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Mathematical Notation

This section introduces the mathematical notation and a list of functions and

symbols frequently used throughout this Thesis.

Vectors are denoted with lower case bold Roman letters, such as x, and

are assumed to be column vectors. A superscript T denotes vector or matrix

transposition, e.g. xT is a row vector. (x1, . . . , xD) denotes a row vector

with D elements and the corresponding column vector is denoted as x =

(x1, . . . , xD)T . We will use x ∈ RD to denote the D dimensional vector x

whose elements are real numbers. Matrices are denoted with upper case

bold Roman letters such as A with Ai,j denoting the element at the ith row

and jth column. If we have N values x1, . . . ,xN of a D dimensional vector

x = (x1, . . . , xD)T we combine them in a D × N matrix X with the nth

column being the nth value, xn, of the vector x. Often x ∈ X will be used

to denote the vector which takes values from the column vectors of the matrix

X and |X| to denote the number of columns in the data matrix X. tr(A)

denotes the trace of the matrix A, i.e. the sum of its diagonal elements

Ai,j, i = j and det(A) denotes the matrix determinant.

Probability densities and distributions will be both denoted using p(·)
and the meaning will be clear from the context. Conditional probability will

be denoted using p(·|·), e.g. p(x|z) denotes the distribution of the values of

the variable x conditioned on the value of the variable z. The expectation of

a function f(x, y) with respect to a random variable x will be denoted with

Ex[f(x, y)]. For matrices with columns being observations of a random vector

such as X we will use p(X) to denote the joint probability p(x1, . . . ,xN).∑

{i:0<i<N+1}

xi denotes the summation of variables xi where the index i

takes values in the set appearing below the summation operator, i.e. x1 +

· · ·+xN . The symbol ∝q will be used to denote rank equivalence for a query

q. For example f(x, q) ∝q log f(x, q) signifies that the log of the function

f(x, q) produces the same rank of objects x as the function f(x, q). ∇xf(x)

denotes the gradient of the function f(x) with respect to x, that is the vector
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with values (
∂f(x)

∂x1
, . . . ,

∂f(x)

∂xD

)T
.

arg maxx f(x) denotes the value of the variable x such that f(x) attains its

maximum value.

Γ(·) denotes the Gamma function while ΓD(·) denotes the D-variate Gamma

function defined as ΓD(n) = πD(D−1)/4∏D
j=1 Γ [n+ (1− j)/2]. B(·) denotes

the Beta function defined as

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

For a random vector x ∈ ND,M(x|n,θ) denotes the Multinomial distri-

bution with probability mass function

M(x|n,θ) =
(
∑D

i=1 xi)!∏D
i=1 xi!

D∏

i=1

θxii ,

where n ∈ N such that x1+ · · ·+xD = n and 0 < θi < 1 and θ1+ · · ·+θD = 1.

D(θ|α) denotes the Dirichlet distribution with probability density function

D(θ|α) =
1

B(α)

D∏

i=1

θai−1i ,

where αi ∈ R+.

For a random variable y ∈ R+, G(y|α, β) denotes the Gamma distribution

with probability density function

G(y|α, β) =
βα

Γ(α)
yα−1 exp(−βy),

where α, β ∈ R+.

For a random vector x ∈ RD, N (x|µ,Σ) denotes the D-variate Gaussian

distribution with probability density function

N (x|µ,Σ) = (2π)−D/2det(Σ)−1/2 exp
(
(x− µ)TΣ−1(x− µ)

)
,
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where µ ∈ RD and Σ a positive definite D×D matrix. St(x|µ,Σ, v) denotes

the D-variate Student-t distribution with probability density function

St(x|µ,Σ, v) =
Γ(v/2 +D/2)det(Σ)1/2

Γ(v/2)(vπ)D/2

(
1 +

1

v
(x− µ)TΣ(x− µ)

)−v/2−D/2
,

where v ∈ R+.

Finally, for a positive definite D×D matrix Σ, IW(Σ|W , v) denotes the

Inverse Wishart distribution with probability density function

IW(Σ|W , v) =
det(W )

v
2 det(Σ)

−(v+D+1)
2

2vD/2ΓD(v/2)
exp

(
−1

2
tr(WΣ−1)

)
,

where v ∈ {r : r > D − 1, r ∈ R+}.



Chapter 1

Introduction

Searching for information is a recurring problem that almost everyone has

faced at some point. Being in a library looking for a book, searching through

newspapers and magazines for an old article or searching through emails for

an old conversation with a colleague are some examples of the searching ac-

tivity. These are some of the many situations where someone; the “user”;

has some vague idea of the information he is looking for; an “information

need”; and is searching through a large number of documents, emails or ar-

ticles; “information items”; to find the most “relevant” item for his purpose.

Information Retrieval is the academic field which studies all aspects of the

information retrieval process: from the structure, analysis and indexing of

information items, to the modelling of the users’ information need and the

presentation of relevant information. The goal is to design effective infor-

mation systems to assist users in searching large collections of information

items.

1
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Although every aspect of the information retrieval process is important,

all rely on a fundamental task that every information retrieval system should

fulfil, namely ad-hoc retrieval. Ad-hoc retrieval is the task where the infor-

mation retrieval system is given a representation of the user’s information

need, a user “query”, and searches through a static collection of information

items and returns the most relevant ones. The system does not have any

prior information on which documents might be relevant and the only infor-

mation available is the user query and the static collection. The system must

also return information items ordered such that items assumed to be more

relevant to the user query are ordered first.

Image retrieval studies the problems arising in information retrieval when

users are searching for images in large image archives. Image retrieval systems

have many applications such as medical image retrieval, image and video

copyright infringement, surveillance from CCTV cameras and personal image

collections, to name a few. Moreover, image retrieval systems are often used

as subcomponents for larger multimedia retrieval systems, e.g. video retrieval

systems. Images pose several questions about the retrieval process such as

how the user’s information need should be represented and how images in

the collection should be processed, indexed and retrieved. In this thesis we

study the problem of ad-hoc image retrieval and we look into two particular

ways of representing the user’s information need, namely query by example

and semantic retrieval. In the former case we assume that users express their

information need with images and they look for “similar” images in a static

collection. In the latter case we assume that users express their information
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needs using semantic features such as semantic categories and keywords, e.g.

“tiger”, “sunset” etc. and search for images depicting the concepts or objects

described by those semantic features.

1.1 Motivation

Models of the Information Retrieval Process

As in any scientific field, information retrieval also relies on models. Models

allow researchers to express their assumptions and hypotheses about the ob-

servations in a concise mathematical way and provide guidance on designing

experiments to validate these assumptions. Models in ad-hoc information

retrieval are used to make hypothesis and express the assumptions of how

users searching through a collection of information items are categorising

them into relevant and non relevant and how information items are ranked

in order of relevance. Competing hypotheses of different models can be eval-

uated in a controlled environment and the most successful can be used for

designing information retrieval systems.

The information retrieval process is inherently uncertain since the users’

perception of relevance is not a deterministic process. Information items can

be relevant with respect to a user’s information need at different degrees and

this might change over time. A natural way to handle such uncertainties is to

consider retrieval as a stochastic process and make probabilistic statements

about the relevance of information items. Probabilistic models have played
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a fundamental role in allowing researchers to gain insights in the retrieval

process and develop practical and effective ranking and retrieval systems

(Robertson & Zaragoza 2009).

One family of probabilistic models which has been very successful in infor-

mation retrieval are Language Models (Ponte & Croft 1998, Hiemstra 2001).

More detailed discussion on language models is given later in this thesis

however for now we briefly mention the main model assumptions and char-

acteristics. Language models assume that each information item is generated

by a stochastic process which specifies the probability of specific information

bearing features to be present in the information item. The reason for us-

ing this definition will become apparent later but for making the definition

more clear we mention that in the case of text retrieval the information item

is a document and information bearing features are words or some canoni-

cal representation derived from words. In this model, a user expresses his

information need with the same information bearing features (words) and

the relevance of information items (documents) is modelled by the likelihood

that the query is generated by the same generative process as the information

item.

In contrast to what the name suggests, the assumptions made by lan-

guage models are very generic and can in fact be applied to other types of

information items. Notice that on purpose we gave a definition of the main

assumptions which is independent of the specific type of information. For im-

age retrieval information items and queries can be images. The information

bearing features are then features describing the appearance and characteris-
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tics of images. These topics will be discussed in more detail in the Chapter 2.

Several researchers have considered probabilistic models and especially lan-

guage models for image retrieval, see Westerveld et al. (2003) and Vasconcelos

& Lippman (2000) for examples. Moreover, audio and music retrieval can

be similarly expressed in the same probabilistic framework (Turnbull et al.

2008). In this thesis the main focus is the study of probabilistic models based

on the language modelling framework for image retrieval.

Probabilistic models as well as other types of models in general, are sub-

ject to unknown model parameters. This is not a drawback of the probabilis-

tic modelling framework but a modelling decision in order to allow flexibility

and interpretation. For example in language models for text retrieval the

same stochastic process is assumed for all documents. However, the model

parameters allow different instantiations of the generative process where each

of the model parameters corresponds to the probability of a word in each doc-

ument.

Uncertainty in model parameters

Unknown model parameters have to be estimated using the available infor-

mation. For probabilistic models, parameter estimation is a well studied

problem in the statistics literature. The parameters are set such that the

likelihood of the observed data under the chosen model is maximised. This

is referred to as “model fitting” or Maximum Likelihood estimation. For ad-

hoc retrieval the only available information is the user query and the static

collection and in the language modelling framework there is a model for each
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document in the collection. Hence, the document model parameters can be

estimated by maximising the likelihood of the observed document’s word

frequencies.

However, here lies another source of uncertainty since there will be many

different parameter values that will fit the observed data with different like-

lihood. Using only parameter values which result in the maximum likelihood

implicitly assumes that there is a “true” model. However, models are only

used as simplifying surrogates of more complicated processes. Despite the

philosophical aspects of the argument, in information retrieval this has prac-

tical implications. For example, what is the probability of a word that has

zero frequency in a document? Maximum likelihood suggests that is also zero

which implies that documents are not relevant with respect to user queries

containing at least one word with zero document frequency. In information

retrieval this problem has been handled by smoothing maximum likelihood

estimates by introducing small “pseudo-frequencies” for terms with zero doc-

ument frequency.

The theoretical consequence of smoothing is that a-priori it is assumed

that all terms have equal non-zero probability in a document. The observed

document frequencies are then used to update these prior beliefs resulting

in a posterior distribution. The relationships between smoothing and prior

distributions over model parameters have been a well studied topic in infor-

mation retrieval, see Zhai & Lafferty (2001) and MacKay & Bauman Peto

(1994) for examples. Smoothing however is a less studied topic for the mod-

els used for image retrieval. For example, Vasconcelos & Lippman (2000),
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Westerveld et al. (2003) Fergus et al. (2003) and Carneiro et al. (2007) use

maximum likelihood estimates for their probabilistic models. In this thesis

we study the problem of specifying prior distributions for generative proba-

bilistic models used in image retrieval and propose to go a step further from

simply using smoothed parameter estimates.

To handle the uncertainty in model parameters we have to also allow

for probabilistic statements about the parameters to be made. That is, we

need to obtain a posterior distribution over parameters that quantifies the

conditional probability of parameter values given the observed data. Then

when making predictions, such as calculating the probability of a query being

generated from the same process as an information item in the collection, we

want to marginalise this uncertainty by taking the average of all possible

model parameters weighted by their posterior probability. Zaragoza et al.

(2003) show that this can be easily done for language models for text retrieval

since the marginal predictive density has a simple analytic form. In this

thesis we show how the results in Zaragoza et al. (2003) can be directly

applied for image retrieval models based on the Bag of Terms (Zhu et al.

2002) representation.

For the image retrieval models of Vasconcelos & Lippman (2000) and

Westerveld et al. (2003) obtaining the posterior directly is not trivial. The

reason is that the generative probabilistic model for images is defined as a

mixture of Gaussian distributions (McLachlan & Peel 2000). The posterior

for mixtures does not have a closed form and thus one has to resort to nu-

merical estimation or approximations. In this thesis we study these problems
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in more detail. In particular we study how we can approximate the poste-

rior distribution and how we can obtain samples using Markov Chain Monte

Carlo (Robert & Casella 2005) which we can use to numerically estimate the

marginal predictive density. Then we apply these methods and develop image

retrieval systems for the query by example and semantic retrieval paradigms

which we evaluate in a controlled environment using real data.

1.2 Thesis Statement

In this work we study the problem of ad-hoc image retrieval using gener-

ative probabilistic models. We consider two main paradigms for image re-

trieval, query by example and query by semantic features. We propose to

handle the uncertainty in model parameters by ranking images using the

marginal predictive density instead of the query likelihood and demonstrate

the methodology using Bag of Terms (Zhu et al. 2002) and Gaussian mixture

models (Vasconcelos & Lippman 2000, Westerveld et al. 2003). For seman-

tic retrieval, we also propose the use of the marginal predictive densities of

Gaussian mixture models for developing Support Vector Machine and Naive

Bayes classifiers. Our focus is to develop algorithms that have the same com-

putational complexity as previous approaches. In order to achieve this we

consider suitable approximations when needed.

Our main claim is that handling uncertainty in this way leads to improved

retrieval performance while the resulting algorithms remain within the same

order of complexity as maximum likelihood approaches. We evaluate our
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claims using real image data and compare with previous approaches. The

methodology advocated here is very general and can be applied to any gen-

erative probabilistic model provided that an approximation or samples from

the posterior of model parameters are available.

The research outcomes of this thesis can be summarised as follows:

• We provide an extensive study of Bayesian inference methods for mix-

tures of Gaussian distributions and show how these methods can be

applied for image retrieval systems.

• We evaluate the ranking function of Zaragoza et al. (2003) for image

retrieval with the Bag of Terms representation.

• We generalise the models of Westerveld et al. (2003) and Vasconcelos &

Lippman (2000) for ranking images using the predictive densities. Our

proposed approach has the same order of complexity whilst achieving

significantly better performance.

• A query modelling approach using Gaussian mixture models and rank-

ing using a kernel function between the predictive densities of query

and collection images is also studied. This methodology also allows to

construct Support Vector Machine classifiers for semantic image clas-

sification.

• We develop a hierarchical Variational EM algorithm for efficiently es-

timating the approximate posteriors of Gaussian mixtures modelling

images in the same semantic category.
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• We generalise the methodology of Carneiro et al. (2007) for Naive Bayes

classification using the predictive class conditional densities.

1.3 Thesis Outline

The remainder of the thesis is organised as follows:

• In Chapter 2 we discuss probabilistic models of information retrieval

with emphasis on language models. We also discuss image retrieval

models for query by example and semantic features and close the chap-

ter with a discussion on the evaluation of information retrieval systems.

• In Chapter 3 we discuss in detail Gaussian mixture models and param-

eter estimation methods using MCMC and variational approximation.

We empirically evaluate novel MCMC samplers in terms of efficiency

and computational complexity. The discussion and results from this

chapter have also been presented in Stathopoulos & Girolami (2010)

and Stathopoulos & Girolami (2011).

• In Chapter 4 we develop and evaluate image retrieval systems for query

by example using Bag of Terms and Gaussian mixture models. Part of

this chapter has been presented in Stathopoulos & Jose (2011).

• In Chapter 5 we develop and evaluate semantic image retrieval systems

with Naive Bayes and Support Vector Machines classifiers. Part of this

chapter has been presented in Stathopoulos & Jose (2009)
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• Finally Chapter 6 concludes this thesis and discuss future work.



Chapter 2

Background and Related Work

2.1 Information Retrieval

2.1.1 Vector Space Models

One of the first models for information retrieval was based on the notion of

similarity (Luhn 1957). Luhn (1957) proposed that documents and queries

should be represented in the same way and then a similarity function for

this representation should be used to rank documents in decreasing order

of similarity with respect to a query. The simplest instantiation of this

model represents documents and queries as vectors d = (d1, . . . , dT )T and

q = (q1, . . . , qT )T respectively, where each of the di and qi elements are asso-

ciated with the ith index term. Index terms can be words, keywords or some

canonical form of words obtained by stemming (Manning et al. 2008, Chap.

2) for example. Using this representation a simple similarity measure is the

12
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vector inner product

sim(q,d) =
T∑

i=1

qi × di.

The elements of the vectors can be binary indicating the presence or absence

of a term in a document or query, in which case the inner product results

in the number of common terms. Alternatively, the vector elements can be

some real valued weight indicating the importance of each term for documents

and queries and thus the inner product will favour more significant terms.

In either case, the inner product similarity function tends to favour larger

documents since they will simply have more terms entering the sum. The

solution is to normalise the similarity function with the document and query

lengths respectively to give

sim(q,d) =

∑T
i=1 qi × di√∑T

i=1 q
2
i ×

√∑T
i=1 d

2
i

,

in which case the similarity function returns the cosine of the angle between

the document and query vectors (van Rijsbergen 1979).

The main question is then how to obtain weights for documents and

queries indicating the importance of terms. This question has been the core

one addressed by the Information Retrieval community for several decades

and there have been many different weighting algorithms. A complete ac-

count of this research is out of the scope of this thesis and thus we refer the

reader to Salton & Buckley (1988) and references therein for a more thor-

ough review. We describe however one of the most fundamental weighting

algorithms for the vector space model that has also been used for modern
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image retrieval systems.

The TF-IDF weighting algorithm is based on the observation that terms

which appear more frequently in a document will be more significant in de-

termining a document’s relevance with respect to a query with these terms

(Salton & Buckley 1988). Its name stems from its two components, namely

Term Frequency and Inverse Document Frequency. On the other hand, terms

appearing in almost all documents in the collection will not be discriminating

between different documents (Sparck-Jones 1972). The TF-IDF weight bal-

ances these two effects by combining the frequency of a term in a document

(TF) with the frequency of the term in the collection (IDF). The weights for

documents and queries using the TF-IDF weighing scheme are

di = nd,i log
N

dfi
, qi = nq,i log

N

dfi
,

where nd,i denotes the frequency of the ith term in document d, dfi denotes

the number of documents in the collection with at least one occurrence of

the ith term and N is the number of documents in the collection.

Despite the simplicity of the vector space model, it has been proven very

successful in practice and particularly suitable for large scale collections.

The inner product similarity function depends only on the terms matching

between the query and the document and thus it naturally exploits the sparse

nature of the representation. However it does not provide any theoretical

guidance on how to estimate the term weights.
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2.1.2 Probabilistic Retrieval Models

Instead of relying on ad-hoc methods and empirical observations in order to

develop weighting functions for the vector space model, probabilistic retrieval

models treat the information retrieval problem as a special case of a classifi-

cation problem. For a particular query, the collection is divided in two parts,

relevant and non relevant documents. Ranking documents by their probabil-

ity of being relevant guarantees that the ranking will be optimal. Estimating

this probability is not trivial however and several different models have been

proposed.

The probabilistic models of Robertson & Jones (1976) and several versions

of it, as well as the BM25 of Robertson & Walker (1994) and its predecessor,

the 2-Poisson model (Harter 1975) can be seen as instantiations of a more

general probabilistic framework that models relevance with a binary variable

(Robertson & Zaragoza 2009). We will not describe these models in full detail

as they are not used further in this thesis. However we will briefly discuss

the general framework with its main assumptions in order to highlight the

difficulties in generalising it for different types of media.

Encoding relevance of documents with respect to a particular query q by

a binary variable rq ∈ {0, 1} with 1 denoting relevance and 0 non relevance,

the quantity of interest is

p(rq = 1|d) ∝q
p(rq = 1|d)

p(rq = 0|d)
=
p(d|rq = 1)p(rq = 1)

p(d|rq = 0)p(rq = 0)
∝q

p(d|rq = 1)

p(d|rq = 0)
, (2.1)

where ∝q is used to denote that two functions are rank equivalent with re-
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spect to the query q, i.e. they produce the same ranking of documents.

Assuming that documents are represented by unordered sets of features d =

{d1, . . . , dT} and that individual features di are conditionally independent

such that p(d|rq) =
∏T

i=1 p(di|rq), Equation (2.1) can be written as:

p(d|rq = 1)

p(d|rq = 0)
≈

T∏

i=1

p(di|rq = 1)

p(di|rq = 0)
∝q

T∑

i=1

log
p(di|rq = 1)

p(di|rq = 0)
. (2.2)

From Equation 2.2, we can see that the ranking function is the sum of the

log odds of document features being relevant. So far the only assumption

restricting the nature of the document representation is that documents are

unordered sets of features with individual features being conditionally in-

dependent. In the context of image retrieval, one can imagine that the di

features are multidimensional vectors describing local patches of an image.

The independence assumption might be more unrealistic in the domain of

images, however it is commonly used in the Computer Vision literature to

obtain tractable models for object recognition.

Once the document representation is known then one has to specify the

distributional assumptions for the conditionals p(di|rq = 1) and p(di|rq = 0).

The main problem that arises from this formulation is that the conditionals

will be modelled by some parametric distribution or density. For example

Bernouli for the model of Robertson & Jones (1976) and a mixture of two

Poisson distributions for the BM25 (Robertson & Walker 1994) and 2-Poisson

models (Harter 1975). For estimating the parameters however we cannot em-

ploy the standard maximum likelihood estimators since we are in the peculiar

situation where we have no observed data. The only observed information is
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that provided by the query which for ad-hoc retrieval is usually very limited

for maximum likelihood estimation purposes. The common approach is to

make approximations and further simplifying but reasonable assumptions.

We will discuss the model of Robertson & Jones (1976) in order to clarify

this point however for the BM25 model we refer the reader to Robertson &

Walker (1994) and Robertson & Zaragoza (2009).

Binary Independence Model

Robertson & Jones (1976) assume that document features di are binary, mod-

elling the absence or presence of the ith index term in a document. They then

employ a Bernoulli model for the conditionals p(di|rq = 1) and p(di|rq = 0)

with parameters πi,rq=1 and πi,rq=0 respectively. The first assumption that is

common in the Robertson-SparkJones and BM25 models is that terms which

are not in the query contribute a constant term in Equation (2.2) and thus

they can be neglected. This assumption is usually made in order to obtain

a ranking function that can be efficiently implemented with an inverted in-

dex data structure. By separating terms not in the query, rearranging and

removing any remaining constant terms, Equation (2.2) can be written

T∑

i=1

log
p(di|rq = 1)

p(di|rq = 0)
≈

∑

{i:di>0∧qi>0}

log
p(di|rq = 1)p(0|rq = 0)

p(di|rq = 0)p(0|rq = 1)

=
∑

{i:di>0∧qi>0}

log
πi,rq=1(1− πi,rq=0)

πi,rq=0(1− πi,rq=1)
,

where in the last equation we have introduced the parameters for the Bernoulli

distributions.
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Given a random sample of fully judged documents with respect to the

query then the standard maximum likelihood estimate for the two Bernoulli

parameters can be used. To avoid problems related to unobserved terms a

smoothed estimate is used where the pseudo frequency term of 0.5 is intro-

duced. The final Robertson-Sparck Jones function is then

∑

{i:di>0∧qi>0}

log
(ai + 0.5)(N −R− ni + ai + 0.5)

(ni − ai + 0.5)(R− ai + 0.5)
, (2.3)

where N is the size of the judged document sample, ni is the number of

judged documents with term i, R is the number of relevant judged docu-

ments and ai is the number of judged relevant documents with term i. When

there are relevant judgments these quantities can be estimated directly. How-

ever for ad-hoc retrieval where there is no relevance information and further

assumptions have to be made. For large document collections most of the

documents will not be relevant with respect to the query. One limiting case

is to consider that all documents will not be relevant thus N will be the size

of the collection and ni the number of documents in the collection with term

i. Similarly, very few documents will be relevant and the limiting case is

when R and ai are both 0. The resulting formula is then

∑

{i:di>0∧qi>0}

log
N − ni + 0.5

ni + 0.5
, (2.4)

which resembles the IDF term used in the TF-IDF weighting scheme.
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2.1.3 Unigram Language Models

Language models are an alternative probabilistic framework for information

retrieval. Instead of treating the retrieval process as a classification problem

a generative model for documents is employed. The documents can then be

ranked using the query likelihood, that is the probability that the query has

been generated by the same language model as the document (Ponte & Croft

1998).

Each document in the collection is assumed to be a random sample from a

stochastic process. The modelling assumptions of the generative process are

specified by a generative probabilistic model p(d|θd) governed by unknown

parameters θd. Notice that parameters are indexed by the document in or-

der to make explicit the fact that each document is generated by a different

process. The simplest form of this model is to assume that queries and docu-

ments are unordered sets of features represented by vectors, q = (q1, . . . , qT )T

and d = (d1 . . . , dT )T respectively, and that features are conditionally inde-

pendent such that p(d|θd) =
∏T

i=1 p(di|θd). This is also referred as a unigram

language model. The unknown parameters can then be estimated by max-

imising the likelihood (ML) using the observed document term frequencies

θ̂
(ML)

d = arg max
θd

p(d|θd)

or by the maximising the posterior (MAP) assuming a suitable prior distri-

bution p(θd).

θ̂
(MAP )

d = arg max
θd

p(d|θd)p(θd) (2.5)
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Many of the smoothing procedures developed for the unigram language mod-

els in the information retrieval literature are equivalent to a MAP estimate,

e.g. Zaragoza et al. (2003), Zhai & Lafferty (2001).

