occurrence histograms, and a textual description. Thehigh occurrenceterm
corresponds to background activity. Thelow entropyterm corresponds to a highly dis-
criminate term - it matches against half the sequence and does not match at all against
the other half. This is good for searching as the non-matching half can be quickly dis-
counted. Thehigh qualityterm provides a balance between the two desirable properties.
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4.5 Visualisation using discriminant action

Once a sequence has been segmented, a video summary that illustrates the scene content

is required in order to solve the video visualisation problem. Commonly, the first, last,

mid or nth frame or frames are used as the segment summary. However, such a static

representation is found to be ineffective because it does not describe “what is happening”

in the scene. Therefore, in our approach a Segment summary frame is constructed for

each segment that emphasises the particular action that occurred within it. For a segment

the set of active pixels are used that best represent its action. Each pixel is evaluated

using the criteria:

1. How active the pixel is in the segment.

2. How good the pixel is for describing a segment consideringthe sequence. In other

words, thediscrimination abilityof the pixel.

The motivation is that we wish to use the pixels that are most discriminative, i.e. are best

for describing the unique content in the segment. This is similar to theterm frequency,

inverse document frequencyterm weighting strategy in text indexing (Rijsbergen, 1979).

For a sequence, each pixel position is evaluated for its discrimination ability:

DiscriminationAbility(x,y) = log

(

n

∑t<n
t=1D(x,y, t) > Tact

)

(4.11)

whereD is the Sustained temporal change from Equation (3.9),Tact is a threshold to

determine a level of significant pixel activity. A high valueindicates that the pixel is

rarely active. To compute the set of representative active pixels for segments, each pixel

is evaluated as:

SegmentActivePixel(x,y,s) =
∑t∈s(D(x,y, t) > Tact)

max SegmentActivePixel(∀x,∀y,s)
(4.12)

wheret ∈ s corresponds to the set of frames in the segment. The result isscaled to the

range[0,1] where a high value indicates that the pixel was highly activein the segment.
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Each pixel is scored using

Score(x,y) = DiscriminationAbility(x,y)SegmentActivePixel(x,y,s) (4.13)

and the topτ% of pixels with the highest scores are Top discriminative active pixels

(TDAP). These provide indication of the most interesting segment action. A sequence

summary is formed by computing a Segment summary frame (SSF)for each segment

in the sequence. The SSF is computed using the TDAP and the first frame from the

segment to provide a visual context:

SSF(x,y,s) =







255 if (x,y) ∈ TDAP(s,τ)

γ F(x,y,s) otherwise
(4.14)

whereF(x,y,s) is the starting frame of activitysandγ is a scalar between[0,1] used for

reducing the frame emphasis.γ = 0.5 is found to work sufficiently well. Figure 4.19

shows, for two outdoor scenes, theDiscriminationAbility. Additionally, the total level

activity for a segment - i.e.TotalD from Equation (3.10) - and the computed Segment

summary frame are shown for a segment detected at that scene.It can be seen that the

SSFs successfully summarise the most pertinent action in each segment.

4.6 Experiments

In this Chapter approaches for video indexing, temporal segmentation and summarisa-

tion have been presented, using the action features computed from a sequence. The video

index was built by computing the Haar wavelet coefficients for the scene action (Section

4.2.1), forming an Iconic visual vocabulary for scene description (Section 4.2.2), that

was then used to form a Video scene trajectory (Sections 4.2.3-4.2.4) that captures the

changing scene content. Temporal segmentation was achieved by a process of trajectory

discretisation (Section 4.4). A video summary was formed using the segmentation and

the discriminant scene action (Section 4.5).
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Figure 4.10: Action-based summaries for two scenes. (top) TheDiscriminationAbility.
A high/white value occurs when the pixel is rarely active andconsequently is of more
interest in the summary. (middle) TheTotalD. The total level of activity for a detected
segment. (bottom) The Segment summary frame. The static frame context is combined
with the Top discriminant active pixels (TDAP). It providesboth information about the
static visual appearance of the scene, and also the important scene action.
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Test sequences

We tested our approach using a variety of surveillance scenes that show indoor, outdoor,

artificial and natural content. This variety is typical of a surveillance system and high-

lights the need for an efficient approach for partitioning and visualisation. The sequences

used are detailed below:

Aircraft1-5 showing the Aircraft docking scene shown in Figure 3.1 on page 48. Each

sequence is of spatial dimension(320× 240). The sequence lengths of the five

sequences aret = {11000,6470,2869,2642,2434}.

Pets1-2 showing the Pets carpark scene shown in Figure 4.11 on page 103. The spa-

tial dimension is(760×540) and lengthst = {3061,3064}. The two sequences

capture the same action recorded concurrently from two separate camera mounts.

Pets3-4 are as Pets1-2 witht = {2688,2688}.

Courtyard1 shows an outdoor courtyard scene shown in Figure 4.11. The spatial di-

mension is(760×540) and lengtht = 2982.

Selection of parameters

To avoid the need for tuning parameters to each individual sequence, the representation,

trajectory and visualisation are all computed using a single set of parameters. This is

a realistic situation in that the system can process a new surveillance sequence with no

knowledge or expectations of the content. Each sequence wasprocessed as follows:

1. We compute the Sustained temporal change developed in Chapter 3 using the pa-

rameters from that Chapter. Namely,[α = 50,β = 50,Tdi f f = 5] are used when

computing Equation (3.9) to produce a reliable and efficientestimate of what is

changing in the scene

2. An Iconic visual vocabulary was computed using a medium sized cellλ = 16

(see Section 4.2.1) and the number of clustersκ = 20 (see Section 4.2.2). These

selections were found to produce a compact frame-based representation that was

able to retain important scene content.
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The Pets carparkscene, obtained from the Performance Evaluation of Tracking and
Surveillance workshop (PETS), shows a carpark scene containing car, bicycle and pedes-
trian activity. See (Ferryman, 2003). This view is from camera mount 1.

ThePets carparkscene. This view is from camera mount 2. The same action is shown
as that observed from mount 1.

An Outdoor courtyardscene. The scene contains pedestrians, a fountain, and vehicle
content. The foreground also contains moving trees. The main problem with interpreting
this scene is that no structured action occurs, i.e. the content seems almost random.

Figure 4.11: Two scenes used. Note that the Pets carpark scene is observed from two
separate camera mounts, capturing the same action concurrently.
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3. To detect long term sequence change, the Video scene trajectory was computed (as

Section 4.2.4) using three principal components,ω = 3, and approximated by the

Discrete Curve Evolution algorithm (see Section 4.4) using10 points. Using three

dimensions produces a trajectory that is intuitive to compute and visualise. It was

found that ten vertices are sufficient to approximate a sequence whilst capturing

the important changes, although this can be easily changed as required.

4. A video summary is produced by computing the Segment summary frame (as

Section 4.5) for each segment using the most discriminant pixels,τ = 25%.