Notice that for the unigram model ordering is not important since doc-

ument features are considered conditionally independent. Moreover, this

formulation is very general and it does not make any particular assumptions

about the nature of the document’s features or the actual generative process

for the documents apart from the assumption that features are conditionally

independent. For example, in the image retrieval context the document fea-

tures can be multidimensional vectors and a suitable generative process for

such data can be specified.

Once the unknown parameters have been estimated, documents can be

ranked with respect to a user query using the following general ranking func-

tion

p(d|q) =
p(q|d)p(d)

p(q)
∝q p(q|d)p(d)

where p(d) is a document prior. In this thesis we assume documents have

equal prior probabilities but Miller et al. (1999) considers several alternatives.

The quantity p(q|d) is the probability of the query conditioned on the the

observed document and its actual form is:

p(q|d) =

∫
p(q|θd)p(θd|d)dθd, (2.6)

where the model parameters are marginalised using the posterior p(θd|d).

Equation (2.6) is also known as the predictive distribution.
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The integral is commonly approximated by using a smoothed estimate

of the model parameters such that p(q|d) ≈ p(q|θ̂d). This is the approach

followed by many instantiations of the language modelling framework for

document retrieval such as (Ponte & Croft 1998, Hiemstra 2001, Berger &

Lafferty 1999, Miller et al. 1999). In some cases (Zaragoza et al. 2003, Zhai

& Lafferty 2001) the smoothing estimation procedure is equivalent to a MAP

estimate and thus the approximation can be justified by the asymptotic prop-

erties of the posterior.

When there is a large number of data, the likelihood term in Equation

(2.5) will overwhelm the prior and thus the posterior will be sharply peaked

with all its mass concentrated in a small region around the maximum. There-

fore a MAP estimate is a reasonable approximation of the integral above.

However, in document retrieval the number of parameters is usually so large

(equal to the terms in the vocabulary) that any reasonable sized document

will not contain enough observations. The problem is further amplified when

document features are high dimensional vectors as in the image retrieval

context.

Zaragoza et al. (2003) show that for unigram models of term frequencies

both the posterior and the predictive distribution can be obtained analyti-

cally and therefore there is no need for the MAP estimate approximation.

Moreover, the predictive density is analytic for many popular smoothing

methods which can be expressed using the Dirichlet distribution. Since most

of this thesis is concerned with the application of this framework in the con-

text of image retrieval we describe these models in more detail.
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Language models for ad-hoc text retrieval

For text documents, the document features di correspond to the frequency

of the ith index term in the document (Ponte & Croft 1998). For this repre-

sentation the most common model in the literature is that of a Multinomial1

with distribution:

M(d|θd) =
(
∑T

i=1 di)!∏T
i=1 di!

T∏

i=1

θdid,i,

where each θd,i parameter models the probability of the ith index term in the

document. The Maximum Likelihood estimate is θ̂
(ML)
d,i = di/

∑
i′ di′ (Bishop

2006, Chap. 2). The parametric form of the prior distribution is usually

chosen such that it simplifies the derivations although it should be flexible

enough in order not to introduce bias. For the Multinomial models such a

prior is the Dirichlet with distribution:

D(θd|a) =
Γ(
∑T

i=1 ai)∏T
i=1 Γ(ai)

T∏

i=1

θ
ai−1

d,i ,

where ai are the prior hyper-parameters (Gelman et al. 2003) and Γ(·) is

the Gamma function. Different smoothing methods can be recovered by

setting these parameters appropriately. For example setting ai = 2 the

Laplace smoothing is recovered while setting ai to the average frequency

of the ith index term in the collection the MAP estimate is equivalent to

a Bayes-smoothed estimate. See Zaragoza et al. (2003) and Zhai & Laf-

ferty (2001) for a discussion and empirical evaluation of different smooth-

ing methods. Finally, the general form of the MAP estimate is θ̂
(MAP )
d,i =

1The Multinomial model also relaxes the conditional independence assumption with a
weaker assumption, that of exchangeability.
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(di + ai − 1)/
∑T

i′=1(di′ + ai′ − 1) and the analytical form of the posterior is

also a Dirichelt D(θd|d+ a) (Gelman et al. 2003).

Using a MAP approximation for the predictive distribution the resulting

ranking function is:

log p(q|θ̂(MAP )

d ) ∝q
∑

{i:qi>0∧di>0}

qi log

(
di

ai − 1
+ 1

)

− log

(∑

i′

di′ + ai′ − 1

) ∑

{i:qi>0}

qi. (2.7)

Notice that the ranking function depends only on terms common in the doc-

ument and the query and thus it can be efficiently implemented. Moreover,

the term (
∑

i′ di′ + ai′ − 1) is a document dependent constant and can be

calculated during indexing. In contrast to the Binary Independence model

discussed in the previous section there is no need to make additional approx-

imations in order to arrive in this convenient form.

Finally, using the explicit form of the posterior the predictive distribution

can be analytically evaluated (Zaragoza et al. 2003) to give:

p(q|d) =
(
∑

i qi)!∏
i qi!

Γ (
∑

i di + ai)

Γ (
∑

i qi + di + ai)

∏

i

Γ (qi + di + ai)

Γ (di + ai)
, (2.8)

which can again be simplified to a form that is convenient for implementation
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using an inverted index

log p(q|d) ∝q
∑

{i:qi>0∧di>0}

qi∑

g=1

log

(
1 +

di
ai + g − 1

)

−
∑
i′ qi′∑

j=1

log

(∑

i′

di′ + ai′ + j − 1

)
. (2.9)

Equations (2.7) and (2.9) will be re-introduced in Chapter 4 where they

will be applied for image retrieval using the Bag-of-Terms representation.

2.2 Image Retrieval

2.2.1 Similarity Models

Image retrieval models have also been based on the notion of similarity or

distance and they have many similarities with the vector space model. One

of the main difficulties however is how to represent user queries. For text

documents the user query can be naturally expressed with keywords and

thus a document and query representation with features derived directly

from words or terms seems natural. For images, such representation is not

possible unless the image collection is manually curated and indexed. One

way to resolve this problem is to allow the user to express queries using

images. This is often referred to as query by example in the content based

image retrieval literature.

Images are represented by vectors in a high dimensional feature space

and a similarity or distance function is used for ranking and retrieval. The
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elements of an image vector correspond to features describing visual and

structural characteristics of an image such as colour, texture and shape. A

large number of research papers has focussed on developing and evaluating

different feature types and similarity functions and an extensive review can

be found in Smeulders et al. (2000) and Deselaers et al. (2008). Moreover

the Multimedia Content Descriptor Interface, MPEG-7, (Salembier & Sikora

2002) is an ISO standard for describing the content of multimedia objects

such as videos and images. It specifies several different image descriptors and

corresponding similarity or distance functions. Although the standard does

not specify how content based image retrieval should be carried out, it serves

as the basic building block for multimedia retrieval systems (Lux 2009).

The main assumption of these approaches is that the similarity function

and the image features correspond to the user’s perception of similarity for a

particular task. For example Oliva & Torralba (2001) develop a feature rep-

resentation which projects image vectors close together in a high dimensional

space if they share membership in semantic categories. However, many au-

thors have indicated that no single type of feature is suitable for all retrieval

tasks. The solution adopted in practice is to either allow the user to specify

the type of features and similarity function (Lux 2009) or implement algo-

rithms to automatically combine information from different types of features

(Donald & Smeaton 2005).

Although the are clear similarities between early content based image re-

trieval systems and the vector space model, their implementation is radically

different. The reason for this is that unlike documents which have a natural



CHAPTER 2. BACKGROUND AND RELATED WORK 26

sparse representation, vectors representing images are composed by dense

continuous features. Data structures such as K-D trees and R* trees are not

appropriate for very high dimensional data such as those often encountered

in image retrieval as their performance deteriorates for data with more than

10 dimensions Weber et al. (1998). Indexing methods relying on hashing

(Andoni & Indyk 2006) are more efficient for such data although they are

approximate in nature.

2.2.2 Bag of Terms Models

Bag of terms models are considered the state of the art approach for large

scale image retrieval systems (Zhu et al. 2002). The key to their success is

that they rely on a sparse representation which can be efficiently implemented

with an inverted index data structure and is similar to the bag of words

representation used in text information retrieval. Moreover, bag of terms

models allow any of the classical information retrieval algorithms discussed

in the previous section to be applied directly on content based image retrieval.

For example Philbin et al. (2007) and Sivic & Zisserman (2003) use the TF-

IDF weighting algorithm and the Euclidean distance to rank image vectors.

The indexing process for bag of terms models involves four distinct stages

which are briefly discussed in the next paragraphs. Namely, region detection,

visual description, code block generation and quantisation.
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Region detection

In the region detection stage images are subdivided into local regions where

each region depicts parts of the main concepts or objects present. A robust

detection algorithm should satisfy two properties, accuracy and repeatabil-

ity, i.e. given two images depicting the same scene under different viewing

conditions the algorithm should detect the same regions at the corresponding

image locations (Mikolajczyk, Tuytelaars, Schmid, Zisserman, Matas, Schaf-

falitzky, Kadir & Van Gool 2005). This implies that the detection algorithm

should be invariant to affine transformations and to scale changes, where by

scale changes we refer to the appearance of objects at different distances from

the camera.

The two most frequently used approaches for region detection in bag of

terms models are image segmentation algorithms such as Normalised Cuts

(Shi & Malik 1997) and affine region detectors (Mikolajczyk, Tuytelaars,

Schmid, Zisserman, Matas, Schaffalitzky, Kadir & Van Gool 2005). Affine

region detectors are mostly based on edge and corner detection and they

extract regions around points in the image where there is a significant change

of the signal in orthogonal directions (Harris & Stephens 1988). Therefore,

although these detectors can be used to very accurately model shape and

texture, they cannot detect regions of homogenous appearance. On the other

hand, segmentation algorithms segment images into homogenous regions but

they are very sensitive to scale, illumination and perspective changes.

A simple yet very effective alternative which has been shown to perform

better than affine region detectors (Nowak et al. 2006, Tuytelaars 2010) is to
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segment images using a regular grid. In that way both object parts and ho-

mogenous regions can be captured. This is also the approach that we follow

in Chapters 4 and 5. In order to achieve scale invariance several grids of dif-

ferent resolution can be used. For example, in Koniusz & Mikolajczyk (2010)

images at different scales are used in order to introduce scale invariance using

a segmentation algorithm.

Visual description

Once local regions have been extracted the next stage of the indexing process

is to compute a feature descriptor from the pixel intensities within the image

regions. For this purpose several types of features can be used such as colour

or edge histograms or even the raw pixel values (Nowak et al. 2006). The

Scale Invariant Feature Transform (SIFT) descriptor extracts a histogram

with 128 bins of edge orientations and sifts the histogram such that the most

dominant orientation is at the first bin in order to achieve rotation invariance

(Lowe 2004). The standard SIFT descriptors cannot model the appearance

of homogeneous regions since they do not capture colour information and rely

on the presence of strong edges. Several extensions to the SIFT descriptors

have been proposed and evaluated in (van de Sande et al. 2010).

Obdrzálek & Matas (2003) propose to exploit the compression proper-

ties of the Discrete Cosine Transform (DCT) in order to obtain a low di-

mensional representation of image regions. The DCT is even more effective

when applied on image regions in YUV colour space since higher compression

rates can be obtained for the chrominance channels, (Hamilton 1992). DCT
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coefficients have also been used for probabilistic image retrieval models by

Vasconcelos & Lippman (2000) and Westerveld et al. (2003) as well for im-

age classification in Carneiro et al. (2007). We also chose to use this feature

representation for our experiments in Chapter 4 and 5.

Code block generation

In the code block generation stage the feature descriptors obtained from all

images in the collection are clustered using the K-means algorithm or other

variants into a large number of clusters. The cluster means are assigned a

unique identifier and are treated similarly to terms in the bag of words model

for information retrieval. The set of all cluster means with their unique

identifiers is usually referred as the visual vocabulary (Zhu et al. 2002). The

code block generation stage is the most computationally demanding task of

the indexing process. The reason is that a large number of feature descriptors,

usually in the order of millions, need to be clustered into a large number of

clusters, usually in the order of thousands. At each iteration of the K-Means

algorithm each feature descriptor has to be compared with all current cluster

means. As discussed previously, data structures such K-D trees cannot be

used in this scenario since their performance can be even worst than a linear

scan (Weber et al. 1998).

A solution that has been proposed by several authors (Nister & Stewenius

2006, Philbin et al. 2007) is to apply K-Means in a hierarchical fashion. That

is, the K-means algorithm is applied initially to all feature descriptors using

a small number of clusters, e.g. 2. Then a separate K-Means process can
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be applied to the items of each of the clusters obtained at the previous step.

The process continues recursively until the desired number of clusters has

been reached or when a cluster contains a predefined number of items. This

not only allows for an efficient parallel implementation but also significantly

simplifies the quantisation stage. The problem with this approach however

is that quantisation errors accumulate at each step and thus the clustering

obtained is an approximation.

Quantisation

Images are quantised by finding for each image feature descriptor its closest,

in the Euclidean sense, cluster mean from the visual vocabulary. Then the

feature descriptor can be replaced by the unique identifier corresponding to

that cluster mean. Thus images have the same representation as text docu-

ments with the unique visual term identifiers playing the role of words. If the

hierarchical K-Means approach has been used for the code block generation

then the quantisation can be efficiently implemented using a tree data struc-

ture (Philbin et al. 2007). For a tree with a branching factor K and depth L

only K × L distance calculations are required for finding the closest cluster

mean for an image feature descriptor. In comparison, a simple linear scan

would require KL distance calculations. This is important not only because

it allows the algorithms to scale to larger collections but also because the

quantisation process has to be applied for the user’s query image.
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2.2.3 Probabilistic Models

Bag of terms models do not provide any guidance on designing weighting

algorithms or similarity functions. The weighting algorithms developed by

the information retrieval community make assumptions which are tailored

for text documents and thus they are not necessarily valid for bag of terms

models. For example the TF-IDF weighting algorithm assumes that terms

in the collection follow a power law distribution (Manning et al. 2008, Chap.

5). However, the K-means algorithm clusters feature descriptors such that

clusters have a uniform distribution over the entire collection. Moreover, the

quantisation errors introduced by the K-means clustering can significantly

degrade the discriminative power of feature descriptors (Boiman et al. 2008)

and thus negatively affect retrieval performance.

Vasconcelos & Lippman (2000) and Westerveld et al. (2003) have pro-

posed a generative probabilistic model for image retrieval that has many

similarities with the language modelling framework. However, instead of re-

lying on a quantisation of the feature space in order to generate discrete

image features they directly model the density of feature descriptors in each

image. Following the notation introduced in Section 2.1.3 the generative

process for images is modelled using a finite Gaussian mixture model:

p(I|θI) =
∏

x∈I

K∑

k=1

πkN (x|µk,Σk), (2.10)

where an image is assumed to be an unordered set of feature vectors repre-

sented by a matrix I with columns the vectors x1, . . .xM where each vector
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is a feature descriptor extracted from a local image region with x ∈ RD and

D the dimensionality of the feature descriptor. N (x|µ,Σ) is the multivari-

ate Gaussian distribution with mean µ and covariance Σ. The parameters

θI = {πk,µk,Σk : k ∈ {1, . . . , K}} are estimated by maximising the likeli-

hood (2.10) using the Expectation Maximisation (EM) algorithm which we

discuss in detail in Chapter 3. Given a new query image Q, images in the

collection can then be ranked using the query likelihood p(Q|θ̂(ML)

I ), i.e. the

probability that the query image has been generated by the same process as

the image I.

This approach does not involve smoothing the model parameters and thus

it is subject to over fitting. In information retrieval smoothing parameter es-

timates by encoding collection statistics using a prior distribution has played

a core role in the development and theoretical understanding of the retrieval

process. This can be easily achieved for this model by adopting a conjugate

prior and use a variation of the EM algorithm in order to obtain a smoothed

MAP estimate.

In Section 2.1.3 we have seen that ML and MAP estimates give us only

an approximation of the ranking function since the quantity that we want to

estimate is the predictive density (Zaragoza et al. 2003):

p(Q|I) =

∫
p(Q|θ)p(θ|I)dθ.

From the discussion in Section 2.1.3 we can see that the predictive density

can be easily obtained for bag of terms models where the image descriptors

have been discretised. In Chapter 4 we give a practical implementation
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and evaluate this approach. However, for the generative model in Equation

2.10 the posterior p(θ|I) is not analytically tractable and thus neither is the

predictive density. In Chapter 3 we study two approaches for this problem.

One is to obtain samples from the posterior using Markov Chain Monte Carlo

(MCMC) and use them in order to numerically estimate the integral for the

predictive density. The second approach is to approximate the posterior in

such a way that analytical results are possible. Finally, in Chapter 4 we

discuss how these methods can be applied for image retrieval and present a

practical implementation which we evaluate on a real image collection.

2.2.4 Semantic Image Retrieval Models

The practical applicability of the query by example paradigm for ad-hoc

interactive retrieval is limited due to the fact that users often find it difficult

to express their information need using image queries. A more natural way for

users is to use keywords or terms which convey directly the semantics of their

information need. However, this requires that the image collection is indexed

using semantic features such as keywords. In order to automate the process of

indexing, classification models have been applied in order to categorise images

into semantic categories which can then be used for semantic retrieval.

The representation induced by the bag of terms models have inspired

researchers to view the image classification problem as a cross language re-

trieval problem. That is the user express his query using one language,

keywords, and the system retrieves images which are described by visual

terms. Duygulu et al. (2002) have applied algorithms from machine transla-
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tion in order to estimate the joint probability of keywords and visual terms.

Jeon et al. (2003) has applied the cross lingual language model of Lavrenko

et al. (2002) while Lavrenko et al. (2003) has generalised this methodology

to directly model high dimensional continuous feature descriptors without

resorting to quantisation.

Classification models such as those applied for document categorisation

(Sebastiani 2002) have also been applied for image classification. Csurka et al.

(2004) have experimented with Naive Bayes and Support Vector Machines

(SVM) classifiers using the bag of terms representation. In order to further

motivate our research we have to discuss the Naive Bayes classifier in more

detail.

Naive Bayes classifiers

The Naive Bayes classifier is similar to the probabilistic retrieval model dis-

cussed in Section 2.1.2 in that class membership is encoded with a binary

variable. Using a random variable wc ∈ {0, 1} to denote membership in class

wc, the Naive Bayes classifier is obtained by the application of Bayes rule

for inverting the probability of class membership conditioned on an observed

query image Q as

p(wc|Q) =
p(Q|wc)p(wc)∑
wi
p(Q|wc)p(wc)

, (2.11)

where p(wc) is the prior distribution of classes which for now we assume to

be uniform. The main focus is then sifted to the class conditional density

p(Q|wc) for which we must specify a generative probabilistic model for images

of the class wc. This is the reason why the Naive Bayes classifier is also
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referred as a generative classifier (Ng & Jordan 2001). Again the exact form

of the class conditional density can be written as

p(Q|wc) =

∫
p(Q|θ)p(θ|wc)dθ,

where the posterior p(θ|wc) is in fact conditioned on images in a training

collection with class wc. Similar to the discussion in Section 2.1.3 approxi-

mations of the integral using point estimates, such as ML and MAP, can be

justified by the asymptotic properties of the posterior. Thus the conditional

density can be rewritten as p(Q|θ̂(MAP )

wc ) where θ̂
(MAP )

wc is a MAP estimate

of the generative model parameters obtained by maximisation of the joint

likelihood using a training set of images with class wc.

Csurka et al. (2004) use the bag of terms representation and the class

conditional densities are modelled by a Multinomial distribution. To obtain

a smoothed estimate they use a Laplace smoothing which corresponds to a

Dirichlet prior with parameters set to 2. Fergus et al. (2003) use a generative

model for jointly modelling the appearance, location and scale of SIFT local

feature descriptors. Their model also includes latent parameters thus the EM

algorithm is employed to obtain a ML estimate. Carneiro et al. (2007) use

a Gaussian mixture model for the class conditional densities and apply the

hierarchical EM algorithm of Vasconcelos & Lippman (1998) to efficiently

estimate the model parameters.

Again we can see that ML and MAP estimates provide only an approx-

imation. In Chapter 5 we show how we can estimate the predictive class

conditional densities for bag of terms and Gaussian mixture models using
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the methods discussed in Chapter 3. Moreover, we generalise the hierarchi-

cal estimation algorithm of Vasconcelos & Lippman (1998) in order to allow

for an efficient parallel implementation.

2.3 Other approaches

In this section we briefly discuss other approaches for the image retrieval

problem which are not directly related with the methodology presented in

this thesis but have been influential in the image retrieval literature.

Yavlinsky et al. (2005) also approaches image retrieval as a classification

problem and indexes images by calculating the conditional probabilities of

keywords given a query image p(wc|Q). By using Bayes’ theorem the condi-

tional probability is again written as in Eq. (2.11) resulting in a Naive Bayes

classifier. For the class conditional probabilities p(Q|wc) a non-parametric

kernel density estimator is employed using a vector representation of images.

That is, an image is represented as a high dimensional feature vector by ei-

ther concatenating region feature descriptors or by extracting a global feature

descriptor, see Yavlinsky et al. (2005) for more details. The kernel density

estimator takes the form

p(Q|wc) =
1

|Tc|
∑

Ic∈Tc

N (Q|Ic, σI),

where Tc is the set of all images in the training collection depicting the key-

word wc, I is the identity matrix and σ is a scale parameter. For large
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training data the kernel density estimator becomes very expensive to com-

pute and we can see the approach proposed in Chapter 5 as a simplification

where the class conditional densities are estimated using a semi-parametric

Gaussian mixture model.

The methodology proposed by Magalhães & Rüger (2006) and Magalhães

& Rüger (2010) is more similar to the bag of terms models where instead of a

K-means quantisation a “soft clustering” of feature descriptors is performed

using Gaussian mixture models to create the visual vocabulary. For pa-

rameter estimation a regularisation term based on the Minimum Description

Length (MD) criterion is introduced in the EM algorithm that penalises mod-

els with many parameters, i.e. many mixture components. In contrast to the

Naive Bayes approach followed by Csurka et al. (2004) and Yavlinsky et al.

(2005) a discriminative logistic regression classifier is employed to directly

model the probability of class membership as

p(wc|Q) =
1

1 + e−z
, z =

|Q|∑

i=1

K∑

k=1

βc,i,kqk(xi) + βc,0,

where βc,i,k are class specific regression parameters for keyword wc estimated

by maximum likelihood approaches using the Limited BFGS method and

qk(xi) is the probability of the kth term in the visual vocabulary given a

corresponding feature descriptor xi of the query image. This approach also

diverges from the classical bag of terms methodology since a distinct visual

vocabulary is estimated for different image regions and type of feature while

it also assumes that the image representation results in the same number

of feature descriptors for each image. In Chapter 5 we also use a discrim-



CHAPTER 2. BACKGROUND AND RELATED WORK 38

inative classifier based on Support Vector Machines but instead of using a

visual vocabulary we utilise a kernel function between densities of feature

descriptors in images. In that way we allow images to have different number

of feature descriptors and thus our methodology is also applicable to SIFT

type descriptors.

An alternative approach which has been proposed by many authors (Blei

& Jordan 2003, Jeon et al. 2003, Lavrenko et al. 2003, Feng et al. 2004) is to

treat the semantic retrieval problem as a cross lingual retrieval problem and

directly model the joint probability of keywords and image features. Jeon

et al. (2003) use a bag of terms representation and model the joint distri-

bution between keywords and visual terms by introducing latent variables z

indexing images in the training set and marginalising to get

P (wq,Q) =
N∑

z=1

P (z)
∏

w∈wq

P (w|z)
∏

x∈Q

P (x|z), (2.12)

where N is the number of images in the collection and P (z) is the probability

of the image indexed by z in the collection, which is assumed to be uniform.

P (w|z) and P (x|z) are the probabilities of the word w and the visual term x

to appear in the image indexed by z respectively. In Jeon et al. (2003) both

terms are assumed to be independent Bernoulli distributions and a smoothed

estimate is obtained by interpolating between a maximum likelihood and a

collection statistic, e.g. P (x|z) = (1−bz) count(x,z)|z| +bz
count(x,T )
|T | . |T | is the total

number visual terms in the collection while |z| is the number of visual terms

in the image indexed by z. count(x, z) and count(x, T ) denote the frequency

of visual term x in the image indexed by z and in the collection respectively.
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The interpolation parameters bz control the degree of smoothing and in Jeon

et al. (2003) are estimated using cross validation.

Lavrenko et al. (2003) proposes the Continuous Relevance Model (CRM)

where the feature space is not quantised into visual terms, rather continu-

ous variables are used to represent the visual features of images. The dif-

ference of the CRM with the model introduced in Jeon et al. (2003) lies

in the estimation of the P (x|z) by a kernel density estimator of the form

P (x|z) = 1
|Iz |
∑
xz∈Iz N (x|xz,Σ), and that P (w|z) is assumed to be a Multi-

nomial distribution where a MAP estimate is obtained using a Dirichlet prior.

Finally, Feng et al. (2004) uses the same kernel density estimator for visual

features but replaces the Multinomial distribution with a Bernoulli where

MAP estimates are obtained by using a Beta prior.

In the models of Jeon et al. (2003) ,Lavrenko et al. (2003) and Feng et al.

(2004) the latent variables z are simply indexing images in the collection and

thus any estimates are based on averages over the whole image collection.

An other popular alternative in probabilistic retrieval models is to assume

a latent factor, or topic, representation and model each document or image

as a mixture of these factors (Hofmann 1999). An important latent space

model, developed for discrete data collections like documents and applied in

Information Retrieval, is Latent Dirichlet Allocation (LDA), introduced in

Blei et al. (2003). Similar to Probabilistic Latent Semantic Analysis (PLSA)

(Hofmann 1999), LDA considers images, or documents, as mixtures of topics

where topics are distributions over the visual term (or words) vocabulary.

However, instead of introducing a latent variable for each observation it treats
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the mixture probabilities of each image as a K-dimensional latent variable

drawn from a parametric distribution whose parameters have to be estimated.

In this way, the number of parameters that have to be estimated is reduced

thus avoiding the over-fitting problems associated with PLSA.

α θ z x

β

N

F

Figure 2.1: The graphical model corresponding to Latent Dirichlet Alloca-
tion. Shaded nodes correspond to observed variables and plates represent
dimension

The graphical model of LDA is shown in Figure 2.1 and the joint distri-

bution factorizes as:

p(θ, z, I|α, β) = p(θ|α)
F∏

f=1

p(zf |θ)p(xf |zf , β), (2.13)

where p(θ|α) is a K-dimensional Dirichlet distribution with parameters α,

p(zf |θ) is a K-dimensional Multinomial distribution and p(xf |zf , β) is a

Multinomial distribution with parameters β and conditioned on zn which

gives

p(xf |zf , β) =
K∏

k=1

Mult(xf |β)δ(zf ,1) (2.14)

δ(zf , 1) an indicator function that returns 1 if zf,k = 1 and 0 otherwise. β,
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is a K × F matrix whose elements β(k, f) = p(xf |zk = 1) are the proba-

bilities of visual terms under each topic, and α, is a K-dimensional vector

parameterising the Dirichelt distribution. α and β are considered as collec-

tion dependent parameters which will be estimated by a training set. Given

particular values for α and β the probability of an image, or document, with

{x1, . . . ,xF} visual terms is obtained by marginalising the parameters z and

θ which gives

p(I|α, β) = p(x1, . . . ,xF |α, β) =

∫
p(θ|α)




F∏

f=1

∑

zf

p(zf |θ)p(xf |zf , β)


 dθ.

(2.15)

In Blei & Jordan (2003) the LDA model has been extended to handle

high dimensional continuous features xf by exchanging the Multinomial dis-

tribution in Eq. (2.14) with multivariate Gaussian distributions with a topic

specific mean and covariance parameters. The methodology presented in

Chapters 4 and 5 although it has many similarities with the approach of Blei

& Jordan (2003) is radically different in many respects. In Chapter 4 we do

not assume a latent topic (factor) representation. Rather we estimate the fea-

ture density for each image using a Gaussian mixture model. In other words,

in LDA there are K multivariate Gaussian mixture components for the whole

image collection, while in Chapter 4 we have a K ′ component mixture model

for each image. In Chapter 5 we employ Gaussian mixture models to model

the density of features for images of a particular class and thus our approach

can be seen as a latent topic representation for the images of that particular

class. However, the estimation procedure is radically different. While in the
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LDA model we need to estimate the parameters using the visual descriptors

from all images, in Chapter 5 we derive a hierarchical Variational EM algo-

rithm which only utilises the means and covariance matrices of the Gaussian

mixture models estimated for each image individually.

2.4 Evaluation Methodology

For evaluating the performance of information retrieval systems in a con-

trolled environment a test collection is needed. The test collection comprises

a set of documents, a set of topics, which are expressed by queries, and a set

of relevant judgements. In this thesis we use the Corel5K collection which

is described in detail in Chapter 4. This collection has been used in sev-

eral papers for evaluating content based query by example retrieval systems

(Westerveld et al. 2003) and semantic retrieval (Jeon et al. 2003, Carneiro

et al. 2007).

Given a query, the retrieval system returns a ranking of documents in

the collection and then the relevance judgements are used to evaluate per-

formance measures that quantify the system’s performance. Table 2.1 shows

the four possible states of a document given the output of the retrieval sys-

tem and relevance judgments. For example a document in the ranking list

returned by the retrieval system that has also been judged as relevant is a

True Positive. Similarly a document in the ranking list judged as non relevant

is a False Positive.

The recall of a retrieval system measures the percentage of relevant doc-
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System / Judgments Relevant Non Relevant
Relevant True Positive (TP) False Positive (FP)
Non Relevant False Negative (FN) True Negative (TN)

Table 2.1: The four possible states of a document given the relevant judg-
ments and the output of a retrieval system.

uments retrieved while precision measures the percentage of relevant docu-

ments in the retrieved set i.e.

recall =
TP

TP + FN
, precision =

TP

TP + FP
.

A system that returns a ranking of the entire collection has recall = 1 and

in general as recall increases precision decreases. The two measures can

be combined using their harmonic mean which is usually referred as the F

measure.

F =
2× precision× recall
precision+ recall

=
2× TP

TP + FP + TP + FN
.

The Relationship Between Precision-Recall and ROC Curves
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Figure 1. The difference between comparing algorithms in ROC vs PR space

tween these two spaces, and whether some of the in-
teresting properties of ROC space also hold for PR
space. We show that for any dataset, and hence a
fixed number of positive and negative examples, the
ROC curve and PR curve for a given algorithm con-
tain the “same points.” Therefore the PR curves for
Algorithm I and Algorithm II in Figure 1(b) are, in a
sense that we formally define, equivalent to the ROC
curves for Algorithm I and Algorithm II, respectively
in Figure 1(a). Based on this equivalence for ROC and
PR curves, we show that a curve dominates in ROC
space if and only if it dominates in PR space. Sec-
ond, we introduce the PR space analog to the convex
hull in ROC space, which we call the achievable PR
curve. We show that due to the equivalence of these
two spaces we can efficiently compute the achievable
PR curve. Third we demonstrate that in PR space
it is insufficient to linearly interpolate between points.
Finally, we show that an algorithm that optimizes the
area under the ROC curve is not guaranteed to opti-
mize the area under the PR curve.

2. Review of ROC and Precision-Recall

In a binary decision problem, a classifier labels ex-
amples as either positive or negative. The decision
made by the classifier can be represented in a struc-
ture known as a confusion matrix or contingency ta-
ble. The confusion matrix has four categories: True
positives (TP) are examples correctly labeled as posi-
tives. False positives (FP) refer to negative examples
incorrectly labeled as positive. True negatives (TN)
correspond to negatives correctly labeled as negative.
Finally, false negatives (FN) refer to positive examples
incorrectly labeled as negative.

A confusion matrix is shown in Figure 2(a). The con-
fusion matrix can be used to construct a point in either
ROC space or PR space. Given the confusion matrix,
we are able to define the metrics used in each space
as in Figure 2(b). In ROC space, one plots the False
Positive Rate (FPR) on the x-axis and the True Pos-
itive Rate (TPR) on the y-axis. The FPR measures
the fraction of negative examples that are misclassi-
fied as positive. The TPR measures the fraction of
positive examples that are correctly labeled. In PR
space, one plots Recall on the x-axis and Precision on
the y-axis. Recall is the same as TPR, whereas Pre-
cision measures that fraction of examples classified as
positive that are truly positive. Figure 2(b) gives the
definitions for each metric. We will treat the metrics
as functions that act on the underlying confusion ma-
trix which defines a point in either ROC space or PR
space. Thus, given a confusion matrix A, RECALL(A)
returns the Recall associated with A.

3. Relationship between ROC Space
and PR Space

ROC and PR curves are typically generated to evalu-
ate the performance of a machine learning algorithm
on a given dataset. Each dataset contains a fixed num-
ber of positive and negative examples. We show here
that there exists a deep relationship between ROC and
PR spaces.

Theorem 3.1. For a given dataset of positive and
negative examples, there exists a one-to-one correspon-
dence between a curve in ROC space and a curve in PR
space, such that the curves contain exactly the same
confusion matrices, if Recall != 0.

Figure 2.2: Example of a precision recall graph comparing two ranking algo-
rithms.



CHAPTER 2. BACKGROUND AND RELATED WORK 44

Precision and recall are set measures evaluating the overall system per-

formance and they do not take into account the order in which relevant

documents appear in the ranking list. Two systems can have the same pre-

cision and recall but the system that ranks relevant documents higher is

preferred. To take into account the order of relevant documents precision,

can be calculated at several cutoff points of the ranking list. For example,

P@10 is the precision calculated using the first 10 documents in the ranking

list. Moreover, precision can be expressed as a function of recall, e.g. P(0.1)

is the precision after ten percent of the relevant documents have been re-

trieved. The interpolated precision recall graph (Manning et al. 2008, Chap.

8) plots precision as a function of recall and can be used to assess the overall

performance of the ranking algorithm. An example of a precision recall graph

is shown in Figure 2.2.

Average Precision (AP) is a single measure that takes into account pre-

cision, recall and the ordering of documents in the ranking list by averaging

precision in the recall interval [0, 1]. That is:

AP =

∫ 1

0

P (r)dr.

Finally the APs for every query in the test collection are averaged to result in

the Mean Average Precision (MAP) which quantifies the overall performance

of the ranking algorithm for the test collection.



Chapter 3

Mixture Models and Bayesian

Inference

Mixture models, and in particular Gaussian mixture models, play a core role

in the development of this thesis as they are used for modelling densities

of information items, such as images, or groups of multimedia objects in a

hierarchical manner. In this chapter we discuss mixture models in detail

and study efficient algorithms for performing inference over their parame-

ters. The focus of this chapter is on Bayesian inference where instead of

point estimates we seek posterior distributions which can be used to obtain

regularised estimates of the predictive densities where the uncertainty around

the parameters has been marginalised.

A standard approach in density estimation using mixture models is max-

imum likelihood estimation through the Expectation Maximisation (EM)

algorithm. Fully Bayesian approaches, although have been previously suc-

45
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cessfully applied they are often considered inefficient and computationally ex-

pensive for practical applications like image retrieval. Recent developments

though in the field of computational statistics, and in particular Markov

Chain Monte Carlo (MCMC) methods (Roberts & Stramer 2003, Girolami

& Calderhead 2011), have identified a new class of algorithms that promise

significant improvements in efficiency and computational savings. In this

chapter we develop the methodology necessary for applying this new class

of MCMC algorithms on mixtures of Gaussian distributions and study their

efficiency in terms of Effective Sample Size (ESS), i.e. the number of indepen-

dent samples obtained by a Markov Chain, and computational complexity.

Despite the computational savings and improved sampling efficiency com-

pered to more traditional MCMC algorithms, there are still several practical

difficulties in applying MCMC algorithms for information retrieval systems.

The most important ones being the requirement to run multiple chains for

monitoring convergence and the need to store several posterior samples which

have to be used to numerically integrate the query likelihood. Thus in the last

section of this chapter we discuss approximate methods, namely Variational

inference (Jordan et al. 1998), for estimating the posterior distribution of

mixture model parameters. Variational inference provides analytical approx-

imations of the posterior distributions while the computational complexity

of the resulting algorithms is similar to the traditional EM algorithm. The

standard variational methodology for mixture models is further developed in

Chapter 5 where it is applied to hierarchies of Gaussian mixture models.
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3.1 Gaussian Mixture Models

Mixture models are useful in describing a wide variety of random phenom-

ena because of their inherent flexibility (Titterington et al. 1985). As such,

they are used in many fields of science to model complex processes and sys-

tems. Examples of applications include clustering (McLachlan & Baek 2010),

density estimation (Escobar & West 1994) and classification (Celeux 2006).

For observations x ∈ RD, where D is the dimensionality of the feature

space, a Gaussian mixture model with K components has the form:

p(x|Θ) =
K∑

k=1

πkN (x|µk,Σk), (3.1)

where N (x|µ,Σ) denotes the Gaussian density with mean parameter µ and

covariance matrix Σ which has the form:

N (x|µ,Σ) =
1

(2π)D/2det(Σ)1/2
e−

1
2
(x−µ)TΣ−1(x−µ),

with |A| denoting the determinant of A, πk are the mixing coefficients such

that
∑K

k=1 πk = 1 and Θ = {πk,µk,Σk : k ∈ {1, . . . , K}} is the set of all

parameters.

For a dataset X = {x1, . . . ,xN} of N observations the likelihood is:

p(X|Θ) =
N∏

n=1

p(xn|Θ) =
N∏

n=1

K∑

k=1

πkN (xn|µk,Σk). (3.2)

An alternative and often useful formulation of mixture models can also
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µ Σπ

z x
N

K

Figure 3.1: Plate diagram for a Gaussian mixture model. Shaded nodes
represent observed variables and arrows conditional dependence. The plates
represent multiple copies of the enclosed variables.

be obtained by introducing latent variables Z = {z1, . . . ,zn}, where zi,k ∈

{0, 1} and zi ∼M(1, π1, . . . , πK) such that if zi,k = 1 then the observation xi

is allocated to the kth mixture component. M(1, p1, . . . , pK) is a Multinomial

distribution for K mutually exclusive events with probabilities p1, . . . , pK .

The graphical model of this representation is shown in Figure 3.1 and the

likelihood takes the form

p(X,Z|Θ) =
N∏

n=1

K∏

k=1

π
zn,k
k N (xn|µk,Σk)

zn,k (3.3)

3.1.1 Maximum Likelihood Estimation

For a given set of observations, modelling its density using a Gaussian mix-

ture model suffices in finding the parameters that maximise the log of the

likelihood in Equation (3.2). The Expectation Maximasation (EM) algo-

rithm, given in Algorithm 1, exploits the latent variable representation in-

troduced in Equation (3.3) and successively optimises the parameters until

convergence of the log likelihood.
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Algorithm 1: EM-GMM

1: Inititialise Θ
2: repeat
3: {E-Step}
4: E [zn,k] =

πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj,Σj)

5: {M-Step}

6: πk =
1

N

N∑

n=1

E [zn,k]

7: µk =
1∑N

n=1 E [zn,k]

N∑

n=1

E [zn,k]xn

8: Σk =
1∑N

n=1 E [zn,k]

N∑

n=1

E [zn,k] (xn − µk) (xn − µk)T

9: until convergence

The EM algorithm is sensitive to initialisation conditions and it always

converges to a local maximum of the log likelihood. To alleviate this problem,

in practice the EM algorithm is repeated for several random initialisations

of the parameters Θ and the estimate with the largest log likelihood is kept.

A parameter that is often neglected in maximum likelihood estimation is

the number of components K which is generally unknown a-priori. Unlike

the local maxima problem, the log likelihood is monotonically increasing with

the number of components and approaches infinity as the number of com-

ponents approaches the number of observations, thus allowing for a single

component for each observation. Practical solutions to the problem involve

a penalisation term with respect to the number of parameters. An example

of such penalisation is the Bayesian Information Criterion (BIC) defined in

Equation (3.4). In the setting of mixture models, performing model selec-



CHAPTER 3. MIXTURE MODELS AND BAYESIAN INFERENCE 50

tion involves obtaining maximum likelihood estimates for models of different

complexity and selecting the model which maximises the BIC:

BIC = 2 log(p(X|Θ))− (K(D2 +D + 1)) log(N). (3.4)

3.2 Bayesian Inference

In Bayesian inference one is not interested in obtaining parameter estimates

that maximise the likelihood, p(X|Θ), but instead obtain a posterior distri-

bution over the parameters, p(Θ|X), by combining prior beliefs and evidence

from the observed data through the use of Bayes’ theorem (Equation 3.5).

The benefits of Bayesian inference is that one can naturally encode prior in-

formation about the possible solutions and also obtain regularised estimates

of the predictive distribution for new observations x∗ by marginalising the

uncertainty about parameters, p(x∗|X) =
∫
p(x∗|Θ)p(Θ|X)dΘ. Moreover,

the posterior distribution over the parameters can be used as an importance

sampling distribution for calculating the model evidence
∫
p(X|Θ)p(Θ)dΘ

required for estimating Bayes’ factors for model selection. As the model evi-

dence is not a function of the parameters and is also a regularised estimate of

the data likelihood, it naturally penalises more complex models as opposed

to likelihood-ratio tests.
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p(Θ|X) =

Likelihood︷ ︸︸ ︷
p(X|Θ)

Prior︷ ︸︸ ︷
p(Θ)∫

p(X|Θ)p(Θ)dΘ
︸ ︷︷ ︸

Marginal likelihood

. (3.5)

For most problems of interest however, the posterior p(Θ|X) is not an-

alytically tractable or it is not possible to directly sample from it. In the

rest of this chapter we will consider approaches to obtain samples from,

or approximate, the posterior distribution for mixtures of Gaussians. The

first approach is Markov Chain Monte Carlo (MCMC), Section 3.4, where a

Markov Chain is constructed whose stationary distribution is the distribution

of interest, p(Θ|X). After convergence to the stationary distribution samples

from the chain can be used to obtain Monte Carlo estimates of the required

integrals. The second approach, Section 3.7, is to consider an approximate

parametric form for the target posterior and estimate its parameters by min-

imising the Kullback-Leibler (KL) divergence between the true posterior and

the approximate.

It is worth noting here that in contrast to approximate Bayesian inference,

MCMC algorithms are theoretically exact in the limit of infinite samples.

In practice however, and especially when the posteriors are complex and

multimodal, they tend to only approximate the posterior around a local

mode. Despite that, all the algorithms considered in the next sections can

be easily integrated in a population MCMC scheme that allows to better

explore the parameter space.
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3.3 Choice of Priors

In a Bayesian framework prior knowledge about a particular problem is en-

coded in the prior distribution p(Θ). When such a-priori knowledge is avail-

able, a prior restricting the parameter space and favouring particular solu-

tions over others can be designed. For example, for a vector of variables

β ∈ RD we can encode our preference to sparse solutions by imposing a

Laplace prior (Williams 1995) for individual elements of the vector β. Often

however, there is no a-priori information about which solutions are preferred.

Such lack of knowledge can be encoded by using flat priors, i.e priors that

assign equal probability to all possible solutions, e.g the uniform distribution.

In many practical applications, another important factor on the choice of

prior is conjugacy. That is, the parametric form of the prior is selected such

that it is mathematically convenient to derive several expressions. For ex-

ample when the likelihood is a Gaussian with an unknown mean and known

variance, then a Gaussian prior over the mean parameter allow us to analyt-

ically calculate the posterior, which is also a Gaussian.

For Gaussian mixture models a common choice of conjugate priors is

Dirichlet for the mixing coefficients πk, Gaussian for the mean parameters

µk and inverse Wishart, or Wishart, for the covariance matrices Σk, or pre-

cision matrices Σ−1k respectively. The joint prior as well as the forms of

the individual priors are given in Equations (3.6 - 3.9) where B(·) is the

multinomial beta function, ΓD(·) is the multivariate Gamma function and

tr(A) is the trace of A. When conjugacy is not required or the model is

re-parameterised, e.g. see Section 3.4.2, alternative priors can be assumed.
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p(Θ) = p(π)
K∏

k=1

p(µk|Σk)p(Σk), (3.6)

p(π) = D(π|a0), (3.7)

p(µk|Σk) = N (µk|m0, β
−1Σk), (3.8)

p(Σk) = IW(Σk|W 0, v0). (3.9)

(3.10)

The prior hyper-parameters a0,m0,W 0 can be used to encode prior be-

liefs. For example, the Dirichlet prior ensures that 0 6 πk 6 1 and that
∑K

k=1 πk = 1. Hyper-parameters a0 can be set to 1 corresponding to a uni-

form prior thus indicating a complete lack of knowledge a-priori about the

parameters π. Values closer to 0, on the other hand, favour sparse vectors π

and therefore models with few mixture components are preferred. Conversely,

values larger than 1 favour dense vectors π and thus preference is given to

models where all mixture components have almost equal contribution.

The rest of the prior hyper-parameters can be chosen such that the result-

ing prior distribution is flat in the region where the likelihood is substantial

and not much greater elsewhere (McLachlan & Peel 2000, Chap. 4). For

example, the prior mean hyper-parameters m0 are usually set to the mean

of the observations X since components centred far away from the observa-

tions’ mean are unlikely a-priori. Similarly, β−1 parameter can be set to a

large value, 5 to 10, and the positive definite matrix W 0 can be set to the

inverse of the covariance of the observations, 1
N
XTX.
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3.4 Markov Chain Monte Carlo

For obtaining samples from a complex posterior, MCMC algorithms con-

struct a Markov Chain whose stationary distribution is the target posterior.

The chain is constructed by defining a transition kernel p(θ|θt−1), where

t− 1 denotes the position of the chain at time t− 1, and samples are drawn

repeatedly such that

θt ∼ p(θ|θt−1).

After convergence to the stationary distribution, the samples generated will

be samples from the target posterior.

In order for a Markov Chain to have the target posterior p(θ) as its

stationary distribution, the transition kernel has to leave the target posterior

invariant and satisfy detailed balance:

p(θ)p(θ|θ∗) = p(θ∗)p(θ∗|θ). (3.11)

In the next sections we discuss specific MCMC algorithms and give the

necessary expressions in order to draw samples from the posterior of Gaussian

mixture models. We will not provide any proofs of detailed balance since

it is out of the scope of this chapter, however the reader can refer to the

seminal book of Robert & Casella (2005), Chapter 11 of Bishop (2006) and

the references given in the next sections.
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3.4.1 Metropolis-Hastings

For a random vector θ ∈ RD with unormalised posterior density p̃(θ) the

Metropolis-Hastings (MH) algorithm (Metropolis et al. 1953, Robert & Casella

2005) employs a proposal mechanism q(θ∗|θt−1) and proposed moves are ac-

cepted with probability

min

{
1,

p̃(θ∗)q(θt−1|θ∗)
p̃(θt−1)q(θ∗|θt−1)

}
.

In the context of Bayesian inference p̃(θ) corresponds to the unormalised

posterior distribution of the model parameters:

p̃(Θ|X) = p(X|Θ)p(Θ).

Tuning the Metropolis-Hastings algorithm involves selecting the right pro-

posal mechanism. A common choice is to use a random walk Gaussian

proposal of the form q(θ∗|θt−1) = N (θ∗|θt−1,A). The general form of a

Metropolis-Hastings sampler is given in Algorithm 2.

Selecting the covariance matrix however, is far from trivial in most cases

since knowledge about the target density is required. Therefore a more sim-

plified proposal mechanism is often considered where the covariance matrix

is replaced with a diagonal matrix such as A = εI where the value of the

scale parameter ε has to be tuned in order to achieve fast convergence and

good mixing. Small values of ε imply small transitions and result in high

acceptance rates while the mixing of the Markov Chain is poor. Large values

on the other hand, allow for large transitions but they result in most of the
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proposals being rejected. Tuning the scale parameter becomes even more

difficult in problems where the standard deviations of the marginal posteri-

ors differ substantially, since different scales are required for each dimension,

and this is exacerbated when correlations between different variables exist.

Adaptive schemes for the Metropolis-Hastings algorithm have also been pro-

posed (Haario et al. 2005) though they should be applied with care (Andrieu

& Thoms 2008).

Algorithm 2: Metropolis-Hastings

1: Inititialise θ0

2: for t = 1 to T do
3: θ∗ ∼ q(θ|θt−1)
4: r = min

{
1, p̃(θ∗)q(θt−1|θ∗)/p̃(θt−1)q(θ∗|θt−1)

}

5: u ∼ U[0,1]
6: if r > u then
7: θt = θ∗

8: else
9: θt = θt−1

10: end if
11: end for

In applying the MH algorithm for drawing samples from the posterior

of mixture model parameters we are faced with two problems. Firstly, the

parameters are not vectors in RD and secondly some of the parameters, such

as the mixing coefficients πk and the precision, or covariance, matrices, are

constrained, e.g. 0 6 πk 6 1,
∑1

k=1 πk = 1 and Σk must be positive definite.

The first problem can be solved by vectorising the precision, or covariance,

matrices and concatenating all vectors, including the mean parameters and

mixing coefficients, in a large vector in an augmented space. The second

problem can be resolved by appropriately re-parameterising the model.
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3.4.2 Re-parameterisation

For the mixing coefficients we can introduce parameters π′k ∈ R+ such that

πk =
π′k∑K
l=1 π

′
l

and use the relation of the Dirichlet with the Gamma dis-

tribution to impose independent Gamma priors on the new parameters,

p(π′k) = G(π′k|ak, 1). The interpretation of the Gamma hyper-parameters

ak remains the same as discussed in Section 3.3. The new parameters π′k

are still constrained to be positive so we can further re-paremeterise using

π′k = eγk , γk ∈ R thus the original parameters are πk = eγk∑K
l=1 e

γl
. Finally, the

density of the independent Gamma priors have to be scaled appropriately by

the Jacobian of eγk thus p(γk) = G(eγk |ak, 1)eγk .