We found this set of parameters through experimentation andtuning, to provide a bal-

ance between compactness, efficiency and expressiveness. It must be stated that minor

changes in the parameter values makes little difference to the result, and so we consider

the choice to more about domain context and computational limits. To verify this asser-

tion, a Video scene trajectory was computed for the Pets1 sequence using various values

of cell-size (λ ) and vocabulary size (κ). The result, shown in Figure 4.12, reinforces our

view that the approach is relatively parameter insensitive.

Computation of Video scene trajectories

Figure 4.13 illustrates the result produced using the Aircraft3 sequence. It shows:

• The Video scene trajectory in three dimensions.

• The trajectory approximation using ten vertices to encapsulate nine scenes.

• The resultant nine Segment summary frames along with the frame ranges for each

segment.

• In order to aid manual interpretation, a number of the Segment summary frames

are shown on the trajectory at the corresponding segment positions.

Upon inspection of trajectory, it can be seen to contain several long continuous periods

of similar orcontinuous directionality. Upon manual analysis of the sequence content,

these correspond to periods of similar content. For example, in Segment 3 a large num-

ber of related unloading activities are grouped; in Segment7 the loading activities are



4.6. Experiments 105

λ = 32

λ = 24

λ = 16

λ = 8

κ = 10 κ = 20 κ = 30

Figure 4.12: The robustness of cell-size (λ ) and vocabulary size (κ) as demonstrated
using the Pets1 sequence. In each case the trajectory contains a similar profile, with
similar main phases and changes. This highlights that the result is not over sensitive on
the selection of parameters.
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one

five

two

three
seven

eight
nine

Segment 1: 0-141 Segment 2: 141-200 Segment 3: 200-3104

Segment 4: 3104-3536 Segment 5: 3536-3648 Segment 6: 3648-3965

Segment 7: 3965-5784 Segment 8: 5784-5946 Segment 9: 5946-6468

Figure 4.13: The Video scene trajectory and segment based summary produced for the
Aircraft3 sequence. The trajectory is approximated using 10 points leading to 9 seg-
ments. It can be seen that the approximation closely followsthe structure of the trajec-
tory and, assuming that the trajectory captures the scene content change, the retained
vertices are the break points.
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Figure 4.14: The trajectories and summaries produced for the Aircraft1-2 sequences. Note that the segment summary frames provide an indication
on the scene content and can be quickly interpreted by a trained operator. For example, to provide instant information onthe status of the loading
bay: empty-full loading-unloading. For a discussion of themarked summary frames, ABCDE, refer to the text.
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Figure 4.15: The trajectories and summaries produced for the Aircraft4-5 sequences. As Figure 4.14, the segment summary frames indicate the
scene content. For a discussion of the marked summary frames, ABCDE, refer to the text.
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Figure 4.16: The trajectories and summaries produced for the sequences Pets1-2. The sequences are of the same scene action content as observed
from two separate camera mounts that provide a different view. Clearly, the trajectories and approximations are highlysimilar meaning that the
approach is reliable. It can also be seen that the segment summary frames produced are correlated, i.e. they show the sameaction.
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Figure 4.17: The trajectories and summaries produced for the sequences Pets3-4. The sequences are of the same scene action content as observed
from two separate camera mounts that provide a different scene view. It can be seen that, similar to Figure 4.16, the trajectories and segmentations
are similar, and that the summaries show the same action. This reinforces our view that the approach produces a reliable result.



4.6. Experiments 111

Figure 4.18: The trajectory and summary produced for the sequence Courtyard1. The
scene contains no structured content and segmentation and summarisation is therefore
difficult. It is generally not possible to discover structure and content where none exists.
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grouped. This demonstrates a fundamental characteristic of the trajectory: it does not

deviate when the scene action content remains similar. As seen in Figure 4.13, the ap-

proximation is able to discover the important points of discontinuity in the trajectory.

These become thebreaksthat encapsulate segments. Finally, the combination of static

and action features in the segment summary frames successfully portrays the content of

the segment. The approach eases and reduces the the time required for manual video

interpretation (in comparison to “watching” the sequence).

To demonstrate the consistency of the solution, similar trajectories and summaries

were computed for four other aircraft docking sequences - Aircraft1,2,4,5 - with the re-

sults shown in Figures 4.14 and 4.15. It can be seen that the resultant trajectories capture

content change and lead to an effective partitioning. Also,the summaries contain clear

action based content - with static context - and are meaningful to a trained human ob-

server and so facilitate a semi-automatic surveillance investigation system. In particular,

a number of repeating activities are highlighted:

A The plane arrival event is easily determined from both the lack-of-plane in the

static context and the active pixels.

B Many unloading activities.

C Many loading activities.

D Examination of the plane engines.

E Examination of the Aircraft front wheel.

The repetition of similar actions is to be expected, as the aircraft docking scene contains

a clear cycle of known action - arrival, unloading, loading,departure - that a trained

observed can identify and use to establish the current status of the loading bay. The

summaries contains a precis of the scene content and, if produced on-line, can be used

for monitoring and intervention applications.

To demonstrate the approach on a more controlled environment, trajectories and sum-

maries were produced for four sequences that show the Pets carpark scene. Figure 4.16
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(a) (b) (c) (d) (e)

Figure 4.19: Three automatically detected segments/scenes from the Pets scene with
alternative summaries: (a,b) the first and mid frame, (c) 100% of active pixels in the
scene, (d) the top 25% most active pixels, (e) the top 25% discriminative pixels. The
discriminative pixel approach reduces the effect of noisy pixels, for example those on
the lamppost due to camera shake.

shows the results for the sequences Pets1-2, that show the same scene content as concur-

rently observed from two separate camera mounts. We are interested in the consistency

of the result produced for the same content. It can be seen that the trajectories are very

similar and that the summaries complement each other. Figure 4.17 shows the result pro-

duced for the sequences Pets3-4. These are also similar, butnot quite to the same extent.

We conclude from this experiment that - as the trajectory andsummary produced is sim-

ilar for two sequences that observe the same action - the approach produces a consistent

and reliable result.

Finally, the approach is demonstrated on a complex, outdoor, natural courtyard scene

Courtyard1 that contains many unrelated, unstructured activities. The use of discrimi-

nant pixels during the summary construction is able to reduce the influence of the noise

produced by the shimmering trees in the immediate foreground. These pixels are so

noisy that they, correctly, are not highlighted in any of thesegment summary frames.

The trajectory produced contains clear phases of content and can be used for investigat-

ing the sequence. However, it may be concluded from this experiment that to compute

and use a temporal segmentation for anunstructured sequenceis not generally possible.
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Effectiveness of the summarisation

Figure 4.19 shows a frame based summary, an approach using the most active pixels, and

our discriminative pixel approach. We find that static frames do not provide information

about the action content and that the most active pixels approach contains noise, in this

case due to camera shake. The use of discriminant pixels reduces the effect of noise and

produces a clearer action based segment summary.