For the precision matrices we can re-parameterise by following Pinheiro

& Bates (1996). We introduce new parameters Lk such that Σ−1k = LkL
T
k

where Lk is a lower triangular matrix. This re-parameterisation ensures that

Σ−1k is positive definite. In order the decomposition to be unique the diagonal

elements are constrained to be positive thus we can further re-parameterise

such that

Lk =




e((Bk)1,1) 0 0 0

(Bk)2,1
. . . 0 0

...
. . . e((Bk)d,d) 0

(Bk)D,1 . . . (Bk)D,D−1 e((Bk)D,D)




For obtaining a prior over the new parameters we use the Bartlett decom-

position which gives us the distributional assumptions of the elements of Lk

(Kshirsagar 1959). The diagonal elements are independent Gamma variables

while the off-diagonal elements are independent Gaussian. For the diagonal
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term of Lk we also need to scale the Gamma density by the Jacobian of the

transformation (Lk)d,d = e((Bk)d,d .

The new set of parameters for the re-parameterised model are

Θr = {γk,µk,Bk : k ∈ {1, . . . , K}},

and the new joint prior as well as the individual prior densities are given in

Equations (3.12 - 3.15) where we have dropped the dependence of the means

to the covariance matrices.

p(Θr) =
K∏

k=1

p(γk)p(µk)p(Bk), (3.12)

p(γk) = G(eγk |a0,k, 1)eγk , (3.13)

p(µk) = N (µk|m0,W 0), (3.14)

p(Bk) =
D∏

d=1

G(e(Bk)d,d|λ, ψ)e(Bk)d,d
∏

d′ 6=d

N ((Bk)d′,d|0, β). (3.15)

3.4.3 Gibbs Sampling

The Gibbs sampler (Geman & Geman 1984) can be seen as a special case of

the MH algorithm where the proposal distribution at each step updates only

one variable, or a set of variables, from their full conditional distributions

and all samples are accepted with probability 1. Thus for a vector of random

variables θ = {θ1, . . . , θD} with posterior density p(θ) one step of the Gibbs

sampler simulates a sample θtd ∼ p(θ∗d|θt1, . . . θtd−1, θt−1d+1, . . . , θ
t−1
D ).

The Gibbs sampler requires that the full conditional distributions are

explicit and easy to sample from. However, even when conjugate priors are



CHAPTER 3. MIXTURE MODELS AND BAYESIAN INFERENCE 59

considered this is not always the case. For problems where the conditionals

are not directly available a completion of the original distribution for which it

is easier to derive the conditionals can be used (Robert & Casella 2005, Chap.

10). A completion of the original distribution is constructed by introducing

new variables z and define the joint posterior p(θ, z) such that
∫
Z
p(θ, z)dz =

p(θ). If the conditionals of the joint posterior are easy to sample from then

the Gibbs sampler can be applied to draw samples (θ, z).

For mixtures such completion is naturally derived from the missing struc-

ture of the problem by introducing indicator variables associating observa-

tions to components as we have seen in Equation 3.3. By assuming conjugate

priors as in Section 3.3, the conditional distributions which can be used in

the Gibbs sampler follow as (McLachlan & Peel 2000)

p(zi|X,Θ) = M(zi|1, ρi,1, . . . , ρi,K), (3.16)

p(µk|X,Z,Σk) = N
(
µk|mk, (β + nk)

−1Σk

)
, (3.17)

p(Σ−1k |X,Z,µk) = IW (Σk|W k, nk + v0) , (3.18)

p(π|Z) = D(π|a0 + nk), (3.19)

where we have defined

ρi,k =
πkN (xi|µk,Σk)∑K

k′=1 πk′N (xi|µk′ ,Σk′)
, mk =

m0β + nkx̄k
β + nk

,

W k = W−1
0 + nkV k +

nkv0
nk + v0

(x̄−m0)(x̄−m0)T ,
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V k =
1

nk

N∑

i=1

zi,k(xi − x̄k)(xi − x̄k)T , x̄k =
1

nk

N∑

i=1

zi,kxi, nk =
N∑

i=1

zi,k.

The Gibbs sampler for mixtures of Gaussians is given in Algorithm 3.

Algorithm 3: Gibbs sampler for Gaussian mixture models

1: Inititialise Θ0

2: for t = 1 to T do
3: Zt ∼ p(Z|X,Θt−1) using Eq. (3.16)
4: µtk ∼ p(µk|X,Zt,Σt−1

k ), ∀k ∈ {1, . . . , K} using Eq. (3.17)
5: Σt

k ∼ p(Σk|X,Zt,µtk), ∀k ∈ {1, . . . , K} using Eq. (3.18)
6: πt ∼ p(π|Zt) using Eq. (3.19)
7: end for

Although the Gibbs sampler is simple to implement and no tuning is re-

quired, simulation involves sampling the indicator variables which are in the

order of the observations therefore increasing the state space considerably.

Moreover, sampling the mixture parameters conditioned on indicator vari-

ables and vice versa, implies that the length of the transitions is constrained

since for a particular value of the indicator variables the mixture parameters

are very concentrated and therefore their new value will not allow for large

moves of the indicator variables in the next iteration (Marin et al. 2005).

Finally, the Gibbs sampler can be very sensitive to initialisation, especially

when there are local modes in the vicinity of the starting position. An inter-

esting illustration of these problems can be found in (Marin et al. 2005).

Methods for improving the efficiency of Gibbs sampling include the or-

dered overrelaxation (Neal 1999), which is applicable when the cumulative

and inverse cumulative functions of the conditional distributions can be effi-

ciently calculated.
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3.4.4 Manifold Metropolis Adjusted Langevin Algo-

rithm

Denoting the log of the target density as L(θ) = log p(θ), the manifold

MALA (mMALA) method, (Girolami & Calderhead 2011), defines a Langevin

diffusion with stationary distribution p(θ) on the Riemann manifold of den-

sity functions with metric tensor G(θ). By employing a first order Eu-

ler integrator to solve the diffusion, a proposal mechanism with density

q(θ∗|θt−1) = N (θ∗|µ(θt−1, ε), ε2G−1(θt−1)) is obtained, where ε is the in-

tegration step size, a parameter which needs to be tuned, and the dth com-

ponent of the mean function µ(θ, ε)d is

µ(θ, ε)d = θd +
ε2

2

(
G−1(θ)∇θL(θ)

)
d
− ε2

D∑

i=1

D∑

j=1

G(θ)−1i,j Γdi,j, (3.20)

where Γdi,j are the Christoffel symbols of the metric in local coordinates

(Kühnel 2005).

Similarly to MALA (Roberts & Stramer 2003), due to the discretisation

error introduced by the first order approximation, convergence to the station-

ary distribution is not guaranteed anymore and thus the Metropolis-Hastings

ratio is employed to correct this bias. The mMALA algorithm can be simply

stated as in Algorithm 4. Details can be found in (Girolami & Calderhead

2011).

We can interpret the proposal mechanism of mMALA as a local Gaus-

sian approximation to the target density similar to the adaptive Metropolis-

Hastings of Haario et al. (1998). In contrast to Haario et al. (1998) however,
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Algorithm 4: mMALA

1: Inititialise θ0

2: for t = 1 to T do
3: θ∗ ∼ N (θ|µ(θt−1, ε), ε2G−1(θt−1))
4: r = min

{
1, p(θ∗)q(θt−1|θ∗)/p(θt−1)q(θ∗|θt−1)

}

5: u ∼ U[0,1]
6: if r > u then
7: θt = θ∗

8: else
9: θt = θt−1

10: end if
11: end for

the effective covariance matrix in mMALA is the inverse of the metric tensor

evaluated at the current position and no samples from the chain are required

in order to estimate it, therefore avoiding the difficulties of adaptive MCMC

discussed in (Andrieu & Thoms 2008). Furthermore a simplified version of

the mMALA algorithm can also be derived by assuming a manifold with

constant curvature, thus cancelling the last term in Equation (3.20) which

depends on the Christoffel symbols. Finally, the mMALA algorithm can be

seen as a generalisation of the original MALA (Roberts & Stramer 2003)

since, if the metric tensor G(θ) is equal to the identity matrix corresponding

to an Euclidean manifold, then the original algorithm is recovered.

Similar to the MH algorithm the mMALA family of algorithms requires

the parameters to be vectors in RD. In Section 3.4.2 we have shown how

the model can be re-parameterised in order to apply the MH algorithm. For

mMALA we can use the same re-parameterisation however we also need to

derive the gradient ∇θL(θ), Metric tensor G(θ) and the first order deriva-

tives of G(θ) with respect to the parameters θ.
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3.4.5 Metric Tensor for Mixtures of Gaussians

For density functions the natural metric tensor is the expected Fisher Infor-

mation, I(θ), (Amari & Nagaoka 2000) which is non-analytic for mixture

models. In this work an estimate of the Fisher information, the empiri-

cal Fisher information as defined in (McLachlan & Peel 2000, chap. 2) is

used as the metric tensor, and its form is given in Equation (3.21) where

we have defined the N × D score matrix S with elements Si,d = ∂ log p(xi|θ)
∂θd

and s =
∑N

i=1 S
T
i,· which is the gradient. The derivatives of the empirical

Fisher information are also easily computed as they require calculation of

the second derivatives of the log likelihood and their general form is given in

Equation (3.22).

G(θ) = STS − 1

N
ssT . (3.21)

∂G(θ)

∂θd
=

(
∂ST

∂θd
S + ST

∂S

∂θd

)
− 1

N

(
∂s

∂θd
sT + s

∂sT

∂θd

)
. (3.22)

The first and second order partial derivatives of the log likelihood for

Gaussian mixture models with respect to the parameters as well as the cor-

responding partial derivatives for the prior, are more involved and are omitted

from the main text.

Another alternative which is not explored further in this thesis is to ap-

proximate locally the Fisher Information metric. The metric tensor is defined

by the choice of the distance function between two densities. The Fisher in-

formation can be derived by taking a first order expansion of the symmetric

Kullback Liebler (KL) divergence between two densities, the Hellinger dis-
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tance yields the same metric as it provides a bound on the KL divergence.

The choice of distance function therefore dictates the form of the metric ten-

sor and we can see that the analytical intractability of the expected Fisher

information for mixture models is “inherited” from the Kullback Liebler di-

vergence. However, by considering a different divergence it is possible to

define a metric tensor that has an analytic form. In fact, if we consider the

L2 distance between two densities given by

∫

X
|p(x|θ + δθ)− p(x|θ)|2 dx,

and take a first order expansion, the metric tensor under the L2 metric is

∫

X
∇θp(x|θ)∇T

θ p(x|θ)dx,

where for mixtures of Gaussian densities the integral is analytic. The L2

metric is a special case of the power divergence (Basu et al. 1998) and has

been used in robust estimation of parametric models in (Scott 2001). Al-

though we do not explore these ideas further in this thesis we believe that

this is an interesting topic for further research.

3.4.6 Manifold Hamiltonian Monte Carlo

The Riemann manifold Hamiltonian Monte Carlo (RM-HMC) method de-

fines a Hamiltonian on the Riemann manifold of probability density functions

by introducing the auxiliary variables p ∼ N (0,G(θ)), which are interpreted

as the momentum at a particular position θ and by considering the nega-
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tive log of the target density as a potential function. More formally, the

Hamiltonian defined on the Riemann manifold is:

H(θ,p) = −L(θ) +
1

2
log [2πdet(G(θ))] +

1

2
pTG(θ)−1p, (3.23)

where the terms −L(θ) + 1
2

log [2πdet(G(θ))] and 1
2
pTG(θ)−1p are the po-

tential energy and kinetic energy terms, respectively. Simulating the Hamil-

tonian requires a time-reversible and volume preserving numerical integrator.

For this purpose the Generalised Leapfrog algorithm can be employed and

provides a deterministic proposal mechanism for simulating from the condi-

tional distribution, i.e. θ∗|p ∼ p(θ∗|p). More details about the Generalised

Leapfrog integrator can be found in (Girolami & Calderhead 2011). To sim-

ulate a path across the manifold, the Leapfrog integrator is iterated L times

which along with the integration step size ε are parameters requiring tuning.

Again, due to the integration errors on simulating the Hamiltonian, in order

to ensure convergence to the stationary distribution the Metropolis-Hastings

ratio is applied. Moreover, following the suggestion in (Neal 1993) the num-

ber of Leapfrog iterations L is randomised in order to improve mixing. The

RM-HMC algorithm is given in Algorithm 5.

Similar to the mMALA algorithm, when the metric tensor G(θ) is equal to

the identity matrix corresponding to an Euclidean manifold, then RM-HMC

is equivalent to the HMC algorithm of (Duane et al. 1987).
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Algorithm 5: RM-HMC

1: Inititialise θ0

2: for t = 1 to T do
3: p0∗ ∼ N (p|0,G(θt−1))
4: θ0∗ = θt−1

5: e ∼ U[0,1]
6: N = ceil(εL)

{Simulate the Hamiltonian using a generalised Leapfrog integrator
for N steps}

7: for n = 0 to N do
8: solve p

n+ 1
2

∗ = pn∗ − ε
2
∇θH

(
θn∗ ,p

n+ 1
2

∗

)

9: solve θn+1
∗ = θn∗ + ε

2

[
∇pH

(
θn∗ ,p

n+ 1
2

∗

)
+∇pH

(
θn+1
∗ ,p

n+ 1
2

∗

)]

10: pn+1
∗ = p

n+ 1
2

∗ − ε
2
∇θH

(
θn+1
∗ ,p

n+ 1
2

∗

)

11: end for
12: (θ∗,p∗) =

(
θN+1
∗ ,pN+1

∗
)

{Metropolis-Hastings ratio}
13: r = min

{
1, exp

(
−H(θ∗,p∗) +H(θt−1,pt−1)

)}

14: u ∼ U[0,1]
15: if r > u then
16: θt = θ∗

17: else
18: θt = θt−1

19: end if
20: end for
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Figure 3.2: Natural gradients and the inverse metric tensor evaluated at
different locations. Arrows correspond to the natural gradients and ellipses
to the inverse metric tensor. Dashed lines are the isocontours of the joint log
likelihood.

3.5 An Illustrative Example

To illustrate the differences between Gibbs, MALA, HMC and their Riemann

manifold counterparts we use a simple example for which it is easy to visualise

the gradient fields and the paths of the Markov chains. For this example we
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use a mixture model of the form

p(x|µ, σ2) = 0.7×N (x|0, σ2) + 0.3×N (x|µ, σ2), (3.24)

where the variance σ2 is shared for both components. The variance parameter

has been re-parameterised as σ2 = exp(γ) and an inverse gamma prior was

used. A synthetic dataset of 500 random samples from this model with true

parameters set as µ = 2.5 and σ2 = 1 was generated and 10,000 samples

from the posterior using the Gibbs sampler, MALA, HMC, mMALA and

RM-HMC as well as the simplified version of mMALA discussed in Section

3.4 are simulated. For all examples the same starting position was used.

In Figure 3.2 the natural gradients, i.e. the gradient scaled by the inverse

metric tensor, and the metric tensor for the simple model in Equation 3.24

are illustrated. The ellipses correspond to the inverse of the metric tensor

evaluated at different locations and plotted on top of the joint log likelihood

surface. From Figure 3.2 we can see how the metric tensor reflects the local

geometry and notice especially the ellipses on the bottom left of the figure

which are elongated along the axis where the target density changes less

rapidly, i.e. µ2. For the mMALA algorithm the inverse metric tensor corre-

sponds to the covariance matrix of the proposal mechanism and we can see

how the proposal mechanism is optimally adapted allowing for large transi-

tions in areas where the target density is flat and smaller transitions in areas

where the target density is steep preventing the algorithm from ’overshoot-

ing’.

In Figure 3.3 the differences between MALA and mMALA by comparing



CHAPTER 3. MIXTURE MODELS AND BAYESIAN INFERENCE 69

the first 1,000 samples from their chains is illustrated. To ensure a fair

comparison the step size parameter for both algorithms was tuned such that

the acceptance rate remains between 40% to 60% as discussed in (Christensen

et al. 2005) and (Girolami & Calderhead 2011). For MALA achieving such

an acceptance rate at stationarity was not trivial since for step sizes above

1E−4 the algorithm failed to converge in 10,000 samples by rejecting all

proposed moves. In (Christensen et al. 2005) such behaviour for the transient

phase of MALA is also reported and a different scaling is suggested. We

have experimented with both scalings without any significant difference for

this particular case. The problem lies in the large discrepancy between the

gradient magnitudes at the starting position and around the mode. From

Figure 3.2 we can see that at the starting position a small step size is required

in order not to ’overshoot’ due to the large gradient. On the contrary, around

the mode the gradient magnitudes are small suggesting a larger step size in

order to obtain less correlated samples.

The sample autocorrelation plots from the stationary chains, i.e. after the

chains have converged to the stationary distribution, for both algorithms are

also shown in Figure 3.3. We can see that the mMALA algorithm converges

rapidly and once converged the correlation between samples is very low. We

have seen similar behaviour in our experiments with different starting posi-

tions while retaining the same value for the integration step size parameter.

Moreover, in Figure 3.3 the convergence path and autocorrelation for simpli-

fied mMALA is shown and from which we can see that despite the simplifying

assumption of a constant manifold the algorithm remains efficient.



CHAPTER 3. MIXTURE MODELS AND BAYESIAN INFERENCE 70

µ
2

ln
 σ

MALA sampler path for 1000 samples

−1010

−1110
−1210

−1310
−1410

−2910

−4 −2 0 2 4

−4

−2

0

2

4

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Lag
S

a
m

p
le

 A
u

to
c
o

rr
e

la
ti
o
n

MALA sample autocorrelation

µ
2

ln
 σ

mMALA sampler path for 1000 samples

−1010

−1110
−1210

−1310
−1410

−2910

−4 −2 0 2 4

−4

−2

0

2

4

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Lag

S
a
m

p
le

 A
u
to

c
o
rr

e
la

ti
o
n

mMALA sample autocorrelation

µ
2

ln
 σ

Simplified mMALA sampler path for 1000 samples

−1010

−1110
−1210

−1310
−1410

−2910

−4 −2 0 2 4

−4

−2

0

2

4

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Lag

S
a
m

p
le

 A
u
to

c
o
rr

e
la

ti
o
n

Simplified mMALA sample autocorrelation

Figure 3.3: Comparison of MALA (top), mMALA (middle) and simplified
mMALA (bottom) convergence paths and autocorrelation plots. Autocorre-
lation plots are from the stationary chains, i.e. once the chains have con-
verged to the stationary distribution.
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Similar experiments are performed with HMC and RM-HMC where the

step size parameters were selected such that the acceptance rate was above

70% and the number of Leapfrog iterations was fixed at 10 for both algo-

rithms. The results are presented in Figure (3.4). We can again see a similar

behaviour as in the previous example with MALA and mMALA. HMC needs

several iterations to reach the mode due to the small step size required to

escape from the low potential region at the starting position while RM-HMC

rapidly converges to the mode and the autocorrelation of the samples re-

mains low. Also note that the RM-HMC algorithm seems more efficient than

mMALA, something that is also reported in (Girolami & Calderhead 2011)

and relates to the fact that for mMALA a single discretisation step of the dif-

fusion is used to propose a new sample while for RM-HMC the Hamiltonian

is simulated for several iterations. Finally similar plots for the Gibbs sampler

are presented in Figure (3.4) where we can see that the Gibbs sampler using

the full conditional distributions follows a path along the gradients although

no gradient information is used explicitly. Despite its fast convergence, how-

ever, the chain mixing is not as good as for RM-HMC as indicated by the

autocorrelation function.

3.6 Experiments

In this section a set of experiments designed to evaluate the MCMC algo-

rithms in more realistic scenarios than the one presented in Section 3.5 are

described. Five different simulated datasets randomly generated from the

densities in Table 3.1 taken from (McLachlan & Peel 2000) are considered.
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Figure 3.4: Comparison of HMC(top), RM-HMC (middle) and Gibbs (bot-
tom) convergence paths and autocorrelation plots. Autocorrelation plots are
from the stationary chains, i.e. once the chains have converged to the sta-
tionary distribution.



CHAPTER 3. MIXTURE MODELS AND BAYESIAN INFERENCE 73

Dataset Density function Num. of
name parameters

Kurtotic 2
3N (x|0, 1) + 1

3N
(
x|0,

(
1
10

)2)
6

Bimodal 1
2N

(
x| − 1,

(
2
3

)2)
+ 1

2N
(
x|1,

(
2
3

)2)
6

Skewed bimodal 3
4N (x|0, 1) + 1

4N
(
x|32 ,

(
1
3

)2)
6

Trimodal 9
20N

(
x| − 6

5 ,
(
3
5

)2)
+ 9

20N
(
x|65 ,

(
3
5

)2)
+ 1

10N
(
x|0,

(
1
4

)2)
9

Claw 1
2N (x|0, 1) +

∑4
i=0

1
10N

(
x| i2 − 1,

(
1
10

)2)
18

Table 3.1: Densities used for the generation of synthetic datasets.

The densities were selected in order to assess the performance of the methods

under different conditions. For example, in the “bimodal” density the modes

are well separated and the posterior standard deviations are of the same or-

der. On the other hand the “claw” density has overlapping components of

different variances and the posterior standard deviations have large differ-

ences. Plots of the densities are shown in Figure 3.5 while the number of

parameters is also given in Table 3.1. For the datasets “kurtotic”, “bimodal”

and “skewed bimodal” 2,000 random samples are generated while for the

datasets ’trimodal’ and ’claw’ we generated 4,000 and 5,000 samples, respec-

tively. Different samples were used in order to guarantee that the different

components are well represented in the dataset.
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Figure 3.5: Densities used to generate synthetic datasets. From left to right
the densities are in the same order as in Table 3.1. The densities are taken
from (McLachlan & Peel 2000)
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To ensure fair comparison, all algorithms were tuned by following the

suggestions in (Roberts et al. 1997, Christensen et al. 2005) and (Neal 1993).

More precisely, the Metropolis-Hastings scale parameter was tuned such that

acceptance rate was between 20% and 30%. The scale parameter for MALA

was set such that acceptance rate was between 40% and 60%. For HMC,

the step size parameter ε was set at the smallest standard deviation of the

marginal posterior and the number of Leapfrog iterations L is set such that

εL was above the largest standard deviation. Of course such knowledge

is not known a-priori and pilot runs to obtain the marginal posterior are

needed when HMC is applied in practice. For the RM-HMC, mMALA and

simplified mMALA, this knowledge of the target density is not required, thus

the method in (Girolami & Calderhead 2011) is followed to tune the step size

parameters such that the acceptance rate was above 70% and the number of

leapfrog steps for RM-HMC was kept fixed to five.

It is interesting to note here that the suggestions for tuning the Metropolis-

Hastings and the MALA algorithms (Roberts et al. 1997, Christensen et al.

2005) assume stationarity. Therefore tuning those algorithms requires several

pilot runs where the chains are simulated until convergence and the accep-

tance rate is measured to ensure that it lies between the suggested values.

Similarly, tuning HMC requires pilot runs in order to obtain the posterior

standard deviations. In contrast, the tuning of mMALA and RM-HMC does

not require such pilot runs, instead the first set of parameters that achieved

an acceptance rate above 70% were used to set the step size. The acceptance

rate during the transient and stationary phases of mMALA and RM-HMC
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were at the same levels across all our experiments.

All algorithms run for 100,000 iterations and only the last 10,000 sam-

ples are kept as samples from the posterior, provided that the chains have

converged. Convergence was assessed by inspection of the trace plots. The

posterior means were also compared with the true values provided in Table 3.1

to ensure that the chains have converged to the correct mode. In the exper-

iments presented here, we have not encountered the label switching problem

in any of the algorithms or datasets. This is due to the careful tuning of

samplers to achieve relatively high acceptance rates. In pilot runs, however,

where larger step sizes and scales were used, we have observed components

switching labels from Metropolis-Hastings, HMC and RM-HMC, although

the acceptance rates were below the suggested values. The lack of label

switching due to different tuning of parameters is also reported in (Marin

et al. 2005). Finally, from the output of each algorithm the minimum, median

and maximum Effective Sample Size (ESS) (Geyer 1992) across parameters

as well as the number of samples per second are measured. The experiments

where repeated 10 times and all results presented in Table 3.2 are averages

over the 10 different runs.

From Table 3.2 we can immediately see that in terms of raw ESS, mMALA

and simplified mMALA were always better than MALA and Metropolis-

Hastings. Similarly RM-HMC was in all cases better than HMC. This high-

lights that by exploiting the intrinsic geometry of the model in MCMC we

can achieve superior mixing. Another interesting observation is that the cor-

relation of samples across different parameters (minESS and max ESS) is
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Dataset Algorithm Min ESS Med ESS Max ESS minESS/sec.

Kurtotic

M.-H. 37 ±10 133 ±24 1347 ±58 4.5 ±1.2
MALA 19 ±7 78 ±10 5172 ±304 0.7 ±0.2

mMALA 158 ±13 193 ±13 235 ±15 2.6 ±0.1
simp. mMALA 173 ±15 206 ±16 231 ±12 4.5 ±0.4

HMC 892 ±42 4167 ±412 10000 ±0 4.6 ±0.2
RM-HMC 9759 ±56 9961 ±89 10000 ±0 28.9 ±0.6

Gibbs 1728 ±173 3102 ±73 9733 ±230 9.0 ±0.8

Bimodal

M.-H. 83 ±13 103 ±17 119 ±23 10.2 ±1.7
MALA 141 ±26 169 ±31 187 ±35 5.4 ±1.0

mMALA 695 ±20 798 ±53 869 ±55 9.02 ±0.3
simp. mMALA 774 ±24 817 ±27 937 ±86 20.4 ±0.7

HMC 1509 ±149 1675 ±144 1747 ±142 24.4 ±2.4
RM-HMC 4593 ±128 4920 ±184 5215 ±152 13.7 ±0.3

Gibbs 473 ±97 504 ±93 574 ±97 2.5 ±0.5

Skewed

M.-H. 50 ±9 68 ±17 259 ±102 6.2 ±1.2
MALA 77 ±9 113 ±19 312 ±51 2.9 ±0.3

mMALA 437 ±59 511 ±63 669 ±91 5.6 ±0.7
simp. mMALA 537 ±86 587 ±77 703 ±96 14.2 ±2.3

HMC 1491 ±57 1849 ±93 3613 ±187 14.1 ±0.5
RM-HMC 4793 ±639 5152 ±704 6969 ±690 14.7 ±1.5

Gibbs 407 ±40 469 ±53 1032 ±83 2.1 ±0.2

Trimodal

M.-H. 10 ±3 42 ±17 136 ±30 0.6 ±0.1
MALA 20 ±4 75 ±23 312 ±11 0.3 ±0.07

mMALA 209 ±44 272 ±21 342 ±24 0.9 ±0.2
simp. mMALA 224 ±13 272 ±15 319 ±37 2.5 ±0.1

HMC 582 ±79 1713 ±262 6851 ±363 1.9 ±0.2
RM-HMC 2066 ±117 2369 ±176 2622 ±175 2.3 ±0.1

Gibbs 205 ±31 381 ±40 621 ±29 0.5 ±0.08

Claw

M.-H. - - - -
MALA - - - -

mMALA 79 ±11 145 ±15 222 ±28 0.09 ±0.01
simp. mMALA 95 ±13 154 ±7 242 ±30 0.4 ±0.05

HMC 923 ±215 1739 ±140 6529 ±70 0.5 ±0.1
RM-HMC 1756 ±427 2075 ±503 2825 ±815 0.3 ±0.06

Gibbs 238 ±71 966 ±51 4197 ±367 0.5 ±0.1

Table 3.2: Evaluation of MCMC algorithms for univariate mixtures of nor-
mals. ESS is estimated using 10,000 samples from the posterior. minESS/sec
denotes the number of uncorrelated samples per second. The Metropolis-
Hastings and MALA algorithms failed to converge after 100,000 samples in
almost all of the 10 runs for the ’claw’ dataset.
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Table 3.3: Posterior distribution of the kurtotic dataset. True values are
depicted by vertical lines or the plus sign.

almost the same for RM-HMC and mMALA while for all other algorithms it

varies significantly. This is related to the difficulties in tuning the scale and

step size parameters of MALA and HMC. When the standard deviations of

the marginal posterior exhibit very large differences in scale it is very difficult

to tune MALA and HMC to achieve good mixing across all parameters. For

RM-HMC and mMALA the gradients are appropriately scaled by the met-

ric tensor and therefore smaller variation across the parameters is expected

making the algorithms less sensitive to tuning parameters. This argument is

also supported by the results of Metropolis-Hastings, MALA and HMC for

the “bimodal” dataset where the difference between minESS and maxESS is

low suggesting a small difference in scale of the posteriors standard deviation.
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Indeed, the minimum and maximum standard deviations of the posterior for

the ’bimodal’ dataset was found to be 0.0402 and 0.0822, respectively. Fi-

nally it is interesting to note that in terms of raw ESS the Gibbs sampler was

only better 2 out of 5 times compared to mMALA and simplified mMALA

while it was always worse than RM-HMC.

In practice, however, raw ESS is not very informative about the practical

significance of an MCMC algorithm since less computationally demanding al-

gorithms can obtain the required number of effectively independent samples

faster than a more demanding but more efficient (in terms of mixing) algo-

rithm. For that reason the number of effectively uncorrelated samples per

second (minESS/sec) are also reported. The results suggest that for the most

difficult examples such as the “trimodal”, “claw” and “kurtotic” datasets the

RM-HMC algorithm is always better while the less computationally demand-

ing simplified mMALA performs almost equally in some cases. Interestingly,

the Gibbs sampler which is the most widely used algorithm for inference in

mixture models is always substantially worst when compared to some of the

other MCMC methods with the exception of the claw dataset.

In Table 3.3 the posterior for the “kurtotic” dataset is shown. Notice the

large difference in variance for µ1 compared to all other parameters as well

as the correlation between α1 and γ1,γ2. Parameter γ1 corresponds to the

log of the variance of the second component of the ’kurtotic’ density in Table

3.1, where its density is depicted in Figure 3.5, and the second component

corresponds to the peak around 0. When the variance of both components

increases the observations around 0 have higher likelihood under the second
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Figure 3.6: Comparison of minESS for the RM-HMC (left) and Gibbs (right)
samplers for different dataset sizes. For datasets of size 10 both algorithms
failed to converge after 10,000 iterations.

component thus increasing the value of its mixing coefficient and therefore

explaining the correlation in Table 3.3.

The datasets used in this study have a relatively large size and since a

finite sample estimate of the Fisher information is used, it is unknown if

asymptotic behaviour is affecting the comparisons. For this reason further

experiments were conducted using the “kurtotic” dataset where datasets of

different size have been created and the minimum effective sample size of

Gibbs and RM-HMC samplers is compared. For these experiments 10,000

burn-in samples are used and ESS is measured using 1,000 posterior samples

provided the chains have converged. All experiments are repeated for 10 runs

and results are presented in Figure 3.6. The minimum ESS for RM-HMC

is increasing with the size of the dataset and after 500 observations we can

see that it remains almost constant. In comparison, the Gibbs sampler is

independent of the sample size as it was expected. Moreover, we can see

that even for small datasets RM-HMC has superior mixing properties when
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compared to the Gibbs sampler.

3.7 Approximate Bayesian Inference

In the previous sections we have seen methods that in the limit of infinite

samples can produce exact results. However these methods are computa-

tionally demanding and they often require human intervention. For example

tuning the algorithms requires several pilot runs and monitoring of the ac-

ceptance rate. Moreover, in order to check convergence to the stationary

distribution, multiple chains have to be run and the variance within and

across chains need to be monitored, see Brooks & Gelman (1998) for ex-

ample. In this section we consider approximate methods for obtaining the

posterior distribution and, in particular, Variational Inference (Jordan et al.

1998).

Variational inference, although has its origins in the mean field theory of

statistical physics (Parisi 1988), has been recently popularised in the Machine

Learning and Bayesian statistics communities for solving large and computa-

tionally demanding problems. In contrast to MCMC algorithms, variational

inference does not produce samples from the posterior rather it provides an-

alytical approximations by assuming that the posterior factorizes between

sets of variables or has a specific parametric form.

More formally, for a target posterior p(Θ|X) we assume that can be

approximated by q(Θ) and we can rewrite the log marginal using Jensen’s
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inequality as

log p(X) = Lb(q) + KL(q, p), (3.25)

where

Lb(q) =

∫
q(Θ) log

{
p(X,Θ)

q(Θ)

}
dΘ, (3.26)

KL(q, p) = −
∫
q(Θ) log

{
p(Θ|X)

q(Θ)

}
dΘ. (3.27)

Equation (3.26) is a lower bound on the marginal and Equation 3.27 is the

KL divergence between the approximate and the true posterior. We can see

from Equation 3.25 that by maximising the lower bound the KL divergence

is minimised and when the KL divergence vanishes then the approximate

posterior is equal to the true posterior distribution.

Variational inference considers posterior approximations q(Θ) that fac-

torize between sets of variables as

q(Θ) =
M∏

i=1

qi(Θi)

To obtain an analytical approximation for each factorized distribution qj(Θj)

that maximise the lower bound we can substitute the above expression in

Equation (3.26) and by considering all terms involving qi, i 6= j fixed we can
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rearrange terms to get:

Lb(q) =

∫ ∏

i

qi(Θi)

{
log p(X,Θ)−

∑

i

log qi(Θi)

}
dΘ

=

∫
qj(Θj) log p̃(X,Θj)dΘj −

∫
qj(Θj) log qj(Θj)dΘj + const

= KL(qj(Θj)|p̃(X,Θj)) + const, (3.28)

where

log p̃(X,Θj) =

∫
log p(X,Θ)

∏

i 6=j

qi(Θi)dΘi = Ei 6=j [log p(X,Θ)] , (3.29)

is the expectation of the joint log likelihood with respect to the approximate

distributions qi, i 6= j. From Equation (3.28) we see that the lower bound

with respect to the approximate distribution qj is maximised when the KL

divergence with respect to the expectation (3.29) is minimised.

In the variational inference framework the factorisation is constructed in

such a way that the expectations in (3.29) can be evaluated analytically. Al-

though this restricts us in considering only conjugate priors, it is analytically

convenient since the optimal solutions of the approximate posteriors are then

equal to the expectations in Equation (3.29) which are frequently referred to

in the literature as variational distributions.

Finally, since each variational posterior qj is optimised by considering

all other distributions qi, i 6= j fixed, an iterative algorithm similar to EM

that updates each variational posterior conditioned on the rest guarantees

convergence of the lower bound to a local maximum. The general algorithm
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for variational inference, Variational Expectation Maximisation (VEM) is

given in Algorithm 6.

Algorithm 6: Variational Expectation Maximisation

1: Inititialise qj(Θj) for all j ∈ {1, . . . ,M}
2: repeat
3: for j = 1 to M do
4: qj(Θj) =

∫
log p(X,Θ)

∏
i 6=j qi(Θi)dΘi

5: end for
6: until convergence

3.7.1 Variational Inference for Gaussian Mixtures

For mixture models the integrals in Equation (3.29) are not analytically

tractable even when conjugate priors are considered due to the summation

over components in Equation (3.2). Here we follow the same treatment as

in (Bishop 2006, Chap. 7) and Nasios & Bors (Aug. 2006) to obtain the

variational posteriors for the mixture model parameters. As discussed in

Section 3.4.3 a completion of the posterior p(Θ|X) can be constructed by

introducing the latent variables Z associating observations to components.

Treating Z as parameters, the joint posterior p(Θ,Z|X) can be approxi-

mated by a variational distribution which factorizes as q(Θ,Z) = q(Θ)q(Z).

Therefore the only assumption made is that the posterior factorizes between

latent variables and parameters.

Using the general result of equation (3.29) we can obtain the variational

posteriors for the latent variables and model parameters (Bishop 2006, Chap.

7). However, due to the assumed factorisation, the conditional independence
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as expressed by the graphical structure in Figure 3.1 and the prior, the

variational posterior can be further factored as a product of independent

variational posteriors with form:

q(Z,Θ) = q(π)

(
N∏

n=1

q(zn)

)(
K∏

k=1

q(µk,Σk)

)
.

Note that this factorisation is not another simplifying assumption rather

is induced by the choice of prior and variable independence. Finally, the

variational posteriors take the form of a Multinomial for the latent vari-

ables, Dirichlet for the mixing coefficients and Normal-Inverse Wishart for

the means and covariance matrices. More formally

q(π) = D(π|p), (3.30)

q(zn) = M(zn|1, rn,1, . . . , rn,K), (3.31)

q(µk,Σk) = N
(
µk|mk, β

−1
k Σk

)
IW (Σk|W k, vk) . (3.32)

The parameters of the variational posteriors are

rn,k = ρn,k/
K∑

k′=1

ρn,k′ , pk = a0 + nk, vk = v0 + nk,

mk =
m0β + nkx̄k

βk
, βk = β0 + nk,

W k = W−1
0 + nkV k +

nkβ0
nk + β0

(x̄−m0)(x̄−m0)T ,
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where we have defined

log ρn,k = Eπk [log πk]−
1

2
EΣk

[log(det(Σk))]−
D

2
log(2π)

− 1

2
Eµk,Σk

[
(xn − µk)TΣ−1k (xn − µk)

]
, (3.33)

nk =
N∑

n=1

Ezn,k [zn,k], (3.34)

x̄k =
1

nk

N∑

n=1

Ezn,k [zn,k]xn, (3.35)

V k =
1

nk

N∑

n=1

Ezn,k [zn,k](xi − x̄k)(xi − x̄k)T . (3.36)

It is interesting to note here the similarity of the variational posteriors

with the conditional distributions for the Gibbs sampler in Section 3.4.3. In

fact the variational distributions for mixture models are the same as the full

conditionals with the exception that for each variational posterior the ex-

pectations with respect to all other variables are taken. The expectations in

equations (3.33-3.36) are with respect to the variational posteriors (3.30-3.32)

and can be calculated analytically (Bishop 2006, Chap. 7). Thus the VEM

algorithm can be seen as an approximation to the Gibbs sampler where in-

stead of drawing samples, a point estimate of the variational parameters that

maximises the lower bound is obtained. The VEM algorithm for Gaussian

mixture models is given in Algorithm 7.

By adopting the variational inference framework we can obtain approxi-

mate estimates of the posterior without the need of running multiple MCMC

chains and tuning parameters other than selecting appropriate prior hyper-

parameters. Moreover, the variational posteriors also allow us to calculate
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Algorithm 7: VEM-GMM

1: Initialise pk, βk, vk,mk,W k

2: repeat
3: {Update q(Z)}
4: Calculate log ρn,k, equation (3.33)

5: rn,k = ρn,k/

K∑

k′=1

ρn,k′

6: {Update q(Θ)}
7: Calculate nk, x̄k,V k, equations (3.34-3.36)
8: pk = a0 + nk, vk = v0 + nk, βk = β0 + nk

9: mk =
m0β + nkx̄k

βk

10: W k = W−1
0 + nkV k +

nkβ0
nk + β0

(x̄−m0)(x̄−m0)T

11: until convergence

analytically the predictive density in contrast to Monte Carlo numerical es-

timates required when only samples from the posterior are available.

For Gaussian mixture models the predictive density for new samples x∗

can be calculated by marginalising the parameters with respect to the vari-

ational posteriors giving

p(x∗|X) =
K∑

k=1

∫ ∫ ∫
πkN (x∗|µk,Σk)q(π,µ,Σ)dπdµdΣ

=
1

p̂

K∑

k=1

pkSt(x∗|mk,Λk, νk + 1−D), (3.37)

where p̂ =
∑K

k=1 pk, St(·) is the multivariate Student t distribution and

Λk =
(νk + 1−D)βk

1 + βk
W−1

k .
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3.8 Model Selection

In this section we briefly discuss methods for Bayesian model selection in the

context of mixture models, i.e. selecting the number of components K. As

discussed in Section 3.2, different models can be compared based on their

marginal likelihoods
∫
p(X|Θp(Θ)dΘ by calculating the Bayes factor

B1,2 =
p(X|M1)

p(X|M2)
,

for two competing models M1 and M2. In the context of mixture models

p(X|M1) and p(X|M1) correspond to the marginal likelihoods of models

with different number of components. Once the Bayes factor is computed

its value can be interpreted using Table 3.4 provided by Kass & Raftery

(1995) which gives the evidence in favour of the first model M1. Finally the

marginal likelihoods can be obtained by utilising samples from the posterior

and compute the harmonic mean of the likelihood values

∫
p(X|Θ)p(Θ)dΘ =

{
1

S

S∑

t=1

p(X|Θt)
−1

}−1
,

where S is the number of samples from the posterior. For more details see

Newton & Raftery (1994).

As it is clear from the above, the standard method for Bayesian model

selection involves running several chains for different models and computing

multiple Bayes factors, one for each pair of competing models. As this is

a computationally demanding task an alternative proposed in Green (1995)
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is to construct MCMC samplers which jump between parameter subspaces

of different dimensionality thus allowing to obtain samples from effectively

all possible models. In the reversible-jumbs scheme the model identifier, i.e.

K in the context of mixture models, essentially becomes part of the model

parameters and appropriate steps to add, remove, split or merge components

are added at each iteration of the MCMC sampler. Implementing such steps

however is far from trivial when multivariate components are considered since

all steps have to leave the overall dispersion constant and the covariance, or

precision matrices, also need to remain positive definite. Dellaportas & Papa-

georgiou (2006) suggest constructing such steps using random permutations

of the covariance matrices’ eigen-vectors. The computation of eigen-vectors

for each covariance matrix at each MCMC iteration restricts however the

applicability of their method to problems with a relatively small number of

dimensions due to the computational overhead.

Similarly, in the Variational approximation framework the VEM algo-

rithm has to be run for several models with different number of components

and compare the lower bound provided that a term of logK! is added to

account for the K factorial equivalent modes due to the weak identifiability

of mixture models (Jasra et al. 2005).

In this Thesis we consider an alternative approach which does not require

multiple runs of the VEM algorithm. Initially the algorithm is started using

a large number of components, for example the number of observations. The

prior over the mixing coefficients π is then set such that a-priori sparse so-

lutions are favoured. This can be achieved by setting the α hyper-parameter
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for the Dirichlet prior to a small value such as 10−3 as discussed in Section

3.3. After convergence of the VEM algorithm we can can use the variational

posterior q(π) in Equation (3.30) for interpretation. For a mixing coefficient

πk the variational posterior mean and variance are:

E[πk] =
pk∑K
k=1 pk

, Var[πk] =
pk(p̂− pk)

(p̂)2 (p̂+ 1)

where pk = α0 + nk and p̂ =
∑K

k=1 pk. When the posterior mean is close to

0 and the variance is very small then we can say that we are almost certain

that the component is not contributing to the model and can therefore be

eliminated. Also notice that when nk = 0 then the posterior mean is almost

0 and the variance is very small since a0 = 10−3. nk corresponds to the

expected number of observations associated with the kth component and we

can see that components which do not “explain” any data are effectively

eliminated. Finally from Equation (3.37) we can also see that components

with nk = 0 have negligible effect on the predictive density.

The methodology discussed in the previous paragraph is similar to the

method proposed by Bishop & Corduneanu (2001) which also requires a

single run of the VEM algorithm to determine the number of components.

However, in Bishop & Corduneanu (2001) the authors do not impose a prior

distribution over mixing coefficient πk and they treat them as free parameters

which are optimised using type II maximum likelihood. The equations pre-

sented in Section 3.7.1 remain unchanged with the only difference that there

is no variational posterior for π while all other variational posteriors are

conditioned on π. Thus the variational lower bound now approximates the
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B1,2 evidence against M2

1 - 3 Not worth more than a bare mention
3 - 10 Substantial

10 - 100 Strong
> 100 Decisive

Table 3.4: Interpretation of Bayes factor

marginal conditional on π, i.e. p(X|π). The VEM algorithm also remains

largely unchanged since the only modification is that in step 8 of Algorithm

7 instead of updating the parameters pk for the variational posterior over

π, the free parameters πk are updated using πk = 1
N

∑N
n=1 rn,k. At every

iteration of the algorithm components with πk bellow a predefined threshold

are eliminated.

3.9 Discussion

In this chapter we have discussed several methods for performing inference

over parameters of Gaussian mixture models and developed the methodol-

ogy for applying a recently proposed family of MCMC algorithms, namely

Riemann manifold Langevin and Hamiltonian Monte Carlo, on such models.

The experiments in this chapter suggest that Riemann manifold MCMC al-

gorithms can be more efficient than the standard Gibbs sampler and require

almost no tuning.

Despite these promising findings however, MCMC algorithms still pose

several practical difficulties when they are considered for information retrieval

models. Firstly, monitoring convergence to the stationary distribution re-
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quires several chains to be run in parallel and measure within and across

chains variance to compute convergence statistics (Brooks & Gelman 1998).

Secondly, after convergence, several samples from the posterior are required

in order to obtain reliable estimates of the necessary expectations such as

predictive densities. Therefore their application remains limited to problems

with limited data where scalability is not an issue. Moreover, numerical in-

tegration should be performed for each new observation for which we need

to calculate its density given the observed training data, and therefore their

application in situations when such quantities need to be estimated in almost

real time is also limited. Informational retrieval systems operate in almost

real time when responding to user queries while they also need to scale well

with the size of the underlying collection.

In the last sections we also discussed a family of methods which approx-

imate the true posterior and provide analytical solutions when conjugate

priors are assumed. The Variational EM algorithm for mixture of Gaussians

is very simple to implement and its computational complexity is almost the

same as the Expectation Maximisation algorithm for maximum likelihood

estimation. Moreover, the number of mixture components can be identified

without requiring running the algorithm for several different models. There-

fore variational approximations will be considered for the rest of this thesis

when inference of mixture model parameters is required.



Chapter 4

Probabilistic Content Based

Image Retrieval

Probabilistic models for information retrieval are based on decision and prob-

ability theory and thus they provide guidance on how to optimally rank doc-

uments with respect to user queries (Robertson & Zaragoza 2009). Despite

their successful applications on web and text document retrieval, their appli-

cation on retrieving multimedia documents such as images and videos with

no associated text information or meta-data has not been widely explored

until recently. Early content based image retrieval systems where based on

similarity and distance functions designed specifically for the underlying im-

age representation and feature extraction method (Smeulders et al. 2000).

Recently, Chum et al. (2008) proposed a methodology to represent images

as unordered sets of discrete descriptive salient features which are analogous

to terms for text documents and thus indexing and ranking models for in-

92
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formation retrieval can be directly applied. The earlier methods proposed

by Vasconcelos (2001), Westerveld et al. (2003) can be seen as a generalisa-

tion of the methodology proposed in Chum et al. (2008) where instead they

create a representation of images similar to text documents by employing

generative probabilistic models to directly model the density of continuous

features. This methodology has been shown to be very general and has also

been applied to audio retrieval (Turnbull et al. 2008).

In this chapter we firstly show how the models of Chum et al. (2008)

and Vasconcelos & Lippman (2000) can be formally derived as special cases

of a more general methodology employing the predictive densities of image

models (Zaragoza et al. 2003). This will allow us to make more clear the

relationships and differences of the two approaches. The methodology will

also allow us to derive new ranking functions for both approaches which are

shown to be theoretically and experimentally superior while maintaining the

same computational complexity. Finally, we show how the computational

complexity associated with the semi-parametric density models can be re-

duced by also modelling the query image density and rank images based

on the divergence between the predictive densities of collection and query

images.

4.1 Probabilistic Image Retrieval

In this thesis, we follow a generative approach, in analogy to the one used in

the language modelling framework for Information Retrieval (Ponte & Croft
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1998), to derive probabilistic ranking functions for Content Based Image Re-

trieval (CBIR). In this framework, a generative probabilistic model p(x|θI)

with image specific parameters θI is defined for the features x of each image

I in an image collection. Inference over parameters is performed by fitting

each model using the likelihood p(I|θI) during indexing. Then for a previ-

ously unseen query image Q, images in the collection are ranked based on

the likelihood that the query image is generated from the corresponding gen-

erative process p(Q|θI). The image specific parameters θI can be estimated

during the indexing of the collection using a Maximum Likelihood (ML) or

Maximum A Posteriori (MAP) procedure

θ̂
(ML)

I = arg max
θI

p(I|θI), θ̂
(MAP )

I = arg max
θI

p(I|θI)p(θI)

where p(θI) is a prior distribution encoding a-priori knowledge about the

parameters.

4.1.1 The Multinomial Dirichlet Model

A popular methodology for image retrieval is to create a representation of

images that is similar to that of text documents and then apply directly in-

formation retrieval ranking models. For example, Chum et al. (2008) extract

local SIFT features (Lowe 2004) from a collection of images and quantise

them using K-means to form a visual vocabulary. SIFT features from an

image are mapped to their closest visual term from the vocabulary and an

image is then represented as an unordered set of visual terms. In their work,
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images in the collection and queries are defined as sparse vectors counting the

frequency of visual terms, i.e. I = {n1,I , . . . , nT,I} and Q = {n1,Q, . . . , nT,Q}

respectively, where nt,I is the frequency of the tth term in image I. For

retrieving images they use a TF-IDF weighting scheme.

In this chapter we will cast their model in a probabilistic framework in

order to highlight the similarities and differences in the underlying modelling

assumptions. Although, the vector space model with TF-IDF weighting

scheme might initially seem unrelated to the generative model discussed here,

there are interesting connections between the two as the term frequency

of images is encoded by the likelihood function and the inverse document

frequency can be encoded by the prior. These connections are well known

for ad-hoc information retrieval, see Zhai & Lafferty (2001) for a discussion.

The distribution of terms in an image under this representation is mod-

elled as a multinomial distribution M(x|θI) and the ML estimate of the

parameters is θ̂
(ML)
t,I = nt,I/

∑
t′ nt′,I . Due to the sparse nature of this rep-

resentation the parameters are usually over-fitted which results in several

numerical difficulties. For this reason smoothing is employed in the form of

a prior distribution over the model parameters. A Maximum A-Posteriori

(MAP) estimate can be obtained by assuming a Dirichlet prior distribution

over the parameters and results in θ̂
(MAP )
t,I = (nt,I+αt−1)/

∑
t′(nt′,I+αt′−1).

The prior hyper-parameters αt can be set to reflect a-priori knowledge be-

fore an image I is observed. One approach is to set them to the average

term frequencies in the collection, i.e. αt =
∑

I nt,I/
∑

t′,I′ nt′,I′ resulting in

the Bayes’ Smoothing estimate, however other options are equally valid, see
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(Zaragoza et al. 2003) and (Zhai & Lafferty 2001) for a discussion. The query

likelihood for this model is then:

p(Q|θ̂(MAP )

I ) =
(
∑

t nt,Q)!∏
t nt,Q!