4.7 Discussion

We have presented a video representation used to perform video indexing of unstructured

surveillance video. A key goal of the approach is the assumption of very little knowledge

about the scene. This is necessary owing to the retrospective nature of search tasks and

also the scalability issues in the surveillance domain. To this end, we proposed:

• An uncommitted frame representation based upon the extraction of invariants that

capture the appearance of local action. This is achieved by firstly computing the

reliable action for a scene, then dividing the image space into a grid of equally

sized cells, and finally, computing the Haar wavelet transform for each cell. This

provides coefficients that capture the directionality and visual structure of action.

• The construction of an Iconic visual vocabulary for scene description. The coef-

ficient space for a sequence clustered and each frame described using the number

of Iconic terms (the centroids) that occur within it. The result is a very compact

and generic description of scene content.

• The model order selection, i.e. which terms to employ, was achieved by examining

the entropy of an Iconic terms occurrence in a sequence. The entropy provides

information on the distribution of a term, and therefore itsdiscrimination ability.

The advantages of the representation are that it does not require explicit object and ac-

tivity detection and tracking, that can be problematic in outdoor surveillance scenes.

Tracking systems often require a rich feature landscape, including colour, that is not

available. In addition, the representation does not assumeany specific content when it is
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computed. This is critical if large number of videos of diverse content are to be indexed

and retrospectively searched. We call this characteristicanuncommitted index.

As discussed in Chapter 2, two important functions that are required in an index-

ing system are the ability to perform temporal segmentationand summarisation. We

therefore proposed:

• The content changes in the scene are captured by forming a Video scene trajectory

in which a stable, or continuous, directionality is indicative of similar content. This

is achieved by computing a cumulative analysis of the frame iconic occurrence his-

tograms to find the temporal variations in term occurrence, then the computation

of the Principal Components Analysis, and finally the projection of the frames into

a low-dimensional subspace that captures the variations. The result is a trajectory

that captures the scene-level content change.

• The break points in a sequence are found by the discretisation of the trajectory.

The trajectory is approximated using a small number of vertices and each retained

vertex becomes a break position.

• A video summarisation is formed by computing the most discriminative active

pixels in each detected segment and the formation of a segment summary frame.

The set of segment summary frames form a video summary that conveys the scene

action content.

The advantage of the trajectory approach is that it is able toprovide information on how

the sequence ischanging over time, as opposed to providing information on the static or

dynamic content. The result is that the approach is content independent. The summari-

sation approach was shown to provide pertinent action information for a sequence.

In the previous two chapters, two approaches were presentedfor video representation

and temporal segmentation:

• In Chapter 3, activities were segmented as spatio-temporally connected active

cells, and a temporal segmentation computed using frame-based or activity-based

sliding window.
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• In Chapter 4, a sequence is described using a vocabulary of invariants and a trajec-

tory formed to captures the scene content changes. A temporal segmentation was

computed using a trajectory discretisation.

Both chapters present an uncommitted approach, in that no content expectations are

made on the scene. However, it may be argued that during a manual process of video

investigation - for example, retrospective search - semantics, or knowledge, about the

scene content becomes available as the manual search progresses. For example, certain

periods may be tagged as important-or-not or containing-a-semantic-or-not. This is a

similar concept to that of relevance feedback in text-basedinformation retrieval systems.

During pre-attentive indexing, this information cannot beassumed. However, the next

Chapter addresses the problem of how semantic information can be integrated to achieve

a semi-semantic search process.
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Chapter 5

Semi-semantic analysis

In recent times, thesemantic gapproblem has motivated the desire for automatic seman-

tic video analysis to detect and label content. Action history based methods have been

reported for the recognition of indoor activities (Bobick and Davis, 2001) and complex

outdoor events (Gong and Xiang, 2003). However, they are dependent upon successful

training, the adequate provision of training data, and large computational resources. A

temporal constraintis used to improve action recognition by enforcing strict temporal

order. For example, by using a hidden Markov model where states correspond to differ-

ent stages of appearance transformation. Unfortunately, the temporal order assumption

is not valid in more natural scenes, and also the sensory and semantic ambiguity is high.

In this Chapter, video analysis is performed without eitherexplicit model building

or a temporal constraint. Firstly, in Section 5.2, a competing Gaussian mixture models

is described that can perform unconstrained activity recognition. However, the approach

is vulnerable to training issues. Second, in Section 5.3, a novel rank-voting framework

is proposed for performing fast, uncommitted semantic analysis and browsing of video.

The positions of labelled items in a content-based retrieval ranking are used to vote for

their respective semantic labels. Third, in Section 5.4, a Bayesian framework is proposed

for performing a combination of evidence to achieve fusion.A constructive inference

algorithm is also described.
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Figure 5.1: Illustration of a semantic graph. The plot showsthe confidence in a particular
semanticas it varies over time. In this example, the semantic occurs in two phases but is
most prevalent towards the end of the sequence. Such a graph,when used by a browsing
system, permits the user to navigate towards the desired goal (i.e. the occurrence of the
semantic in the sequence).

5.1 Semantic belief based browsing

A video sequence is typically browsed by navigating its hierarchical structure, or by

viewing a sub-sampled frame-set. However, if a recognitionsystem is able to recognise

a semantic label,ω, an alternative is to present asemantic graphto the user with the

level of semantic belief presented over time. See Figure 5.1. Such a graph highlights

the occurrence of a semantic in the sequence and permits a user to navigate towards a

desired result. It is the role of the indexing system is to discover the confidence levels -

or belief - for a set of semantics:

S = {s(ωi, t) : ∀i ∈ [1,m] ; ∀t ∈ [1,n]} (5.1)

wherem is the number of semantics,n the number of frames, ands the level of belief in

semanticω at time instantt.

For surveillance scenes, example semantics could be “car parking”, “plane arriving”,

or “tea making”, that occur at a time instant. It is, therefore, a similar but distinct problem

to that of temporal segmentation discussed in Chapters 3 and4 in which the discontinuity

in scene semantics is required. Clearly, a classic approachfor building a semantic graph

is to performtraining and recognition. However, such approaches are often dependent

upon clean data capture, unambiguous feature spaces, and a lack of noise (Bishop, 1995)

and consequently are of limited use for outdoor scenes. In addition, it is desirable for

the semantic graph to be adaptive because the search task is not known when the se-
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quence is indexed. This is similar to the concept ofrelevance feedbackin information

retrieval systems: as a user marks documents as relevant thesystem is expected to alter

its perception (Baeza-Yates and Ribeiro-Neto, 1999).

5.2 Competing models approach

It is widely understood that recognition can be achieved by training several competing,

stochastic models to each recognise something of interest.We propose using the flex-

ible Mixture of Gaussians to model the Haar coefficients developed in Chapter 4, for

generating the semantic graphs.

5.2.1 Expectation maximisation training

A Gaussian Mixture Model (GMM) is a semi-parametric model used to estimate the

probability density function of a feature spaceX . The modelΘ consists of several

independent Gaussian distributionsθ that when combined using mixing parametersα

form a single result, soΘ = {(αi,θi)}; i ∈ [1,κ] whereκ is the number of components.

Each component is a Gaussian,θi = (µi ,Σi), comprised of a meanµ and covariance

matrix Σ. The model captures the expressiveness of the feature spaceusing minimal

parameters. The posterior probability of a data-point,x, is computed as:

p(x|Θ) =
i≤κ

∑
i=1

p(x|θi)αi (5.2)

wherep(x|θi) is the posterior probability ofx given componenti:

p(x|θi) =
1

(2π)N/2 |Σi |1/2
exp

(

−1
2
[x−µi ]

TΣ−1
i [x−µi ]

)

(5.3)

whereN is the dimensionality and[x−µ]TΣ−1[x−µ] the Mahalanobis distance. Note

the sum of all mixing parameters,(∑κ
i αi) = 1.

The Gaussian Mixture Model is a semi-parametric model for which a number of

parameters are needed to be estimated during a model fitting process (Gonget al., 2000).

This can be achieved using the Expectation Maximisation (EM) algorithm (Dempsteret
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al., 1977) that computes a Maximum Likelihood estimate of the parameters:

L = p(X |Θ) =
n

∏
i=1

p(xi |Θ) (5.4)

wheren is the number of training samples. For practical purposes, the error function is

minimised:

E = − lnL(Θ) = −
n

∑
i=1

ln p(xi |Θ) (5.5)

as the negative log is a monotonically decreasing function.The algorithm consists of the

following two steps that are iteratively performed until the error converges:

• TheExpectationstep. The current expectations are computed for all training sam-

ples and all component Gaussians

P(θi|x) =
p(x|θi)P(θi)

p(x)
(5.6)

• TheMaximisationstep. The new parameters are estimated:

µnew
i =

∑ j<nPold(θi |x j)x j

∑ j<nPold(θi |x j)
(5.7)

Σnew
i =

∑ j<nPold(θi |x j)
[

x j −µnew
i

][

x j −µnew
i

]T

∑ j<nPold(θi|x j)
(5.8)

Pnew(θi) =
∑ j<nPold(θi|x j)

n
(5.9)

Unfortunately, the accuracy of EM is known to be vulnerable to variation in the ini-

tialisation procedure and to local maxima. To reduce this risk, the model is initialised

using the following method adopted from (McKennaet al., 1999): component means are

initialised by k-means clustering; covariance matrices are initialised toΣ = Iσ whereI

is the identity matrix andσ is the Euclidean distance between the mean and the closest

other mean. The initialisation approach is illustrated in Figure 5.2. The correct initiali-

sation approach can minimise the risk of local minima in the likelihood function and can

speed-up convergence.
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The choice of the number of componentsκ is critical as too few components will

not adequately capture the density, and too many componentswill over-fit the data and

render the model unable to generalise. Many schemes exist for automatically choosing

κ. Schemes based upon the Minimum Description Length (MDL) principle attempt

to balance the quality of the model fit (the likelihood) against the complexity of the

model. A number of candidate models are trained with aκ in a desirable range, then

the MDL is computed for each model, and finally, the model withthe lowest MDL is

considering that achieving the best balance and is selectedfor use. Although common

in literature, we feel that the approach is unsuitable for large scale datasets because it

requires multiple and repeated model fitting at great computational cost. Rather, an on-

line pruning approach is adopted:

• The model is initialised with a large number of components

• During the EM iterations, components are removed accordingto apruningcriteria.

Components are removed if they are responsible for too few data-items or if their

mixing parameterα is zero.

The model fitting and pruning process is illustrated in Figure 5.3. The models are shown

at various stages of fitting. Gaussian components being removed is clearly observed.

5.2.2 Haar-based models for sequence investigation

After a mixture model of Haar coefficient distribution for a given scene is estimated,

using a subset of sampled video frames, a semantic graph can be constructed for any

video sequences of the same scene from novel observations. This is achieved by, for

each frame, computing the posterior probability that it wasgenerated by the model.

Figure 5.4 shows the approach computed using a short sequence of a square pattern

being drawn in the air: (top row) shows illustrative frames;(second row) shows the

total activity for the sequence along with an indication of the frames that were used for

training; (third row) shows the model output from two training mixture models; (bottom

row) shows a comparison of the model outputωA−ωB that is useful for analysis. It is

clearly seen that the models are able to recognise the action. Figure 5.5 shows a short
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Data Random Clustered Resized

Figure 5.2: An illustration of the model initialisation fortwo datasets. (Random) 20
Gaussians are generated with random means and unary covariance matrices. (Clustered)
K-means clustering is used to initialised the means. The covariance matrices remain
unary. (Resized) Each covariance matrix is initialised toIσ using the distance to the
nearest other centroidσ and the identity matrixI . It can be seen that the resized strategy
produces a good initialisation.

Iteration 1 Iteration 5 Iteration 25 Iteration 100

Figure 5.3: An illustration of the Expectation Maximisation fitting process for two
datasets. The resized initialisation of Figure 5.2 was used. The model is shown at 1,
5, 25 and 100 iterations. It can be seen that components are removed if they are not
responsible for enough data, and that the result after 100 iterations provides a good fit.
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Figure 5.4: The competing models approach. (top) Frames from a short training se-
quence showing a square shape being drawn in the air. (second) The total level of ac-
tivity in the scene. The peaks correspond to the left-down-right-up movements in the
sequence. Also, we highlight the 10 frames used to train eachmodel. (third) The pos-
terior probability output from each model for the sequence.(bottom) A comparison of
model outputs using A-B. Each model is clearly stimulated inits training period.

Figure 5.5: The competing models from Figure 5.4 as applied to a novel sequence con-
taining similar action. It can be seen that the models are stimulated both correctly and
incorrectly to an extent.
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(a) Waving 1: semantic graph produced by competing models.

(b) Waving 2: semantic graph produced by competing models.

Figure 5.6: The semantic graphs produced by the competing models method for two
novel sequences of constrained hand signal video data. The graph showsA−B meaning
that occurrence of semanticA results in peaks andB in troughs. We highlight frames at
notable peaks and troughs. We find that the peaks and troughs,although meaningful with
reference to the training data, are noisy and hence performing interpretation is difficult.
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novel sequence that contains a similar square pattern and the model output. It can be seen

in Figure 5.5 that the model cannot adequately generalise tonovel data. Furthermore,

Figure 5.6 shows the model output for two longer sequences inthe same scene and it

can be seen that, although the models are stimulated by different sets of coefficients

produced by the different action, the result remains unclear.

It is concluded that the semantic graph obtained from a competing models approach

does not justify the computational cost of model training outlined in Section 5.2.1. Also,

as model training is requiredoff-line the approach is not able to adapt to new semantics

as they arise. To overcome these problems, in Section 5.3, analternative approach is

presented that uses a voting algorithm.