∏

t

θ̂
(MAP ) nt,Q
t,I .

The above expression can be further simplified by taking its logarithm;

since it is a convex function and it doesn’t affect the ranking; splitting terms

for which nt,I = 0, and by omitting any terms that depend only on Q; since

they will be constant for all images in the collection. The final ranking

function is then

log p(Q|θ̂(MAP )

I ) ∝
∑

{t:nt,Q>0∧nt,I>0}

nt,Q log

(
nt,I
αt − 1

+ 1

)

− log

(∑

t′

nt,I + αt − 1

) ∑

{t:nt,Q>0}

nt,Q, (4.1)

which can be efficiently implemented using an inverted index data structure

since it relies on terms which are common between the collection image I

and the query Q.

4.1.2 The Continuous Mixture of Gaussians Model

The method presented by Westerveld et al. (2003) and Vasconcelos (2001) can

be seen as a generalisation of the method of Chum et al. (2008) that avoids

quantisation errors by using a semi-parametric model to model directly the

density of continuous image features. For each image a finite multivariate
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Gaussian mixture model of the form

p(x|θI) =
K∑

k=1

πkN (x|µk,Σk)

is employed to model the density of Discrete Cosine Transform (DCT) coeffi-

cients extracted from a uniform grid over an image. In this setting an image

I is represented by an unordered set of vectors in RD with D the number of

DCT coefficients and the parameters are θI = {πk,µk,Σk : k ∈ {1, . . . , K}}.

In their study Maximum Likelihood estimates are obtained by using the EM

algorithm for finite mixture models, Algorithm 1 introduced in Chapter 3,

during indexing of the collection.

In Westerveld et al. (2003) smoothing with a background model is also

discussed as an alternative in order to obtain a regularised estimate for the

parameters. In analogy with the Bayes’ Smoothing estimate discussed in the

previous section, a MAP estimate can also be obtained by using a conjugate

prior, see Section 3.3, with minor modifications to the EM algorithm.

The log of the query likelihood under this model is

log p(Q|θ̂I) =
∑

x∈Q

log

(
K∑

k=1

π̂kN (x|µ̂k, Σ̂k)

)
(4.2)

where θ̂I can be an ML or MAP estimate obtained by the EM algorithm.

Unlike the Bag-of-Terms approach the scoring function (4.2) cannot be sim-

plified further.

Moreover, the number of mixture components must be set in advance

and is constant for all images in the collection. Westerveld et al. (2003)
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conducted experiments with different settings for the number of components

on the Corel 5K collection and found that 8 components are optimal for this

dataset while results are not very sensitive for values around 8. We argue

that this is the case because the number of components is kept constant

for all images in the collection. Images with complex structure will require

more components to accurately describe their density, while images with less

complex structure must be modelled with fewer components in order to avoid

over-fitting. If the number of components for each image in the collection is

known in advance, setting the constant K to their mean is a good strategy

to balance between over and under fitting. However, this is unlikely in real

scenarios and this constant has to be optimised with an external procedure.

4.2 Predictive Densities for Image Ranking

The parameters θI in the previous section have to be estimated by fitting

the model to the observed data of each image I and taking into account

any prior information. Even for very simple models where the maximum

can be uniquely identified there will be an associated variance around this

estimate quantifying the uncertainty due to model miss-specification, noisy

observations and finite data samples. For making predictions, i.e. calculating

the likelihood that the query image is generated by the same generative

process as an image in the collection, this uncertainty has to be taken into

account. The uncertainty for the parameters is encoded in their posterior

distribution and it can be marginalised to give the predictive density.
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The ranking functions using the query likelihood based on ML or MAP

point estimates are in fact approximations to a ranking function employing

the predictive densities of image models. In particular we can write p(x|I)

as

p(x|I) =

∫

θI

p(x|θI)p(θI |I)dθI , (4.3)

where p(θI |I) is the posterior of the model parameters obtained by Bayes’

theorem p(θI |I) = p(I|θI)p(θI)/p(I). We can then use p(Q|I), i.e. the pre-

dictive likelihood of the query conditioned on the image observations alone to

rank images in the collection. In cases where the posterior is sharply peaked

around some value θ̂I then p(x|I) ≈ p(x|θ̂I) and thus it is equivalent to the

ML or MAP ranking functions. However, when the model is miss-specified

or data are noisy or scarce, the posterior is broad and the uncertainty is

taken into account providing regularised estimates of relevance. Moreover,

the ranking functions obtained by the predictive densities in (4.3) are no

longer sensitive to parameter estimates as they are not dependent on θI .

However, they rely on the ability to accurately estimate the integral in (4.3)

and the posteriors p(θI |I) for all images in the collection.

Zaragoza et al. (2003) have used the framework of predictive densities to

derive new ranking functions for ad-hoc retrieval based on unigram language

models and showed that a significant improvement over MAP estimates and

smoothing models can be achieved. The Bag-of-Terms approach discussed

in the previous section is equivalent to a unigram language model thus its

extension to the predictive densities framework is trivial. However, this is

not the case for the semi parametric mixture model and thus we will have
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to resort to the methods described in Chapter 3 to obtain the predictive

densities.

4.2.1 Predictive likelihood for the Multinomial Dirich-

let model

For the Bag of Terns model discussed in the previous section, the posterior

and predictive densities can be easily calculated in closed form provided that

a Dirichlet prior is specified. In particular, the posterior is also a Dirichlet

of the form D(θI |n·,I + α), where n·,I is the vector of term frequencies in

image I, and the predictive density for a query image Q is

p(Q|I) =
(
∑

t nt,Q)!∏
t nt,Q!

Γ (
∑

t nt,I + αt)

Γ (
∑

t nt,Q + nt,I + αt)

∏

t

Γ (nt,Q + nt,I + αt)

Γ (nt,I + αt)
. (4.4)

Equation (4.4) can be simplified by calculating its log, as it is a convex

function and thus it does not affect ranking; removing terms which depend

only on nt,Q, as they are constant for all images in the collection; and finally

using the fact that Γ(n) = (n − 1)! for all positive integers n to give the

following ranking function

log p(Q|I) ∝
∑

{t:nt,Q>0∧nt,I>0}

nt,Q∑

g

log

(
1 +

nt,I
at + g − 1

)

−

∑
t′ nt′,Q∑

j=1

log

(∑

t′

nt′,I + at′ + j − 1

)
. (4.5)

We can see from (4.5) that the function can be efficiently implemented
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using a inverted index data structure although its computational complexity

scales with the number of terms in the query as opposed to (4.1) which scales

with the number of terms common between the query and the image in the

collection.

4.2.2 Predictive likelihood for the Gaussian mixture

model

Unfortunately the posterior and the predictive density do not have a closed

form for mixture models and thus the above methodology cannot be applied

directly to the model of Westerveld et al. (2003). However we can use the

methods described in Chapter 3 to either obtain a Monte Carlo numerical

estimate or analytically approximate the integral in (4.3). We discuss both

options here but we experiment only with the latter as it requires less tuning

and is less computationally demanding.

We start by imposing a conjugate prior over the model parameters θI =

{πk,I ,µk,I ,Σk,I : k ∈ {1, . . . , K}} as discussed in Section 3.3. Note the simi-

larity of this prior with the prior used for the Multinomial-Dirichlet model in

the sense that it takes into account the collection statistics and the average

image in the collection. We can then setup a Markov Chain for each image

in the collection in order to draw independent samples from the posterior

distributions p(θI |I). For this we can use any of the MCMC algorithms of

Chapter 3 but we should stress that more efficient Riemann manifold MCMC

algorithms will require fewer samples to converge and also fewer samples will
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have to be thrown away in order to get independent samples due to the

smaller autocorrelation of the chains.

We denote a sample from the posterior of image I as SI = {θ̂1,I , . . . θ̂N,I}.

The samples can be stored in a database along with their corresponding image

identifier in order to be used later for retrieval. The Monte Carlo estimate

of the query predictive likelihood for image I is then

log p(Q|I) ≈
∑

x∈Q

log
1

N

N∑

i=1

p(x|θ̂i,I)

=
∑

x∈Q

log
1

N

N∑

i=1

Ki,I∑

k=1

π̂
(i)
k,IN (x|µ̂(i)

k,I , Σ̂
(i)

k,I). (4.6)

We can see that all the information about the posterior is contained in the

posterior samples SI . Moreover, the corresponding Monte Carlo error de-

creases as 1/
√

(N), i.e. to reduce the error by half we have to increase the

sample size by 4. For this and due to the sum over all posterior samples,

obtaining the query likelihood is a computationally demanding task. Finally

notice that the number of components is image dependent and posterior

samples do not have to be of the same dimension.

An alternative to Monte Carlo integration is to approximate the posterior

distribution p(θI |I) by resorting to the framework of variational inference

(Attias 2000) discussed in Section 3.7. For this we have to augment the

model with the latent indicator variables ZI associating image observation

to mixture components. The parameters are then ΘI = {θI ,ZI} and the
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augmented likelihood function is

p(I|ΘI) =
∏

x∈I

K∏

k=1

[πkN (x|µk,Σk)]
zi,k .

The approximate posteriors obtained by the variational treatment of Gaus-

sian mixture models are

q(zi) =M(zi|1, ρi,1, . . . , ρi,K), q(µk) = N
(
µk|mk, (β + nk)

−1Σk

)
,

q(Σk) = IW (Σk|W k, nk + v0) , q(π) = D(π|a0 + nk),

and ρ,m,W , nk are the parameters of the approximate posteriors which are

optimised by the variational EM algorithm, Algorithm 6. These parameters

are stored in a database along with the corresponding image identifier in

order to be used later for retrieval.

Finally, substituting the above expressions into (4.3) we can analytically

evaluate the integral and obtain the predictive density which takes the form

of a mixture of Student-t densities. The ranking function for a query image

is then

log p(Q|I) =
∑

x∈Q

log
1∑K
k=1 pk

K∑

k=1

pkSt(x|mk,Λk, vk + 1−D), (4.7)

where pk = a0 + nk, vk = v0 + nk and Λk = (vk+1−D)(β+nk)
1+β+nk

W−1
k and St(·) is

the Student-t density.

Moreover, we can now estimate the number of mixture components K

with a single run of the the VEM, Algorithm 7. The method is based on
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initially over-estimating the number of components and setting K to a large

value. Selecting a Dirichlet prior for the mixing coefficients π such that sparse

solutions are preferred, i.e. setting α0 to a value close to zero, the variational

EM algorithm converges to solutions where many of the components are

identical to the prior distribution with nk = 0 and thus they can be removed

as they do not affect the result in (4.7). See Section 3.7.1 and Bishop &

Corduneanu (2001) for more details.

4.3 Relations with other models

The Gaussian mixture model discussed in the previous sections can be seen

as a generalisation of the bag-of-terms approach for content based image

retrieval. In fact, the histogram used to represent images in the the bag-

of-terms representation is an estimate of the distribution of local feature

descriptors. A histogram is known to be a very crude representation of con-

tinuous densities however. Thus, it would appear that by improving this

density representation to more accurately represent the underlying observa-

tion space, we could improve the retrieval effectiveness.

Moreover, quantising a high dimensional space using a finite set of ob-

servations often leads to bins, or clusters, which capture large regions of the

feature space. During histogram generation the position of the point in each

cluster region is not taken into account and thus the points near the bound-

aries will often contribute to the wrong histogram bins. In order to solve this

problem, previous studies (Jegou et al. 2009, Philbin et al. 2008) have consid-
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ered allowing one point to contribute to more than one neighbouring clusters

based on its position. In the mixture model representation by definition one

point contributes to multiple mixture components while the covariance of the

component is also taken into account when calculating point membership.

Applying the k-means algorithm to cluster a large number of points, usu-

ally in the order of millions, into a large number of clusters, in the order of

thousands, is a computationally demanding task. Also, quantisation requires

comparing a local feature descriptor with all terms in the vocabulary. In or-

der to reduce the computational complexity associated with k-means and

quantisation several authors (Nister & Stewenius 2006, Philbin et al. 2007)

have considered creating a vocabulary tree. K-means is initially applied to

all local descriptors in the collection to cluster them into a small set of clus-

ters and then the algorithm is applied recursively to further cluster points

within these groups. However, this hierarchical quantisation is an approxi-

mation to the clustering obtained by the standard K-means algorithm and

thus it can further degrade retrieval performance. In contrast by using the

mixture model representation the densities for each image can be estimated

in parallel.

In the studies of Westerveld et al. (2003) and Vasconcelos & Lippman

(2000) no smoothing is considered and a maximum likelihood estimate of the

model parameters is used. Smoothing plays an important role in text in-

formation retrieval since maximum likelihood estimates over-fit the observed

data and assign very small or zero probability to new queries. In Westerveld

et al. (2003) the authors argue that smoothing is not required since Gaussian
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densities have infinite support. In practice however, and especially in high

dimensions the density function for points far from the mean quickly becomes

numerically indistinguishable from zero. This can lead to numerical difficul-

ties such as over-flows and under-flows when calculating the query likelihood

which are often easily overlooked. The generalisation into the predictive like-

lihood framework provides for two sources of smoothing. One through the

use of a prior over the parameters as in the Multinomial-Dirichlet model and

a second by marginalising the uncertainty encoded in the posterior.

Another related issue with the maximum likelihood estimation approach

in Westerveld et al. (2003), Vasconcelos & Lippman (2000) is model selection.

The number of components in these studies is empirically found using cross

validation. Moreover the number of components for all image models is set to

a single value for the whole collection. This can result in over-fitting images

with simple structure where only a few components are necessary but under-

fitting images with more complicated structure where more components are

needed to represent the variability of features. In the variational EM the

number of components is determined automatically for each image model by

Bayesian regularisation. Therefore it is expected that the density models will

represent better the true density of image features and thus better retrieval

performance can be achieved.

Finally, it is important to mention that although the indexing phase of

the Bag of Terms representation is computationally expensive, matching and

ranking can be efficiently implemented by an inverted index data structure.

On the contrary, for the mixture model representation the query likelihood
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has to be evaluated for all images in the collection. Additionally, the pre-

dictive likelihood has to be evaluated for all local feature descriptors in the

query image.

4.4 Modelling the Query Density

In text information retrieval an alternative method for estimating relevance

in the language modelling framework is to assume that the query is also

generated by an underlying query model. Therefore, the query model also

represents the distribution of the query features and thus relevance estimation

suffices in calculating the divergence between the query and the document

distributions. The assumption of a query model has also theoretical impli-

cations since query-document matching is no more inherent in the retrieval

model itself (Robertson & Zaragoza 2009). Nevertheless, the query model

approach has seen many practical applications in text information retrieval

and for the model presented here it can allow for more efficient relevance

estimation.

In Section 4.2.2 the scoring function involves calculating the predictive

density of each query feature vector for all images in the collection. Since

the query is also an image, the number of feature vectors can be in the order

of thousands and thus evaluation of the scoring function is computationally

demanding. By adopting a query model approach the number of parameters

of the query model is smaller than the number of query vectors and for some

parametric densities the KL divergence can be computed analytically thus
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significantly reducing the computational cost for estimating relevance.

Given a document model and a query model relevance can be estimated

by the KL divergence between the two densities. That is

KL [p(x|Q), p(x|I)] =

∫
p(x|Q) log

p(x|Q)

p(x|I)
dx

In the retrieval model presented in this chapter p(x|Q) and p(x|I) correspond

to mixtures of multivariate Student t distributions and the KL divergence

does not admit a closed form expression for mixtures in general. Vasconcelos

& Lippman (2000) propose an asymptotic approximation for estimating the

KL divergence between mixtures of Gaussian densities. The approximation

heavily relies on two assumptions. The first assumption is that mixture

components of a single model do not overlap. The second assumption is that

a component of the query model overlaps with only one component of the

image model. Westerveld & de Vries (2003) performed a Monte Carlo study

on the TrecVid collection and showed that the first assumption in practice

can be satisfied due to the high dimension of the feature space. However, the

second assumption is violated in most of the cases and this is also reflected

in their experimental results. Moreover, several approximations to the KL

divergence for mixture models are compared in Hershey & Olsen (2007).

In this section the use of a kernel function between densities, namely the

Probability Product Kernel (PPK) (Jebara et al. 2004), is proposed in order

to estimate relevance of an image given a query model. The reason is twofold.

Firstly the probability product kernel can be calculated explicitly for mix-

tures with components in the exponential family of distributions. Therefore
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the computational complexity is reduced since no numerical estimates are

required. Secondly, the probability product kernel is a valid positive definite

kernel function between probability densities (Jebara et al. 2004). This means

that PPK computes a generalised inner product in the space of probability

densities embedded in the Hilbert space and thus it can be considered as a

similarity between two densities. Furthermore, the kernel function can be

used in kernel learning machines, such as Support Vector Machines (SVM),

for classification, something that is exploited in the next chapter.

The probability product kernel between query and image densities is

K [p(x|Q), p(x|I)] =

∫
p(x|Q)ap(x|I)adx.

Where a is a parameter typically set to 1 or 1
2

corresponding to the expected

likelihood kernel and the Bhattacharyya kernel respectively. The integral

in the above expression can be explicitly calculated when the densities are

mixtures with components in the exponential family. However that does

not hold for mixtures of multivariate Student t densities and thus a further

approximation is proposed.

First note the following result

lim
v→∞

St(x|m,Λ, v) = N (x|m,Λ−1).

This means that in the limit of infinite samples the Student t distribution is

equal to the Gaussian. An illustration of this result is shown in Figure 4.1.

In order to efficiently calculate the PPK for the query and image densities
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the Student t components in the predictive densities p(x|Q), p(x|I) will be

approximated by multivariate Gaussian components. It is important to note

that this similar to a MAP estimate procedure.

The approximation can be justified as follows. With the use of a sparsi-

fying prior on mixture weights πk most of the components will be associated

with many observations thus nk will be large. Moreover, by removing com-

ponents with nk = 0 since they don’t contribute to the predictive density

there will be no components with degrees of freedom v = v0. Therefore the

Student t components in the query and image predictive densities can be

reasonably approximated by Gaussian densities. The accuracy of this ap-

proximation will be reflected in the retrieval results and thus it is expected

that the query likelihood approach will perform better than retrieval using

a query model and PPK with the approximations discussed here. However,

the computational complexity associated with evaluating the PPK for mix-

tures of Gaussians is significantly lower than evaluating the query likelihood

directly.

For the rest of this section the approximate predictive densities for a

query and an image will be denoted by p̃(x|Q) and p̃(x|I) while the mix-

ture components approximated by Gaussian densities will be denoted by

p̃k(x|Q), p̃k′(x|I). Furthermore the parameters of the predictive densities

will be indexed by Q or I to distinguish between parameters for the query

and the image densities respectively, eg. pQ,k denotes the kth mixture weight

of the query’s predictive density.
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Figure 4.1: Approximating the Student-t density with a Gaussian

The PPK for the approximate predictive densities takes the form

K [p̃(x|Q), p̃(x|I)] =

KQ∑

k=1

KI∑

k′=1

(pQ,kpI,k′)
a k [p̃k(x|Q), p̃k′(x|I)] , (4.8)

that is the sum of PPK kernels between all possible combinations of mixture

components. k [p̃k(x|Q), p̃k′(x|I)] is the PPK for Gaussian components and

follows us (Jebara et al. 2004)

k [p̃k(x|Q), p̃k′(x|I)] = (2π)(1−2a)D/2a−D/2det(Λ†)1/2det(ΛQ,k)
a/2det(ΛI,k′)

a/2

× exp
(a

2

(
mT
Q,kΛQ,kmQ,k +mT

I,k′ΛI,k′mI,k′
))

× exp
(a

2

(
m†

T
Λ†m†

))
,

where Λ† = ((ΛQ,k + ΛI,k′)
−1 and m† = ΛQ,kmQ,k + ΛI,k′mI,k′ . When

a = 1 the above expression further simplifies to

k [p̃k(x|Q), p̃k′(x|I)] = N
(
mQ,k|mI,k′ ,Λ

−1
Q,k + Λ−1I,k′

)
.
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4.5 Experiments

In this section a series of experiments designed to evaluate the models pre-

sented in this chapter are discussed. The main focus is firstly to compare the

ranking functions obtained by the predictive likelihoods and also compare

the Bag of Terns representation with the Gaussian mixture models. This

will validate the arguments made in this chapter, namely that the predic-

tive densities can better represent the true density of image features than

the maximum likelihood solution or the histogram method and that this can

result in improvements in retrieval effectiveness. Secondly, the quality of

the approximations introduced for obtaining the PPK and their effect on

retrieval performance will be analysed.

Table 4.1 shows the names that will be used for the rest of the chapter

when referring to particular algorithms and ranking functions along with

the parameters used. For the Bag of Terms models, BOT-MAP and BOT-

PD, the K-means algorithm was applied with the number of clusters set

to T = 2,000. The Dirichlet prior parameters where set to the average term

frequency in the collection. The number of components for the EM algorithm

used by GMM-PPK and GMM-QL was set to 8. For the variational EM

algorithm used by PDG-PPK, PDG-QL and PD-QL the initial number of

components was set to 40 and after convergence components with nk = 0 were

removed. The prior for the mixture models parameters was set as described

in Section 3.3. Note that for PDG-PPK and PDG-QL the parameters are

estimated using the variational EM algorithm and the Student-t components

are approximated by Gaussians. Finally, the a parameter for the PPK kernels



CHAPTER 4. PROBABILISTIC IMAGE RETRIEVAL 113

Method Name Description Parameters Equation
BOT-MAP Bag of Terms model with a

MAP estimate for the query
likelihood

T = 2,000 (4.1)

BOT-PD Predictive likelihood for the
Bag of Terms model

T = 2,000 (4.5)

GMM-PPK PPK with a ML estimate for
the mixture model

K = 8 (4.8)

PDG-PPK PPK where the predic-
tive density is approximated
with Gaussian components

K = 40 (4.8)

GMM-QL Query likelihood with a ML
estimate for the mixture
model

K = 8 (4.2)

PDG-QL Predictive likelihood ap-
proximated by Gaussian
components

K = 40 (4.2)

PD-QL Predictive likelihood for
mixture models

K = 40 (4.7)

Table 4.1: Abbreviations and short description of methods compared in
the experiments section. The parameters column gives values for any free
parameters while the equation column lists the ranking functions used for
each method.

was set to 1 for both GMM-PPK and PDG-PPK.

4.5.1 Evaluation Dataset and Pre-processing

The image dataset that will be used for the evaluation of the proposed model

is the Corel 5K collection. The dataset consists of 5,000 high quality, pro-

fessionally taken images and is divided into 50 high-level semantic categories

with 100 images each. The high-level categories correspond to images with

a common theme, for example general categories include images from Africa
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or images from Greek isles while there are also more specific categories such

as images of tigers. Moreover, each image is manually annotated with 1 to 5

tags describing objects and concepts in images. In total there are 260 unique

tags in the vocabulary. The dataset is further divided into a set of 4,500

images which can be used as a training collection for optimising any model

parameters and a set of 500 images which can be used for testing purposes.

The 500 test images are selected uniformly from the set of 50 high level

categories and there are 10 images from each category in the test set.

For the retrieval experiments presented in this section only the high level

categories will be used. Each high-level category is treated as a different

information need and each of the 10 images in the test set from the same

high-level category correspond to query instances of the same information

need. In all experiments presented here only the 4,500 training images are

indexed. The 500 test images are used as user queries and for each image a

ranking of the 4,500 image collection is generated.

The collection is pre-processed as follows. A schematic illustration of

the process is also shown in Figure 4.2. Images are scaled in 192 pixels

width and 128 pixels height. The original RGB colorspace is converted to

luminance, blue and red coefficients (LCbCr) by transforming to the YUV

colour space. Images are uniformly subdivided into blocks of 8x8 pixels with

4 pixels overlap in both directions resulting in 1,457 subregions. For each

subregion the Discrete Cosine Transform (DCT) is calculated for each plane

of the LCbCr colour space separately. The DCT coefficients of each plane are

vectorised using a zig-zag scanning algorithm, Figure 4.3, and the vectors are
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Figure 4.2: Data flow diagram of the collection pre-processing phase. The
output of the pre-processing phase is a matrix of 1,457 vectors with dimension
70. See text for more details.

interleaved, Figure 4.4. Exploiting the compression properties of the DCT

transform only the the first 3 coefficients from the chrominance channels are

interleaved with all the luminance coefficients resulting in vectors of 70 scalar

elements. The result of the process is a 70 × 1, 457 matrix for each image

where each column corresponds to one region.

4.6 Results

Table 4.2 summarises the results for the 500 queries in the test set using the

standard information retrieval evaluation measures. Average Precision (AP)

is the average of precisions computed at the point of each relevant image

in a ranking list. Mean Average Precision (MAP) is the mean AP across

all queries. R-Prec is the precision calculated at the position of the last

relevant image in a ranking list and P@N is the precision calculated at the
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Figure 4.3: Illustration of the Zig-Zag scanning algorithm. DC refers to
the first coefficient of the Discrete Cosine Transform with zero frequency on
both directions while ACi,j denotes the coefficient of the ith vertical and jth

horizontal frequency bands. The algorithm is applied to regions from all
colour channels independently.