5.3 The rank voting method

5.3.1 Frame-based ranking

In Chapter 4 a compact video representation was presented (using the Iconic visual vo-

cabulary) that could be searched using a histogram intersection metric. The process of

ranking is well understood and widely used in text, image and video retrieval systems

(Rijsbergen, 1979; Baeza-Yates and Ribeiro-Neto, 1999; Lew, 2001). The ranking pro-

cess produces a ranked list of items - the ranking - with the most similar items at the

head. A ranking is defined as:

R = {r i : ∀i ∈ [1,n]} (5.10)

where each item in the ranking,r, is arank itemconsisting of:

rpos= [pos,simpos,F∗pos,ωpos] (5.11)

wherepos∈ [1,n] is the rank position,simis the normalised similarity in the range[0,1],

F∗ ∈ [1,n] is a content identifier (in our case, a pointer to a frame), andω ∈ [1,m] is a

frame label if one exists.
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5.3.2 Rank positions as votes

If a ranking is generated containing a number of labelled items, i.e. ωi∈[1,n] = [1,m],

then, intuitively, the positions of the labelled items,pos, will provide an indication of

the content of the query item. A high rank position for a particular label is evidence

of that semantic occurring in the query frame. This idea is used to estimate a semantic

graph by the following process using each frame as the query in turn:

1. A small number of frames are manually analysed and stored in the index with a

label ωi ∈ [1,m]. The label indicates the semantic content of the frame. If more

than one content type exists, then no label is assigned. It isimportant to note that

all the semantics under consideration must have an equal number of labelled items.

2. A video frame with unknown semantics is used as the query. Aranking is gener-

ated with the frame excluded.

3. The topρ rank items eachcast a votefor their semantic, if one exists. Each

semantic is scored as follows:

score(ω,R) =
pos<ρ

∑
pos=1







log(ρ − pos) if (ωpos= ω)

0 otherwise
(5.12)

whereρ is the number of rank items at the head to consider,pos∈ [1,ρ] is the

rank position,ωpos is the label that is checked against the class being scoredω.

The vote, log(ρ − pos), is only cast by labelled items and is larger for items nearer

the head.

4. The topρ similarity scores are used to compute a measure of reliability of the

interpretation. The median similarity is used:

rel(R) = median({simi : ∀i ∈ [1,ρ]}) (5.13)

Thescorefor a semantic will be high if items with that label appear highly placed in

the ranking. See Figure 5.7. The scores for the different semantics are used to populate
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Rank 1 2 3 4 5 6 7 8
Vote 2.08 1.95 1.79 1.61 1.39 1.10 0.69 0

Query A A B A B B

Query B A B A B A

Figure 5.7: An illustration of the rank voting method using two queries. At the top we
show the rank positions and the corresponding vote. For eachquery, a ranking is gen-
erated and then the labelled items are used to generate a votefor that label. The results
for the first query are[4.97,2.30] identifying A, and for the sequence query[3.34,4.38]
identifying B.

S. The approach permits visual ambiguity because the labelled items in the index can

vary in order to capture all of the visual variations of the semantic; it is quick to setup as

the user only has to select example frames; and it can be extended at any time without

difficulty. In particular, each labelled item is consideredto be independent of other

labelled items in the same class.

The approach is illustrated in Figure 5.8 using the same short hand signal sequence

used for the competing models of Section 5.2. For the computation of the Iconic index,

the parameters outlined in the previous chapters were used.For comparison with the

competing models approach, 10 frames were labelled in the index with the two seman-

tics. It is clear from the Figure 5.8 that the rank voting method is able to identify seman-

tics at the training positions, but also able to generalise to the novel sequence in Figure

5.9. Note that to perform the algorithm on a novel sequence: (a) it must be indexed using

the same Iconic visual vocabulary as the training sequence;and (b) the labelled items

from the training sequence are added to the novel index before rank voting begins. It

must also be emphasised that, in contrast to the competing models approach in which a

training process must be completed in advance of the search task, the method does not

require a prior model fitting. This renders it more useful foran interactivesearch task in

that labelled items may be added, removed, altered, during the search.
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Figure 5.8: The rank voting approach. As in Figure 5.4, we show frames, the total level
of activity along with the frames labelled in the index, the output of the rank voting algo-
rithm, and also a comparison of the outputs for two semantics. It is clear that the method
is able to identify frames from which it has been trained. Also, although the system
was labelled with the “down” semantic (B), it has potentially identified the similar “up”
semantic att ≈ 17.

Figure 5.9: The rank voting algorithm result for a novel sequence. The labelled items
from the sequence in Figure 5.8 are added to the index and the algorithm used to generate
the semantic graph. Unlike in the competing models case, seeFigure 5.5, the algorithm
is able to generalise to novel data.
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5.4 Modality fusion

In the previous Sections two approaches were described (Competing models, Rank vot-

ing) for estimating the semantic graphsS. However, two important pragmatics have not

been addressed:

• It may be computationally too expensive to interpret every frame. Rather, it is

more tractable to only interpret sections that are considered interesting in some

sense, e.g. they contain a level of activity above a threshold.

• The selection of the best interpretor configuration. Many potential configurations

exist - Competing models vs Rank voting, with varying cell-size or similarity met-

ric - each of which may be optimal for some situation. A one-shoe-fits-all ap-

proach is necessarily suboptimal. Each alternative is called amodality.

In this Section, a Bayesian network is used to obtain an optimal fused result using

a number of modalities. To reduce the computational cost, aconstructivealgorithm is

used for selective node population and inference.

5.4.1 Combination of evidence

It is widely understood in recognition and ranking researchthat an optimal solution is

achieved by a statistical combination of evidence. For example, in the Inference Net-

work retrieval model (Turtle, 1990; Graves, 2001), each word in a text query is prob-

abilistically scored against a document, and all the word probabilities then combined

using statistical approximations of Boolean operators. In(Sherrah and Gong, 2001;

Toyama and Horvitz, 2000) a Bayesian fusion is performed to discover the location of

faces in video, fusing the input from several separate feature detectors.

In our situation, we potentially possess a number of alternative semantic graphs,

{S1,S2, . . . ,S∗}, and we desireSoptimal that considers the computational costcost(S)

and reliabilityrel(S). We therefore propose using the Bayesian fusion framework shown

in Figure 5.10. The main node to infer is the current level of belief in a semantic, St ,

with a prior provided by the the previous time-step, St−1.
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Figure 5.10: The Bayesian modality network used to perform fusion. The main node to
infer is the level of semantic belief at the current time,St . This is “caused” by the pre-
vious time stepSt−1 and contingent modalitiesC. The node is the “cause” of necessary
modalitiesN. TheR nodes represent a modality reliability. The network is applied to
each time step to form a semantic graph using a principled modality fusion.

The modalities modeled in the network are either:

Contingent modalities are only indicative of potential semantic presence. For example

the total scene activity is indicative of something happening but cannot provide

information about what.

Necessarymodalities must occur for the semantic to occur. For example, a Rank voting

algorithm must have produced a good score.

In the fusion network contingent modalities are modeled with C nodes, parents of St ,

along with reliability node R. Necessary modalities are modeled with the N nodes, chil-

dren of St , along with reliability R. In the Bayesian sense, the “semantic St causes the

necessary evidence to occur”. Figure 5.10 shows one C and oneN node, however in gen-

eral the number of modalities in the network is determined bythe number of interpretors

in the system.

We illustrate the fusion approach in Figure 5.11 compared toan additive approach

(the modalities are summed). The total scene activity is used as a contingent modality

and four separate rank-voting interpretors are used as the necessary modalities. The four

rank-voting interpretors are configured with: 1 :(κ = 10,λ = 32), 2 : (κ = 20,λ = 32),

2 : (κ = 10,λ = 16) and 4 :(κ = 20,λ = 16), in order of increased computational cost.

Figure 5.11 shows the result as more modalities are added to the computation. It is clear
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Bayesian fusion approach Additive approach

Figure 5.11: The semantic graph produced as more evidence isadded. We compare the
Bayesian fusion result with that produced by a straightforward additive approach using
1 contingent and 4 necessary modalities as described in the text. The fusion result can
be seen to converge as more evidence is computed and added. This demonstrates that
the fusion approach is performing acombination of evidence. Although the additive
framework appears to give a good result, it essentially stabilised after a single modality
meaning that the extra information was ignored.

Figure 5.12: The constructive inference: (top) The semantic graph using all five modal-
ities computed at every timestep, and (bottom) computed using the constructive algo-
rithm. A similar result is achieved at greatly reduced computational cost.
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that fusion approach converges to a result in comparison to the additive approach that

does not consider the extra evidence.

5.4.2 An algorithm for constructive inference

An attractive property of Bayesian networks is that not all nodes need to be instantiated at

a given time. This allows us to selectively add evidence to the network, in computational

cost order, until a conclusive result is achieved. In the fusion network, the inexpensive

modalities are computed and the respective nodes instantiated in the network. If the

current level of semantic belief,p(St = true), is not clear, a more expensive modality

is computed and added to the network. This occurs, iteratively, until either all of the

evidence is computed and nodes instantiated, or the level ofbelief is clear and stable.

The approach reduces overall computational cost by only requiring the computation of

the modalities needed to make the inference.

We use a method of adding a new modality only if the current belief is in the range

(0.2,0.8), i.e. it is not clear. This range was chosen through experimentation and pro-

vides a good balance between stopping the computation (if sufficiently clear result) and

continuing (if not clear). To illustrate the approach, constructive inference was per-

formed with the five modalities of Section 5.4.1 in order to compute a semantic graph.

The result, shown in Figure 5.12, is comparable to the non-constructive result, but was

achieved at a much reduced computational cost:

Semantic A [64 64 64 64 64] [64 64 36 7 3]

Semantic B [64 64 64 64 64] [64 64 35 8 0]

Normal Constructive

The table shows, for each semantic and inference combination, the total number

of modalities computed to form the semantic graphs. In otherwords, the constructive

inference algorithm has reduced the number of feature computations and rank-voting

graphs computed to achieve the result shown in Figure 5.12. For the normal case, all five

modalities are computed for every frame (t = 64 is the length of the waving sequence).

For the constructive case, the most expensive modality, 4 :(κ = 20,λ = 16), is only

computed 3 times in total corresponding to significant savings in computational cost.
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(a) The Tearoom scene showing “tea-making” activity.

(b) The Tearoom scene showing “jigsaw” activity.

Figure 5.13: Two semantic activities in an indoor tearoom scene. The tea-making ac-
tivity shows a subject obtaining and filling the kettle, and generally hovering around the
kitchen area of the tearoom. The jigsaw activity shows a subject participating in a group
jigsaw on one of the foreground tables. Although the scene was staged indoors using a
number of actors, the activities themselves are non-scripted and resemble natural action.
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Figure 5.14: The total scene activity for the 2600 frames of the Tearoom1 sequence. It
provides a useful pre-attentive indicator but no indication of semantic content.

Figure 5.15: The fusion result computed using the constructive inference algorithm for
sequence Tearoom1 showing an indoor tearoom scene with two semantics: A=“making
tea” and B=“jigsaw”. It can be seen that peaks and troughs arestimulated for similar
content: we show the frames for positions[150,1230,2060] and[850,2273]. However,
we find that the result for B is more distinctive than A as “tea-making” occurs in a
spatially small area leading to few action features.
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5.5 Experiments

We demonstrate Rank voting and Modality fusion using the tearoom scene and seman-

tics shown in Figure 5.13. The scene is comprised of an indoorroom, with seating

and kitchen space, in which several actors participate in different semantic activities in-

cluding: making tea, a communal jigsaw, sitting and talking, and also simulated theft.

Although the scene content is simulated, it contains the variability of surveillance scenes

and provides a controlled environment in which action can becontrolled. We captured a

sequence named Tearoom1 of lengtht = 2600 with each frame of spatial size(320×240)

and performed indexing as follows:

• The Sustained temporal change of Chapter 3 was computed using the parameters

developed previously, namely:α = β = 50 andTdi f f = 5.

• The Iconic index of Chapter 4 was computed using a variation of parameters

λ ∈ [16,32] andκ ∈ [10,20] in order to permit alternative rank-voting modalities.

Each frame is represented in each index using a histogram of iconic occurrence, as

Equation (4.3). Note that although all the features were computed in advance dur-

ing the experiment, a system would be optimised to compute asfew as required.

• In order to perform Rank voting and Fusion, 3 frames were labelled for two se-

mantics as follows:

Semantic A t = [140,145,150] The “tea-making” action semantic.

Semantic B t = [705,742,870] The “jigsaw” action semantic.

As previously described and illustrated in Section 5.4.1, asemantic graph was gener-

ated using the total scene activity as a contingent modalityand four separate rank-voting

interpretors as the necessary modalities. The total scene activity is computed as Equation

(3.10) and the result shown in Figure 5.14. The four rank-voting interpretors, configured

as described above, are constructively added to the fusion network in order of increased

computational cost.

We show the fusion result using the constructive inference algorithm in Figure 5.15.

The semantic graph shows the subtractive result, i.e. (Semantic A-Semantic B), as it
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provides a visual indication of the occurrence of both semantics: peaks indicate A and

troughs indicate B. A level graph indicates that the fusion result was similar for both and

thus insufficient discriminant context is available to achieve a result. It can be seen in

the Figure that occurrences of Semantic A and Semantic B are found using the graph.

However, in the graph a number of extra peaks can be seen. It issurmised that this was

because the “tea-making” activity occurs in a small spatialarea, leading to few action

features, and is not therefore distinctive enough from other activities to be found. In

contrast, the result for Semantic B is clear and can be used for quick semi-semantic

based browsing.