Nth position of the ranking list. Precision-Recall curves are also shown in

Figure 4.5.

Method MAP R-Prec. P@5 P@10 P@20
BOT-MAP 0.0333 0.0364 0.0441 0.0429 0.0383
BOT-PD 0.0341 0.0375 0.0477 0.0431 0.0387
GMM-PPK 0.0524∗ 0.0674∗ 0.1238∗ 0.1104∗ 0.0994∗

PDG-PPK 0.0534∗ 0.0681∗ 0.1443∗ 0.1242∗ 0.1049∗

GMM-QL 0.0975∗ 0.1280∗ 0.3038∗ 0.2599∗ 0.2179∗

PDG-QL 0.0999 0.1308 0.3070 0.2645 0.2210
PD-QL 0.1165∗ 0.1457∗ 0.3315∗ 0.2836∗ 0.2370∗

Table 4.2: Retrieval results for 500 query images in the test set. ∗ indicates
statistical significance from the results of the previous row using a Wilcoxon
rank-sum test with 1% significance level.

From 4.2 we can see that despite the efficiency and scalability of the Bag

of Terms representation, quantisation errors can negatively impact retrieval

performance. Moreover, the use of the predictive density for the Multinomial-

Dirichlet model improves retrieval performance however results are not sta-
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Figure 4.4: Illustration of the interleaving algorithm. Coefficients from the
chrominance channels above the first frequency band are discarded. rL, rCrB
and rCrR denote the DCT coefficients for the luminance, blue chrominance
and red chrominance channels respectively.

tistically significant.

Directly modelling the density of continuous features in images using

Gaussian mixture models significantly improves retrieval performance at the

cost of the additional computations for calculating the query likelihood for

all images in the collection. Moreover, the approximation of the predictive

density using Gaussian components instead of Student t densities, discussed

above, is not severely degrading performance. It also indicates that on aver-

age the variance around the mode of the posterior is not significantly large

as the PDG-QL ranking function corresponds to a Maximum A-Posteriori

estimate.

Finally, As discussed in the previous sections, both methods using the

Probability Product Kernel perform worst than GMM-QL and PDG-QL

methods as they rely on estimate of the query image densities. However re-

trieval performance is still significantly better than the Multinomial-Dirichlet
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Figure 4.5: Interpolated Precision-Recall curves.

model.

The superior performance of PD-QL method can be attributed to the

following two reasons. Firstly, in contrast to a MAP estimate which provides

a regularised point estimate, the predictive densities provide a regularised

estimate of relevance where the uncertainty associated with model parame-

ters is marginalised. The two approaches will be equivalent if the posterior

is sharply peaked around some values, but when the posterior is broad the

predictive density averages all possible solutions weighted by their posterior

probability. Secondly, the number of mixture components in PD-QL and

PDG-QL methods is automatically determined by the output of the varia-

tional EM algorithm. In contrast, previous approaches (Westerveld et al.

2003, Vasconcelos 2001) set the number of components empirically to a fixed

value for all images in the collection which can result in images with more

complex densities to be under-fitted while others with more simple densities



CHAPTER 4. PROBABILISTIC IMAGE RETRIEVAL 119

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

200

400

600

800

1000

1200

Number of Components

Figure 4.6: Distribution of the number of components K for images in the
collection.

to be over-fitted.

In Figure 4.6 the distribution of the number of mixture components K

across the Corel 5K collection is shown. The distribution is calculated by

the output of the variational EM algorithm for all images. The empirical

distribution can be accurately modelled by a Poisson distribution with mean

8. This confirms the findings of (Westerveld et al. 2003) claiming that 8

components is the optimal setting for the Corel 5K collection as most of the

images can be modelled with 8 components. However, this is a collection

dependent property and we can see how by treating K as a model parameter

we can determine the number of components without resorting to cross-

validation or external optimisation procedures.
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4.6.1 Note on computational complexity

Bag of Terms models require the quantisation of images using a discrete vo-

cabulary of visual terms. In the collection indexing phase the visual term

vocabulary is created using the K-means algorithm to cluster feature vec-

tors form all collection images. For the Corel5K collection and the feature

extraction method discussed in Section 4.5.1 the total number of feature vec-

tors for the training collection was M = 6, 556, 500 vectors with D = 70

scalar values representing the DCT coefficients. These numbers are typical

for image retrieval problems even for other types of features such as SIFT

Lowe (2004), which have dimension 128 and many features, in the order of

thousands, are extracted from each image. Due to the high dimensionality

of the data no special data structure such as K-D trees can be used since

their performance can be even worst than a linear search (Weber et al. 1998).

Thus each iteration of the K-means algorithm scales as O(M × T ×D).

For the Corel5K collection all feature vectors can be stored in main mem-

ory as they are approximately 3.5GB, however for larger collections spe-

cialised implementations of K-means that do not require data in main mem-

ory are needed. In cases where data can be stored in main memory paralleli-

sation of the K-means algorithm to exploit modern multi-core architectures

is relatively simple. However scaling the algorithm to large collections us-

ing a computer cluster is not straight forward and specialised programming

frameworks such as Map-Reduce (Dean & Ghemawat 2008) need to be em-

ployed.

During the retrieval phase a query image has to be quantised using the
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visual term vocabulary created during the collection indexing process. This

requires to find the closest visual term for each image feature vector using the

Euclidean distance. Again the high dimensionality of the data prevents the

use of an efficient data structure and thus the process scales as O(NQ×T×D)

where NQ is the number of feature vectors of the query image. For the

experiments presented in this chapter NQ = 1, 457. Finally, once the query

image is quantised finding relevant images is done using the ranking functions

in equations (4.1) or (4.5). Both equations depend only on the visual terms

common in the query and collection images and can be both implemented

using an inverted index data structure exploiting the sparsity of the visual

terms representations. Therefore searching scales only with the number of

documents matching visual terms in the query which is always much lower

than the size of the collection.

For the Gaussian mixture models the EM and VEM algorithms can be

applied for each image in the collection independently during the indexing

phase. Thus the scaling and memory problems of the K-means algorithm can

be avoided and the indexing algorithm can be easily scaled to accommodate

large collections. Each iteration of the EM algorithm scales asO(K×NI×D+

K ×D3) where K is the number of components; set to 8 in our experiments,

NI is the number of feature vectors of the collection image; which for the

feature extraction method used in this Thesis was 1,457, and D = 70 is the

dimensionality of the feature vectors. The cubic scaling with respect to D is

due to the inversion of the covariance matrices and can be avoided by using

diagonal matrices instead. The VEM algorithm has the same complexity as
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the EM algorithm with the only difference that we use a larger number of

components in order to automatically perform model selection. Note that

in a practical application, model selection for the EM algorithm has to be

performed as well using a cross validation scheme which would require several

runs and thus can be more demanding than the VEM algorithm.

For the GMM-QL, PDG-QL and PD-QL algorithms no additional com-

putations are required for the query image. However scoring documents in

the collection requires the calculation of the query likelihood with respect to

all images in the collection which scales as O(C × NQ ×K ×D + K ×D3)

where C = 4, 500 is the size of the collection and NQ = 1, 457 is the number

of feature vectors for the query images. The GMM-PPK and PDG-PPK

methods try to remove the scaling factor NQ by also modelling the query

image density. This requires an additional EM or VEM run for the query

image which scales better than the quantisation step in Bag of Terms mod-

els considering that the vocabulary size T � K. The complexity of scoring

collection images then reduces to O(C×K× (K−1)/2×D+K×D3) where

NQ � (K − 1)/2.

4.7 Discussion

In this chapter we have presented a methodology for deriving retrieval func-

tions for content based image retrieval based on the predictive density of gen-

erative models. The method does not make particular assumptions about the

representation of documents in the collection but requires the specification
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of a probabilistic generative model for the density of the documents’ fea-

tures. The methodology was applied on the Multinomial-Dirichlet model for

the Bag of Terms representation and on the finite Gaussian mixture model

for continuous features in RD. In the case of Gaussian mixture models, the

parameter estimation and scoring function evaluation remains in the same

order of complexity with the corresponding maximum likelihood procedures

while it significantly improves performance. On the other hand, for the

Multinomial-Dirichlet model the predictive likelihood requires more compu-

tations than the MAP estimates although it can still implemented efficiently

using an inverted index data structure.

Despite the superior retrieval performance of the mixture models com-

pared to the Bag of Terns representation, scalability to large scale collections

remains an important issue since the predictive densities for all images in the

collection have to be evaluated for each query. Designing efficient indexing

data structures such as the inverted index is not trivial for models such as

mixtures of Gaussians.

Finally, both models used in this study assume that local image feature

descriptors are conditionally independent i.e. p(I|θ) =
∏

x∈I p(x|θ). This

is an over simplifying assumption necessary to obtain tractable models and

is similar to the term independence assumption in text document retrieval.

It has been shown that by exploiting correlations between local descriptors

retrieval performance can be improved (Philbin et al. 2007). However, for

the Bag of Terms model such procedures are applied in a post processing step

(Lowe 2004) and are difficult to be casted in a probabilistic framework. Fer-
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gus et al. (2005) have studied a generative probabilistic model that takes into

account the spatial geometry of local feature descriptors for image classifica-

tion although it also relies on a Bag of Terms representation. Generalisations

of this model such as those presented in the chapter is an interesting future

direction.



Chapter 5

Semantic Image Retrieval

Multimedia content, such as images, video and audio, does not lend itself to

traditional indexing methods like those applied to text documents. The main

difficulty arises from the nature of the information encoded in these types of

media. While the basic structural units of a text document are words, which

directly convey the message of the document in a human understandable

form, there is no corresponding analogue to words in media such as images

and audio.

Content Based Image Retrieval (CBIR) techniques attempt to partially

solve the problem by providing the means for comparing images. However,

their application is limited mainly due to the semantic gap (Smeulders et al.

2000), i.e. the lack of correspondence between the image representation used

by CBIR techniques and the semantic representation that users construct

from images.

125
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A solution towards bridging this gap between visual similarity, as ex-

pressed by similarity of low-level image features, and semantic similarity, is

to directly associate to images semantic features such as keywords. Indeed,

this is the approach followed by many commercial image archives such as

GettyImages1, Corbis2 etc. Moreover, users and communities are also inter-

ested in indexing their personal collections using semantic features in order

to render them accessible by others. This is evident from the success of image

sharing web applications such as Flickr3, Picasa4 and others.

A significant amount of research has therefore been focused on developing

algorithms for automatically annotating images based on classification mod-

els treating keywords as classes. Similar to content based image retrieval

methods, initial approaches were based on the Bag of Terms representation

and proposed simple Naive Bayes’ and Support Vector Machine classifiers

(Csurka et al. 2004). Generalisations of these approaches to continuous im-

age features by modelling the class conditional densities using kernel density

estimation (Lavrenko et al. 2003, Yavlinsky et al. 2005) and semi-parametric

Gaussian mixture models (Carneiro & Vasconcelos 2005) have been also con-

sidered. In particular the algorithm of Carneiro et al. (2007) has achieved

one of the best so far accuracies on the Corel 5K collection.

In this chapter we approach the problem using the principles presented

in the previous chapter and propose a generalisation of the algorithm of

Carneiro et al. (2007). Namely, instead of maximum likelihood estimates for

1www.gettyimages.com
2pro.corbis.com
3www.flickr.com
4picasaweb.google.com



CHAPTER 5. SEMANTIC IMAGE RETRIEVAL 127

the class conditional densities, we derive a variational approximation for hi-

erarchical mixture models which can be used to obtain the class conditional

predictive densities by marginalising the parameters using their posterior

densities. Thus the algorithm of Carneiro et al. (2007) can be seen as an ap-

proximation to the algorithm presented here. In contrast to the content based

image retrieval problem, where the variational EM algorithm can be directly

applied to obtain approximations to the parameter posteriors, its application

to hierarchies of mixture models is not straightforward. We therefore derive

an novel variational EM algorithm for hierarchies of mixture models.

5.1 Generative Classifiers based on Mixture

Models

For semantic image retrieval we want to rank images in the collection in

response to a keyword user query based on the probability the concepts

described by these keywords are present in the image. We are therefore

interested in estimating p(wc|I) where wc is a keyword from a fixed and

pre-defined vocabulary and I is an image in the collection. In a generative

classification scheme this quantity is inverted by Bayes’ rule in order to obtain

p(wc|I) =
p(I|wc)p(wc)∑

wi

p(I|wi)p(wi)
,

where p(I|wc) is the class conditional density and p(wc) is the prior for key-

word wc. The prior can be set to be uniform across all keywords in the
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vocabulary corresponding to the belief that all keywords are a-priori equally

likely. Alternatively, assuming that the training collection of images is a

representative sample p(wc) can be set to the probability of term wc in the

training collection in order to favour more frequently occurring keywords

(Yavlinsky et al. 2005, Lavrenko et al. 2003, Carneiro & Vasconcelos 2005).

For the class conditional densities a parametric model p(I|θc) with key-

word dependent parameters θc is employed and by assuming independence

between image features it can be written as
∏
x∈I p(x|θc). The parameters

θc have to be estimated by fitting the model to a collection of training im-

ages Ic ∈ Tc depicting the concept corresponding to keyword wc while the

exact nature of the model depends on the image representation. Similar to

the discussion in Chapter 4, the model parameters can be estimated using a

Maximum Likelihood (ML) or a Maximum A Posteriori (MAP) procedure or

they can be completely marginalised in order to obtain the predictive class

conditional density.

5.1.1 Class conditional density models

Estimating the parameters for the class conditional density models requires

a labeled training set of images for each class. Gathering such a training

set for a large set of keywords is not trivial. While several approaches exist,

they impose different constraints on the model assumptions that need to

be made for the class conditional densities. For example, in the LabelMe

collection (Russell et al. 2008) images are manually segmented and each

region is annotated with a keyword. This collection imposes no restrictions
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for the class conditional densities since each region depicts only the concept

corresponding to the class of interest. However, obtaining such a collection

requires extensive human supervision which is very expensive.

On the other hand, the CalTech256 (Griffin et al. 2007) is collected by

querying a web search engine and then manually filtering images in order to

ensure that the concept of interest occupies at least 50% of the image as well

as to remove any false positives. Each image in this collection is associated

with a single keyword but the model for the class conditional densities must

take into account the fact that images for a particular class will also contain

several local image descriptors from the background.

Finally, the most challenging case, from a modelling point of view, is that

of the Corel5K collection (Duygulu et al. 2002) where each image is manually

annotated with several keywords, depending on the concepts depicted in the

image. In this collection there is no correspondence between keywords and

regions in the image and thus it is relatively easier to manually annotate such

a collection. These three scenarios are depicted in Figure 5.1.

The main question that arises is if we can estimate the class conditional

densities for weakly labeled training collections such as the Corel5K. We

argue that this is not only possible but it can also be beneficial to do so. The

first part of the argument relies on Multiple Instance learning. In contrast

to the standard supervised learning paradigm where each training example

is labeled positive or negative with respect to a class, in Multiple Instance

learning, training examples are bags of instances, similar to the bag of feature

vectors or visual terms representation. A training example is considered to
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Figure 5.1: Comparison between different annotation schemes. Top: su-
pervised. Each coloured region in the segmentation mask corresponds to
a different class. In this case Image refers to a region based on the seg-
mentation mask. Middle: Multiple-instance. One class is associated with
each image. Not all regions in the image correspond to its class. Bottom:
Multiple-instance multiple-label. Multiple classes associated with each image
and there is no correspondence between classes and regions in the image.

belong to one class if and only if one of its instances is positive w.r.t that

class, otherwise the training example is considered negative (Dietterich et al.

1997). The goal is therefore to estimate the density of positive instances for

a collection of positive and negative training examples.

In (Dietterich et al. 1997) the density of positive instances is assumed to

be uniform in an axis-aligned hyper-rectangle of the instance feature space,

while in (Maron & Lozano-Pérez 1998) the axis-aligned rectangle assumption

is relaxed by assuming a normal distribution with an unknown mean param-
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eter. The common assumption that multiple instance algorithms share is

that although the density of positive instances is not dominant within each

training example, it becomes dominant when all training examples are con-

sidered since the distribution of negative instances tends to be uniform. This

is better illustrated by the following simulation experiment.

5.1.2 Simulation

For the purpose of illustration we will use one dimensional instances for this

simulation. We consider a training example, corresponding to an image, to

be a random sample from the densities of four concepts with one of them

being the concept of interest and the rest to be randomly selected without

replacement from a pool of 200 concepts. All concept densities are mixtures

of two univariate normals. The density of positive instances is set to be

a mixture of two univariate Gaussian components with known means and

standard deviations:

p(x|w1) = 0.3×N (x| − 20, 3) + 0.7×N (x|20, 2).

The pool of the 200 concept densities are generated by uniformly sam-

pling their means, standard deviations and mixing coefficients from µ ∈

[−100, 100], σ ∈ [0.1, 10] and π ∈ [0, 1] respectively.

For generating a training example we firstly simulate 100 instances from

the positive density. Then 3 concept densities are randomly selected from

the pool of 200 without replacement and simulate 100 points from each.
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The total number of instances per training example is thus 400 with all con-

cepts having equal probability. Finally 1,000 training examples are generated

in this manner. Figure 5.2 depicts the empirical distribution of 2 training

examples as well as the empirical and estimated densities for all training ex-

amples. The density estimate denoted as EM in Figure 5.2 is obtained using

the EM algorithm for fitting a Gaussian mixture of 9 components to all in-

stances from the 1,000 training examples while the density estimate denoted

as HEM is obtained by using the Hierarchical EM algorithm discussed in the

next section.

From Figure 5.2 we can see that although the concept density is not dom-

inant in the two randomly selected training examples, it is easily identified

when all training examples are considered validating the argument that we

can actually estimate the class conditional densities from weakly labeled col-

lections. In fact the distribution of all instances can be approximated by a

linear combination of the target concept density and a uniform distribution.

5.1.3 Class independence

In the beginning of this chapter and in the simulation experiment described

above we naively assumed that classes, or keywords, are independent. How-

ever this is a simplifying assumption as in reality several concepts will present

complex interdependences manifested by keyword co-occurrence in the train-

ing examples (Nowak et al. 2010, Llorente & Rüger 2009). Moreover, if two

concepts frequently co-occur in the training examples then identifying their

true densities, in the same way as we did in the simulation experiment, will
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Figure 5.2: Results from the simulation. Top row: empirical distribution of
two training examples with 400 instances. Bottom row: Empirical distribu-
tion of all training instances and density estimates using the Kernel Density
estimation, EM and Hierarchical EM algorithms.

be more difficult. However, this is not actually a problem. In fact modelling

the class conditional densities in such a way implicitly relaxes the class in-

dependence assumption as class interactions will be captured by the class

conditional densities.

To better illustrate this we repeat the previous simulation experiment.
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This time we introduce a second concept density:

p(x|w2) = 0.6×N (x| − 10, 1) + 0.4×N (x|10, 2),

and generate synthetic data such that the two concepts co-occur in 40% of

the training examples. Figure 5.3 shows the empirical distribution of all

instances for concept w1. We can see that it is a mixture of concept densities

corresponding to classes w1 and w2 and a uniform component. Although it

is not possible to distinguish the true density of w1 from that of w2 we can

see how an unseen bag of instances generated only by the true density of w2

will have also high likelihood under the estimated class conditional density

for class w1.
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p(
x|
w
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Figure 5.3: Results from the simulation experiment with two concepts co-
occurring in 40% of the training examples.
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5.1.4 Direct Estimation

Following the discussion in the previous sections, we can directly estimate

the class conditional densities by utilising the training examples for the cor-

responding classes. The model for the class conditional densities however

depends on the image representation.

For example in Csurka et al. (2004), for the Bag of Terms representation

a Multinomial M(x|θc) is used to model the distribution of visual terms

for each keyword. The class dependent parameters θc in their study are

estimated using a MAP procedure with a Laplace smoothing prior resulting

in

θ̂
(MAP )
t,c =

1 +
∑

Ic∈Tc nt,Ic∑
c′(1 +

∑
Ic∈Tc′

nt,Ic)
,

where nt,Ic is the frequency of the tth visual term in training image Ic. This

method can be easily generalised to the predictive densities framework by

following the same reasoning as in Section 4.2. By assuming a Dirichelt prior

over the parameters D(θc|a) the posterior is also a Dirichelt, D(θc|n·,c +α),

where n·,c is the vector of visual term frequencies for the images in the

training collection of keyword wc, i.e. nt,c =
∑

Ic∈Tc nt,Ic . The posterior can

then analytically marginalised in order to give the class conditional predictive

distribution

p(I|wc) =

∫
p(I|θc)p(θc|wc)dθc

=
(
∑

t nt,I)!∏
t nt,I !

Γ (
∑

t nt,c + αt)

Γ (
∑

t nt,c + nt,c + αt)

∏

t

Γ (nt,I + nt,c + αt)

Γ (nt,c + αt)
.(5.1)
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For modelling directly the density of continuous image features and avoid

the quantisation step for the Bag of Terms representation we can again adopt

a Gaussian mixture model thus the class conditional density becomes

p(I|θc) =
∏

x∈I

K∑

k=1

πk,cN
(
x|µk,c,Σk,c

)
. (5.2)

Maximum Likelihood estimates for the model parameters can be obtained by

the EM algorithm or, as we did in Section 4.1, the predictive class conditional

density for this model can be obtained by Monte Carlo integration or by

the variational EM algorithm applied on the local feature descriptors form

the training collection of class wc. However, there are two main technical

difficulties in directly modelling the class conditional densities as mixtures of

Gaussians.

The first problem is computational. The number of local feature descrip-

tors for one class can be very high since an image can have thousands or

tens of thousands of local features depending on its resolution, interest point

detector (Mikolajczyk, Leibe & Schiele 2005) or sampling scheme. Even

with nowadays computers, it is not possible to keep all local descriptors in

main memory and implementing an EM algorithm for such data is a diffi-

cult engineering task. Ideally we would like to be able to estimate the class

conditional densities from the individual densities of each training image in

the collection. The second problem is with the nature of the EM algorithm

itself. Due to its iterative nature the EM algorithm is not guaranteed to

converge to a global maximum and it can easily trapped in local modes as

any deterministic optimisation algorithm.



CHAPTER 5. SEMANTIC IMAGE RETRIEVAL 137

Vasconcelos & Lippman (1998) proposed a generalisation of the EM al-

gorithm that attempts to solve both problems and in Carneiro et al. (2007)

the algorithm was applied for annotating images from the Corel5K collec-

tion achieving state of the art accuracy. In the next section we describe

the algorithm of Vasconcelos & Lippman (1998) as it will be the basis for

our generalisation in a Bayesian framework. In Section 5.1.6 we derive the

hierarchical variational EM algorithm using the same principles of Vasconce-

los & Lippman (1998). Both algorithms are then compared on the Corel5K

collection in Section 5.4.

5.1.5 Mixture Hierarchies

Suppose we have a training collection of images Ic ∈ Tc for keyword wc.

Each image is an unordered set of vectors x ∈ RD and we are interested

in modelling the density of vectors from all training images using a finite

Gaussian mixture model. Directly maximising the likelihood function

∏

Ic∈Tc

∏

xIc∈Ic

p(xIc |θc) =
∏

Ic∈Tc

∏

xIc∈Ic

Kc∑

k=1

πk,cN (xIc|µk,c,Σk,c),

with the EM algorithm is problematic since all vectors must be processed at

each iteration. The core idea behind the algorithm in Vasconcelos & Lippman

(1998) is that we can estimate the parameters θc in a bottom up approach.

Firstly, the EM algorithm, Algorithm 1, is applied to estimate the indi-
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vidual densities for each training image by maximising the likelihoods

∏

xIc∈Ic

KIc∑

i=1

πi,IcN (xIc |µi,Ic ,Σi,Ic),

and obtain ML estimates for the image dependent parameters

θIc = {πi,Ic ,µi,Ic ,Σi,Ic : i ∈ {1, . . . , KIc}}.

This process can be easily performed in parallel since the EM algorithm is

independent for each image Ic. Notice also that the number of components for

the individual image densities is different from that of the class conditional

density. Then the hierarchical EM algorithm of Vasconcelos & Lippman

(1998) given in Algorithm 8 can be applied to obtain ML estimates for the

class dependent parameters θc = {πk,c,µk,c,Σk,c : k ∈ {1, . . . , Kc}} using the

parameters of the individual image densities. The process is schematically

illustrated in Figure 5.4.