5.6 Discussion

An important problem for video search is to provide a browsing mechanism for se-

quence investigation. It is desirable to present a semanticapproach, in that the user can

interactively search for known contents. To this end, acompeting modelsapproach was

examined with the supervised training of a number of Gaussian Mixture Models. It was

found that, although the approach was able to recognise content in simple scenes, the

extraction of feature sets and the vulnerability of the training process limit the potential

scope. It is not desirable to train explicit content-recognition models before sequence

investigation can begin. This requires knowledge of the information need in advance.

We presented our alternativerank-votingapproach that exploited the presence of la-

belled items in a ranking. Using the current scene as the query input, labelled items vote

for their semantic according to their rank position. The approach is intuitive, completely

avoids the model fitting process, makes few assumptions about the scene content, uses

limited manual labelling and training, and is able to be enhanced quickly and easily with-

out complex model upheaval. However, it does require a number of items to be manually

labelled and it requires the ranking process to be performedfor each frame.

We recognise that that the configuration of semantic identification approach, for ex-

ample by the selection of tuning parameters, is problematic. Therefore, a Bayesian fu-

sion network was proposed that was able to reason about the results produced by several
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interpretors. The use of such network provides a principledmathematical framework

for performing acombination of evidenceusing the results of pre-attentive and semi-

semantic cues as input. Also, it was proposed that the fusionwas computed in a con-

structive manner - using estimates of cost and reliability -in order to generate the fused

result but at reduced cost. It was found that the approach wasable to provide a semantic

graph for browsing a complex indoor scene.

Finally, we call our approachSemi-semanticbecause (a) the system is able to gener-

ate belief graphs for use during sequence investigation, but (b) these belief graphs do not

correspond to system understanding of the content. The approach is dependent upon the

user providing manual labels and having some understandingof the sequence content.
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Chapter 6

Conclusions and Future Work

6.1 Motivation

It is apparent that as digital information is collected, in textual and visual domains, sys-

tems are required that are able to index and perform search. In the visual domain, this is

particularly apparent for surveillance data as (a) it exists in huge quantities, and (b) real-

time and retrospective scene investigation are the fundamental purpose for generation.

Unfortunately, the semantic gap is also prevalent: in that the system representation has

little or no correspondence with the semantic understanding of potential users.

In this thesis a framework has been presented for performingaction-based scene

indexing, as it is considered that “what is happening” in a surveillance scene is more

important than “what is present”. In particular, efficient pre-attentive cues - such as the

level of scene action - have been used to reduce the scope of the search task. More

specifically, the following problems have been addressed:

• Extraction of action features.

Surveillance video is often long, is captured and stored using poor quality record-

ing devices and storage media, and also contains content that is not visual distinc-

tive. These are called the sensory gap and ambiguity issues (described in detail in

Section 2.2). The extraction of useful pre-attentive action features from a scene is
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a challenging and important issue. By pre-attentive, an approach must have little

understanding of scene content during extraction.

• Forming an uncommitted representation.

An index is formed off-line in advance of any potential retrospective search tasks.

It is therefore critical that the video representation - i.e. the format of the index

- does not make assumptions about the scene content. We call this desirable rep-

resentation quality “uncommitted”. As sequences are typically long with little or

no interesting content, the representation must also be compact and able to be

searched using efficient tools.

• Temporal segmentation of surveillance video.

For search tasks, the video frame does not provide a temporalcontext that corre-

sponds to Human understanding of a scene. The automatic partitioning of video

into larger contextual units - called “segments” - is considered a highly desirable

feature of an indexing system. A challenging problem is to perform temporal seg-

mentation using natural scene behaviours (rather than artificial behaviours often

used in non-surveillance domains).

• Action-based conceptual visualisation.

If a system is to provide quick access to video content, it should provide a con-

ceptual visualisation that summarises the content. Video sequence visualisation is

particularly important in surveillance video, as it reduces the the time required for

manual video interpretation (in comparison to watching thesequence).

• Low-level integration of semantics.

It is clear that a semantic-based search system is highly desirable. However,

standard supervised training is not viable as it breaks the uncommitted require-

ment (described above). Alternatively, similar to relevance feedback in text-based

search systems, semantics may become available during search. A desirable ap-

proach is able to integrate manual assessments to facilitate semi-semantic search.
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6.2 Conclusions

6.2.1 Pre-attentive processing

In order to capture the required action features, the inexpensive thresholded temporal

change measure of Equation (3.8) was adopted. In surveillance video, this approach is

vulnerable to sensory problems that produce rogue active pixels. Therefore, a measure

of Sustained temporal change was computed using a spatio-temporal smoothing process.

Furthermore, the image space was divided into a grid of equally sized cells to capture

a larger and more useful unit of action. Our experiments showed that the approach was

able to extract reliable action information from the scene (see Figures 3.3 and 3.5) and

also that a generic set of parameters could be used effectivefor a variety of scenes.

A sequence was indexed by detecting spatio-temporally connected regions of cells

as meaningful independent activities using an adapted connected components algorithm.

Activities were profiled to capture their spatial and temporal characteristics and similar-

ity metrics defined. Our experiments showed that the approach was able to extract useful

activity events from different outdoor scenes (see Figures3.9 and 3.21).

A temporal segmentation for a sequence was computed using a measure of activity

coherence. At each position in the index (frame or activity based), the past was compared

to the future and those points of low coherence were detectedas the breaks. Our exper-

iments showed that the frame-based approach was vulnerableto window sizing issues,

however the activity-based approach produced a result similar to manual segmentations

(see Figures 3.16 and 3.17 on page 76).

6.2.2 Iconic indexing

In order to capture the the localised structure content of a cell, the Haar wavelet transform

was computed and used to form a cell feature vector with the means of the coefficients

in the different bands. When computed on the Sustained temporal change the features

provide information on the directionality and visual appearance of action (see Figure

4.2). To provide an invariant mechanism for scene description, the coefficients were

clustered and the centroids used to form an Iconic visual vocabulary. Each frame is then
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described using the histogram of iconic occurrence as Equation (4.2).

It was found that the frame histograms remained stable for periods of similar action

in the scene. Therefore, to perform temporal segmentation,a cumulative analysis was

performed and used to generate a Video scene trajectory. Thetrajectory directionality re-

mained constant if the scene content was not changing. It wasfound that a discretisation

of the trajectory - i.e. finding the vertices at which the trajectory directionality changes

- was able to partition a sequence into segments. Furthermore, in order to visualise the

content of the segments, a measure of pixel discriminance was computed and the most

discriminant active pixels superimposed onto a spatial context as a Segment summary

frame. Experiments showed that the segmentation and visualisation approach was able

to generate useful, repeating summaries of scene content ina variety of outdoor scenes

(see Figures 4.13-4.18).

6.2.3 Semi-semantic analysis

In order to generate a semantic graph that shows the locationof the occurrence of par-

ticular semantics in a sequence, competing probabilistic models were trained using Haar

coefficients. It was found that such an approach was not able to correctly identify sim-

ilar data in a novel scene, due to training and feature selection issues. In particular, we

conclude that such an approach is not viable because it breaks the uncommitted index

requirements - in other words, supervised training is required off-line with knowledge in

advance of what is being searched. We conclude that a competing models paradigm is

not sufficient for searching surveillance scenes.

To integrate manual semantic assessments, a novel Rank voting approach was pro-

posed. The positions of the manually labelled items in a ranking are used to determine

the content of the query item. It was found that, for constrained data, the approach was

able to work effectively and generalise to novel data (see Figure 5.8). Furthermore, a

Bayesian fusion framework was proposed to effectively perform a combination of pre-

attentive evidence, and a constructive inference algorithm proposed in order to reduce

computational load. Experiments showed that such a fusion approach was able to pro-

duce a useful semantic graph for a simulated indoor scene (see Figure 5.15).
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6.3 Future Work

In this thesis pre-attentive, iconic and semi-semantic approaches have been presented for

performing search of surveillance video. In particular, wehave focused on the problems

of temporal segmentation and content visualisation. However, the following problems

remain to be solved.

The need for common evaluation frameworks

To perform evaluation of the temporal segmentation in Chapter 3, a small number of

manual segmentations were obtained and used to illustrate the effectiveness of the ap-

proach. However, it is more desirable for a repeating large-scale data-oriented evaluation

process that can be used for an objective assessment of approach performance. For exam-

ple, in the text information retrieval community the establishment of the Text REtrieval

Conference (TREC)1 was highly influential in improving performance of retrieval algo-

rithms, of unifying the research community, and demonstrating the importance of the

work to external bodies. For the object detection and tracking paradigm in surveillance,

the Performance Evaluation of Tracking and Surveillance workshop (PETS) provides

a similar evaluation focus. A similar large-scale evaluation framework is desirable for

non-tracking oriented video indexing and search tasks.

Adaptive iconic vocabularies

In the approach presented in Chapter 4 in this thesis, a sceneis described using an Iconic

visual vocabulary generated using Haar wavelet coefficients. To achieve improved per-

formance for 24-hours-a-day surveillance video data, it would be beneficial to use a

number of different vocabularies. For example, the currentvocabulary could be opti-

mised according to the current appearance of the scene (e.g.day or night). The result

from different indices may be combined during the temporal segmentation and semantic

integration tasks.

1Seehttp://trec.nist.gov. “Its purpose was to support research within the informa-
tion retrieval community by providing the infrastructure necessary for large-scale evaluation of
text retrieval methodologies.” TREC is co-sponsored by theNational Institute of Standards and
Technology (NIST) and U.S. Department of Defense.
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Self tuning system

In this work, a number of subsystems were presented that require the selection of low-

level parameters, for example the choice ofα andβ during the computation of sustained

change in Chapter 3. To illustrate the ability of the approach in a variety of scenes, a

single set of parameters were chosen that are considered to perform well. However, it

may be preferable to learn these parameters over time for each scene.
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Appendix A

Glossary

Bayesian network A mathematical framework for modelling uncertainty. A network

consists of nodes that represent variables and arcs betweenthem representing the

dependence relationships.

Break point A point in a sequence at which it is considered that there is a change in

the underlying semantic content. For example, in structured video, a break point

would exist at positions at which one camera shot ended and another camera shot

begins. The video section between two break points is known as a video segment.

Discovered in the process of temporal segmentation.

Curse of dimensionality The exponential growth of hyper-volume as a function of di-

mensionality. Attributed to (Bellman, 1961). As a consequence, numerical meth-

ods perform poorly in high-dimensional feature spaces.

Dimensionality reduction An approach for reducing the number of dimensions in a

feature space, while retaining is main character. One method is Principal compo-

nents analysis.

Entropy A measure of information quality.
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Expectation maximisation An iterative algorithm that maximises a likelihood function

in order to fit a Gaussian mixture model to a feature space.

Feature extraction The computation of a numerical vector that represents content for

some item being evaluated.

Gaussian mixture model A semi-parametric model that is able to approximate the prob-

ability density function of a feature space using a number ofcombined Gaussian

distributions. Also known as a Mixture of Gaussians.

Ground truth A manual estimation of a result considered to be the most desirable out-

put from an algorithm.

Iconic indexing As proposed in this thesis, an iconic index describes a videousing a

set of prototypical features obtained by clustering. The “icons” are the important

elements in the scene.

Modality fusion A modality represents the belief in a semantic using a particular con-

figuration. Modality fusion is a process concerned with performing a combination

of evidence from several independent modalities.

Pre-attentive features The result of a feature extraction process that has no understand-

ing of underlying content semantics and requires few computational resources

Ranking A list of items produced by a retrieval system in response to aquery request.

The query is compared to each item in an index using a similarity metric. The

ranking is a list of item pointers ordered by similarity.

Relevance feedbackThe process, during the search, by which a user provides new in-

formation to the system on the quality of the current ranking. Thus permitting the

system to learn online from examples in order to improve the result.

Semantic A meaning (that occurs in video). Corresponds to Human understanding and

therefore subjective.
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Semantic gap The common lack of coincidence between a digital video representation

and human understanding of video content. A main problem in video indexing

and retrieval systems. Whereas Human information need is semantic in nature, a

system video representation is numerical (i.e. feature space).

Similarity metric A function that estimates the similarity between two items (usually,

two items in the same video index). The fundamental buildingblock of search

systems.

Temporal segmentation The process in which the break points for a video are discov-

ered. Also known as video partitioning or video structure discovery.

Video index A description of the video content that facilitates search applications. Con-

structed by the process of video parsing.

Video segmentA number of consecutive frames that contain similar content. A seman-

tic frame grouping.

Video summary A content abstraction using static frames. For example, a video sum-

mary could be constructed using the first frame of all the detected segments.

Video indexing The process of sequentially analysing a video to produce a video index.

Also known as video parsing.

Wavelet transform A computation that localises a function in both space and scale.

For example, in this thesis we use the Haar basis function foranalysing regions of

scene action.

Uncommitted (index) The requirement that a search index must not be constructed

with advance knowledge about the searches that are to be performed. The index

must be capable of accepting all search requests.
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Appendix B

Normalisation of a series

Given a series of real valued data,X = {x1,x2, . . . ,xN}, it is useful perform normalisation

so that it has a meanµ = 0 and is in the range[−1,1]. This is achieved by computing

the mean and variance, also called the first and second order moments, as:

µ =
1
N

N

∑
i=1

xi (B.1)

σ2 =
1
N

N

∑
i=1

(xi −µ)2 (B.2)

and then transforming each data value using:

x′ =
x−µ
3σ

(B.3)

producingX′ = {x′1,x
′
2, . . . ,x

′
N},
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