In Algorithm 8 only the model parameters for the individual image den-

sities are used and thus the algorithm can be implemented efficiently since

the number of parameters for each image density model is significantly lower

than the number of its local feature descriptors. Moreover, the Expectation

step is similar to that of a deterministic annealing EM algorithm (Ueda &

Nakano 1998). The term Mπi,Ic in Algorithm 8 can be seen as an inverse

temperature parameter. The higher the temperature the smoother the esti-

mate of the expectation which results in associating one observation to many

mixture components and thus allowing the algorithm to escape local maxima.
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Algorithm 8: HEM-GMM

1: Inititialise θc
2: repeat
3: {E-Step}
4: E [zi,Ic,k] =

πk,c

[
N (µi,Ic|µk,c,Σk,c)exp

(
−1

2
tr
(
Σ−1k,cΣi,Ic

))]Mπi,Ic

Kc∑

j=1

πj,c

[
N (µi,Ic |µj,c,Σj,c)exp

(
−1

2
tr
(
Σ−1j,cΣi,Ic

))]Mπi,Ic

5: {M-Step}

6: πk,c =
1∑

Ic∈Tc

KIc

∑

Ic∈Tc

KIc∑

i=1

E [zi,Ic,k]

7: µk,c =

∑

Ic∈Tc

KIc∑

i=1

E [zi,Ic,k]Mπi,Icµi,Ic

∑

Ic∈Tc

KIc∑

i=1

E [zi,Ic,k]Mπi,Ic

8: Σk,c =

∑

Ic∈Tc

KIc∑

i=1

E [zi,Ic,k]Mπi,Ic

(
Σi,Ic +

(
µi,Ic − µk,c

) (
µi,Ic − µk,c

)T)

∑

Ic∈Tc

KIc∑

i=1

E [zi,Ic,k]Mπi,Ic

9: until convergence

Finally, as the inverse temperature is proportional to the mixing coefficient

πi,Ic , components from the image densities that don’t have a significant mass

are more likely to be merged together by the hierarchical EM algorithm.

These properties of the hierarchical EM algorithm are also evident in the

simulation results in Section 5.1.2. In Figure 5.2 the hierarchical EM pro-

vides a better density estimate despite the fact that we have initialised the
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Figure 5.4: Schematic illustration of the hierarchical EM algorithm. Re-
sults are obtained by the simulation experiment in Section 5.1.2. The EM
algorithm is applied to all training examples individually, estimated param-
eters are then used by the hierarchical EM algorithm to estimate the class
conditional density.

standard EM several times and kept the best solution.

5.1.6 Bayesian Mixture Hierarchies

For generalising the hierarchical EM algorithm in a Bayesian framework we

will follow the idea of Vasconcelos (2000) and use a virtual sample, i.e. a

random sample from the densities of all images. As discussed in Chapter 4

we can estimate the predictive densities for individual images using the vari-

ational EM algorithm. The predictive densities have an analytic parametric
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form that is a mixture of Student-t components with form

p(x|Ic) =

KIc∑

i=1

piSt(x|mi,Ic ,ΛkIc
, vi,Ic),

KIc∑

i=1

pi = 1.

The virtual sample is constructed by drawing a random sample of size M

from each image density. Note that each image density is a mixture of KIc

Student-t components and thus the virtual sample will contain samples from

all the KIc components each with size Mpi. Using C to denote the number of

total mixture components form all image densities, i.e. C =
∑

Ic∈Tc KIc , and

using the subscript j ∈ {1, . . . , C} to index them, we can see that the virtual

sample V can be partitioned into C subsets Xj ⊆ V where each subset is

a random sample from the jth component, xj,n ∼ St(x|mj,Λj, vj), with size

Nj = Mpj. The likelihood function of the class conditional density for the

virtual sample is then

p(V |Z,θc) =
C∏

j=1

Kc∏

k=1


πk,c

Nj∏

n=1

N (xj,n|µk,c,Σk,c)



zj,k

, (5.3)

where we have introduced the latent indicator variables Z associating subsets

Xj of the virtual sample to mixture components. This decision is made

in order to prevent the hierarchical EM from splitting sample subsets into

different components. This also enforces a hierarchical structure since a latent

variable zj,k constraints all samples from a subset Xj to be associated with

a single component in the mixture model for the class conditional mixture

model. This is also illustrated by the diagram in Figure 5.5.

We can now introduce the following lemma:
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Figure 5.5: Schematic illustration of the dependencies between variables for
the hierarchical mixture model using a virtual sample. The example considers
3 components with corresponding virtual sample blocks X1,X2 and X3 and
2 mixture components for the class conditional mixture model. Notice that
blocks can be due to different images, for example X1,X2 can be a virtual
sample from a 2 component mixture for one image while X3 can be a virtual
sample from a single component mixture for a second image.

Lemma 5.1.1 If xn, n ∈ {1, . . . , N}, are an i.i.d. sample from an unknown

distribution with sample mean x̄ = 1
N

∑
n xn and covariance Cov(x) =

1
N

∑
n(xn − x̄)(xn − x̄)T then

N∏

n=1

N (xn|µ,Σ) =

[
N (x̄|µ,Σ) exp

(
−1

2
tr
(
Cov(x)Σ−1

))]N
.

Proof

N∏

n=1

N (xn|µ,Σ) = (2π)−
DN
2 det(Σ)−

N
2 exp

(
−1

2

N∑

n=1

(xn − µ)TΣ−1(xn − µ)

)
.(5.4)

Introducing x̄− x̄ in the exponent and multiplying by N
N

we get

−N
2

1

N

N∑

n=1

(xn − µ+ x̄− x̄)TΣ−1(xn − µ+ x̄− x̄).
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Expanding and rearranging terms gives

− N

2

1

N

N∑

n=1

(xn − x̄)TΣ−1(xn − x̄)

−N
2

2

N

N∑

n=1

(xn − x̄)TΣ−1(x̄− µ)

−N
2

(x̄− µ)TΣ−1(x̄− µ). (5.5)

The second term in (5.5) collapses to 0. The first term can be written as

− N

2

1

N

N∑

n=1

tr
(
(xn − x̄)TΣ−1(xn − x̄)

)
= −N

2
tr
(
Cov(x)Σ−1

)
.(5.6)

Replacing the exponent in (5.4) with the results (5.6) and (5.5) we get

(2π)−
DN
2 det(Σ)−

N
2 exp

(
−N

2
(x̄− µ)TΣ−1(x̄− µ)− N

2
tr
(
Cov(x)Σ−1

))
,

which completes the proof.

Lemma 5.1.1 plays a core role in the derivation of the hierarchical Vari-

ational EM algorithm as it allows to express the likelihood in terms of the

image predictive density parameters pj,mj,Λj and vj. Since subset Xj is

sampled i.i.d. from a multivariate Student-t density with mean mj, pre-

cision Λj and degrees of freedom vj the sample mean and covariance are

X̄j = mj and Cov(Xj) =
vj
vj−2Λ

−1
j respectively. The likelihood for the class
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Figure 5.6: Schematic illustration of the dependencies between variables for
the hierarchical mixture model using a virtual sample and Lemma 5.1.1 for
the same example as in Figure 5.5. Notice that virtual sample blocks are con-
ditionally independent from any parameters of the class conditional mixture
model given the parameters of image densities.

conditional densities (5.3) therefore becomes

p(V |Z,θc) =
C∏

j=1

Kc∏

k=1

π
zj,k
k,c

[
N (mj|µk,c,Σk,c) exp

(
−1

2
tr

(
vj

vj − 2
Λ−1j Σ−1k,c

))]zj,kNj
.

(5.7)

Figure 5.6 depicts the dependencies between variables for equation (5.7).

From equation (5.7) we can derive the variational hierarchical EM algo-

rithm by following the same reasoning as in Section 3.7.1. The posterior of

the parameters and latent variables p(Z,θc|V ) will be approximated by a

variational posterior which is assumed to factorise as q(Z,θc) = q(Z)q(θc).

Using the prior specified in Section 3.3 and applying equation (3.29) for the
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log of the variational posterior for the latent variables we obtain

log q(Z) = Eπ[log p(Z|π)] + Eµ,Σ[log p(V |Z,µ,Σ)] + const

=
C∑

j=1

Kc∑

k=1

zj,k log ρj,k + const, (5.8)

where

log ρj,k = Eπk,c [log πk]−
Nj

2
EΣk,c

[log(det(Σk,c))]−
NjD

2
log(2π)

− Nj

2
Eµk,c,Σk,c

[
(mj − µk,c)TΣ−1k,c(mj − µk,c)

]

− Nj

2
EΣk,c

[
tr

(
vj

vj − 2
Λ−1j Σ−1k,c

)]
+ const. (5.9)

Notice that this is similar to equation (3.33) for the standard variational

EM. The terms dependent on µk,c and Σk,c are scaled by a factor of Nj

and there is an additional term involving the trace of the two covariance

matrices. Exponentiating and re-normalising (5.9) to recover the constant

term the variational posteriors for the the latent variables take the form of a

Multinomial distribution with parameters rn,k = ρn,k/
∑Kc

k′=1 ρn,k′ .

q(zn) =
Kc∏

k=1

r
zn,k
n,k =M(zn|1, rn,1, . . . , rn,K). (5.10)

Similarly, applying (3.29) for the log of the variational posterior of the
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parameters we get

log q(θc) = EZ [log p(Z|π)] + EZ [log p(V |Z,µ,Σ)] + log p(π,µ,Σ) + const

=
C∑

j=1

Kc∑

k=1

Ezj,k [zj,k] log πk,c +
C∑

j=1

Kc∑

k=1

Ezj,k [zj,k]Nj logN (mj|µk,c,Σk,c)

− 1

2

C∑

j=1

Kc∑

k=1

Ezj,k [zj,k]Njtr

(
vj

vj − 2
Λ−1j Σ−1k,c

)

+ log p(π) +
Kc∑

k=1

log p(µk,c,Σk,c) + const. (5.11)

From which we can see that due to the prior and conditional independence

between variables the variational posterior q(θc) can be farther factored as a

product of independent variational posteriors of the form

q(θc) = q(π)
Kc∏

k=1

q(µk,Σk).

Using equation (5.11) and keeping only terms dependent on π we can get

the variational posterior for the mixing coefficients which takes the form of

a Dirichlet

q(π) =
Γ(
∑Kc

k=1 ak)∏Kc
k=1 Γ(ak)

Kc∏

k=1

πak−1k = D(π|a), (5.12)

with parameters

ak = a0 + nk, where nk =
C∑

j=1

Ezj,k [zj,k].

Finally, form (5.11) and keeping only terms dependent on µk,c and Σk,c we

can get that the variational posterior for the means and covariances is a
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Normal-Inverse Wishart

q(µk,c,Σk,c) = N
(
µk|mk, β

−1
k Σk

)
IW (Σk|W k, vk) , (5.13)

with parameters

βk = β0 + ñk,

vk = v0 + ñk,

mk =
m0β0 + ñkx̄k

βk
,

W k = W−1
0 + ñkV k +

ñkβ0
ñk + β0

(x̄−m0)(x̄−m0)T ,

where

ñk =
C∑

j=1

Ezj,k [zj,k]Nj, x̄k =
1

ñk

C∑

j=1

Ezj,k [zj,k]Njmj,

V k =
1

ñk

C∑

j=1

Ezj,k [zj,k]Nj

(
vj

vj − 2
Λ−1j + (mj − x̄k)(mj − x̄k)T

)
.

The posterior parameters have the same expression as the parameters for the

standard variational EM in Section 3.7.1. However the expressions for ñk, x̄k

and V k involve the additional terms Nj and
vj
vj−2Λ

−1
j corresponding to the

sample size and the sample covariance of subset Xj respectively. Therefore

the variational hierarchical EM algorithm can be easily implemented as it

requires very few changes to the Algorithm 7. As we did in the previous

chapter the number of mixture components can be estimated by initially

over-specifying the model and choosing a suitable prior for the mixing coef-

ficients π such that sparse solutions are preferred and thus components with
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negligible πk can be safely removed.

5.1.7 Deterministic Annealing Variational EM

The variational EM iteratively updates the variational posteriors such that

the lower bound (3.26) is maximised. The algorithm however is not guar-

anteed to converge to a global maximum solution and depends upon initial-

isation conditions. The reader should not be confused here with the local

maxima problem in the standard EM. Although the reasons behind both

problems are the same, the variational EM optimises a functional and pro-

vides a locally optimal approximation to the posterior. On the other hand

the standard EM optimises a function and provides a locally optimum point

estimate.

By inspecting equations (5.10) and (5.9) we can see that ρj,k are up to

a normalisation term equal to the expectation of the latent variables zj,k.

By exponentiating equation (5.9) we observe that the term Nj acts on the

expectation of the latent variables in a similar way as in the hierarchical EM

and thus we can interpret it as a temperature parameter in a deterministic

annealing procedure. Therefore, the variational hierarchical EM algorithm

not only allows to estimate the predictive density from a large number of ob-

servations in a hierarchical manner but it is also able to escape local minima

that will arise during the optimisation.
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5.2 Discriminative Kernel Classifiers

In a discriminative approach, we are no longer interest in modelling the class

conditional or joint distributions of images and labels. Rather the focus is to

model directly the posteriors p(wc|I) or find a discriminative function that

separates the categories in the feature space.

Support Vector Machines (SVMs) have played an important role in Ma-

chine Learning and Pattern Recognition research. Despite their simple ge-

ometric interpretation they achieve improved classification performance on

different domains. The main idea behind SVMs is to find a hyper plane that

separates the data to positive and negative classes while it maximises the

margin between the two classes.

Assume we are given a training set comprised by a set of N input vec-

tors x1, . . . ,xN and the corresponding target values, or class labels, t1, . . . , tN

where tn ∈ {−1, 1}. The first assumption is that the data are linearly sep-

arable and thus a linear function such as the one in Equation (5.14) has at

least a set of parameters w and b such that f(xn) > 0 for points with tn = 1

and f(xn) < 0 for points with tn = −1 and thus a new point can be classified

by the sign of f(xnew). Note that φ(x) is a non linear transformation of x

mapping from points in the original space to a higher dimensional or possible

infinite feature space. The discriminant function f(x) will be linear in the

feature space of φ(·) but non-linear in the original space.

f(x) = wTφ(x) + b. (5.14)
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Since the data are assumed to be linearly separable in φ(·) there will be

infinitely many solutions that separate the data, however, we are interest

in the one that achieves the maximum separation. That is, we seek to find

the plane which separates the data while it has the maximum perpendicu-

lar distance from all points in both categories. Without going through the

derivations, which can be found in any of the good resources on SVMs such

as Campbell (2001), Cortes & Vapnik (1995), Bishop (2006), we can achieve

that by minimizing Equation (5.15) with respect to the constraints (5.16).

arg min
w,b

1

2
||w||2, (5.15)

tn(wTφ(xn) + b) ≥ 1, n = 1, . . . , N. (5.16)

Cortes & Vapnik (1995) relax the linear separation assumption and allow

some of the training points to be misclassified thus considering also the case

of overlapping class distributions in φ(·). To achieve this they introduce one

slack variable ξn ≥ 0 for each training point where ξn = 0 for training points

correctly classified, i.e. points on or inside the correct margin boundary, and

ξn = |tn− f(x)| for all other points. To find the separating hyper plane then

we have to minimize Equation (5.17) subject to the constraints in (5.18)

where C is a regularisation parameter controlling the tradeoff between the

slack variable penalty and the margin. As C → 0 the previous version of

SVM is recovered.

arg min
w,b,{ξn}

1

2
||w||2 + C

N∑

n=1

ξn, (5.17)

tn(wTφ(xn) + b) ≥ 1− ξn, n = 1, . . . , N. (5.18)
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There are two main difficulties in directly applying SVMs for image an-

notation and object class recognition. Firstly, SVMs are originally formu-

lated as binary classifiers and extending them to multi-class problems is not

straight-forward and hides several difficulties. One simple yet effective so-

lution is to train one classifier for each category while using as negative

instances samples from all the other categories. This is also called the one-

against-all classification. Secondly, the original SVM formulation assumes

that samples are represented by a feature vector thus making it difficult in

extending them for objects represented by sets of feature vectors such as

images. One solution is to use the bag of terms representation thus trans-

forming every image into a single feature vector of visual term frequencies

(Csurka et al. 2004). Another approach is to construct a suitable kernel φ(·)

for the particular object representation.

5.2.1 Probability Product Kernel Support Vector Ma-

chine

The hyper plane w for the soft margin classifier discussed above can be

written (Cortes & Vapnik 1995) as

w =
N∑

n=1

ynanφ(xn).
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This implies that for a new unseen point x∗ the discriminant function (5.14)

depends only on dot products of the form

f(x) =
N∑

n=1

ynanφ(x∗)φ(xn) + b. (5.19)

The basic idea behind kernel based learning is to construct generalised inner

products in Hilbert space using a symmetric positive definite kernel function

(Cristianini & Shawe-Taylor 2000) such that

φ(x∗)φ(xn) = K(x∗,xn).

In this way we do not have to explicitly compute the transformations φ(x)

as the algorithms can be expressed purely in terms of the kernel function.

There is a significant research interest in designing kernel functions for

objects represented as unordered set of vectors, such as images (Kondor &

Jebara 2003, Moreno et al. 2003). In this thesis we propose first to model

the density of features in each image and then utilise a kernel function in

the space of probability densities. In this way we reduce the computational

complexity associated with kernel functions dependent directly on the image

features as we represent images by densities parameterised using a small set

of parameters. In Section 4.4 we discussed the use of Probability Product

Kernels PPK (Jebara et al. 2004) as means for calculating a generalised

inner product in the space of density functions. The form of the PPK for
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two images Ii and Ij has a simple form:

K [p̃(x|I i), p̃(x|Ij)] =

KIi∑

k=1

KIj∑

k′=1

pIi,kpIj ,k′N
(
mIi,k|mIj ,k′ ,Λ

−1
Ii,k

+ Λ−1Ij ,k′
)
,

(5.20)

where pI , k,mI,k and ΛI,k are the parameters for the image predictive den-

sities obtained by the variational EM algorithm.

5.3 Relations with other models

Early approaches for the automatic image annotation problem where based

on the Bag of Terms representation, e.g. (Csurka et al. 2004, Duygulu et al.

2002) and (Jeon et al. 2003). In Csurka et al. (2004) the visual vocabulary is

constructed by clustering SIFT feature descriptors using K-means. Images

are then transformed into histograms counting the presence of visual terms

and the Naive Bayes and Support Vector Machine classifiers are applied. Due

to the sparsity and high dimensionality of the histograms a linear kernel is

used for the SVM. Their methodology can be easily extended in a Bayesian

framework by the Multinomial-Dirichlet model as presented in Section 5.1.4.

Duygulu et al. (2002) treat the image annotation problem as a statisti-

cal machine translation problem where the aim is to translate from visual

terms to keywords and thus the training set is treated as a bi-lingual collec-

tion. For estimating the joint probability of keywords and visual terms they

apply standard models from statistical machine translation (Brown et al.

1993). Similarly Jeon et al. (2003) estimates the joint probability of key-
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words and visual terms using the Cross-lingual relevance models of Lavrenko

et al. (2002). Soon it was realised that the accuracy of classifiers trained with

the Bag-of-Terms approach was sensitive to quantisation errors introduced

by the K-means procedure. Lavrenko et al. (2003) generalised the model

of Jeon et al. (2003) for continuous features by modelling the image densi-

ties using a kernel density estimation procedure. Similarly, Yavlinsky et al.

(2005) develop a Naive Bayes classifier using a kernel density estimator for

the class conditional densities.

Despite its success, non-parametric kernel density estimation is a compu-

tationally exhaustive method as it requires the computation of some kernel

function with respect to all training images. Semi-parametric models such

as mixtures of Gaussians have been used in Magalhães & Rüger (2006) and

Carneiro et al. (2007) as an alternative. The method of Magalhães & Rüger

(2006) is more similar to that of Csurka et al. (2004) since a Gaussian mixture

model is fitted on features from all images in the collection to create a visual

vocabulary where each term is represented by a Gaussian component. For

classification, a logistic regression classifier is developed where the covariates

are the probabilities of visual term components in each image.

In Chapter 4 we discussed the relationships between the Bag-of-Terms

representation and density estimation and we have seen how the maximum

likelihood solutions are in fact an approximation to the predictive densities.

In this chapter we applied the same reasoning in order to model class con-

ditional densities and develop Naive Bayes’ and SVM classifiers using the

predictive densities. The Naive Bayes classifier is similar to that of Carneiro
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et al. (2007) with the difference that we marginalise the parameters for the

class conditional densities and obtain the model order (number of compo-

nents) automatically. Finally, the SVM classifier presented here is similar

to that used by many Bag-of-Terms approaches such as those in Csurka

et al. (2004). However, by modelling the image densities directly we avoid

the quantisation errors and the computational complexity associated with

K-means applied on a large number of high dimensional feature descriptors.

5.4 Experiments

To empirically evaluate the performance of the methods presented here we

applied them on an image classification task. Classification accuracy is mea-

sured in terms of precision and recall for each keyword. Moreover, using

the classified images we evaluate semantic image retrieval for single keyword

queries in terms of Mean Average Precision (MAP) and precision at different

recall cutoff points, e.g P@10. For the experiments of this section we use the

Corel5K collection discussed in Chapter 4. The ground truth comprises only

the keywords associated with each image and not the high level image cat-

egories. In total there are 260 distinct keywords in the training set of 4,500

images. The collection is pre-processed as discussed in Section 4.5.1 and the

parameters estimated by the GMM-QL and PD-QL methods are re-used as

inputs for the hierarchical EM and variational hierarchical EM algorithms

respectively.

For the hierarchical EM algorithm we follow Carneiro et al. (2007) and
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fit mixtures of 64 components while for the variational algorithm presented

in this Chapter we use 200 components and after convergence we remove

components with ñk = 0. The priors are again set as discussed in Section

3.3 since we want to take into account collection statistics for smoothing our

estimates. The keyword priors p(wc) for all cases are set to the normalised

frequency of the keywords in the training collection. For the SVM classifiers

the α parameter of the Probability Product Kernel (PPK) is set to 1 and

the parameters estimated by the GMM-QL and PD-QL methods in Section

4.5.1 are re-used as inputs for calculating the Kernel Gram matrix. One

SVM classifier for each keyword is trained in the one-versus-all scheme where

the negative class consists of all images in the training collection that don’t

contain the corresponding keyword.

5.5 Results

Table 5.1 shows the annotation results in terms of precision, recall, F-score

and the number of keywords with recall larger than zero. All results are

Method words R > 0 Avg. Prec. Recall F score
SVM-EM 121 0.088 0.321 0.138
SVM-VEM 83 0.129∗ 0.195 0.155∗

HGMM-EM 107 0.138∗ 0.244∗ 0.176∗

HGMM-VEM 107 0.214∗ 0.337∗ 0.262∗

Table 5.1: Image annotation results for 500 query images in the test set. ∗
indicates statistical significance from the results of the previous row using a
Wilcoxon rank-sum test with 1% significance level. Results are averages over
the 260 keywords in the collection.
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Figure 5.7: Distribution of the number of components K for the 260 class
conditional densities as estimated by the hierarchical variational EM algo-
rithm.

averaged over the whole vocabulary of 260 keywords in order to ensure a

fair comparison. We can see that utilising the predictive densities obtained

by marginalising the approximate posteriors from the variational EM algo-

rithm significantly improves performance in all cases. Figure 5.7 depicts the

distribution of the number of components for the 260 class conditional den-

sities calculated by the hierarchical variational EM algorithm. The mean is

62.41 with standard deviation 22.3 which explains the results of Carneiro

et al. (2007), where the best performance is obtained by setting the number

of components for the class conditional densities to 64. In contrast to the

results in Chapter 4 the distribution can not be approximated by a normal

and there is a large variation from the mean which also justifies the higher

increase in performance compared to the EM algorithm.
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The poor performance of SVM based models compared to the Naive

Bayes’ classifiers can be attributed to the following. The test images are

also modelled with Gaussian mixture models and the PPK is calculated be-

tween training and test image densities. The modelling of test images by a

mixture model can be seen as a lossy compression of the information car-

ried by the feature descriptors. In contrast, in the Naive Bayes’ classifiers

the likelihood, or the predictive likelihood, is directly estimated by the test

image’s feature descriptors. However, in our experiments, classifying new

images with the SVM classifiers is significantly faster compared to the Naive

Bayes’ classifiers.

Having annotated images with keywords we can evaluate the retrieval

performance of semantic retrieval. In contrast to classification where a hard

decision is made, in semantic retrieval the user submits a keyword query and

images are ranked based on p(wq|I). Table 5.2 presents results using 260

single keyword queries for retrieving images from the 500 test images in the

test set. Figure 5.8 also shows the interpolated precision recall curves for the

four methods. For obtaining a probability estimate from the SVM classifiers

we fitted sigmoid function as described in Platt (2000).

Method MAP R-Prec. P@5 P@10 P@20
SVM-EM 0.0539 0.0745 0.0783 0.0646 0.0432
SVM-VEM 0.0776∗ 0.0744∗ 0.1004∗ 0.0715∗ 0.0548∗

HGMM-EM 0.1081∗ 0.0979∗ 0.1163∗ 0.0837∗ 0.0523∗

HGMM-VEM 0.1219∗ 0.1307∗ 0.1437∗ 0.1141∗ 0.0741∗

Table 5.2: Retrieval results for 260 query keywords in the test set. ∗ indicates
statistical significance from the results of the previous row using a Wilcoxon
rank-sum test with 1% significance level.
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Method MAP R-Prec P@5 P@10 P@20
SVM-EM

SVM-VEM

HGMM-EM

HGMM-VEM

0.0539 0.0745 0.0783 0.0646 0.0432
0.0776 0.0744 0.1004 0.0715 0.0548
0.1081 0.0979 0.1163 0.0837 0.0523
0.1219 0.1307 0.1437 0.1141 0.0741
0.0776 0.0744 0.1004 0.0715 0.0548
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Figure 5.8: Interpolated Precision-Recall curves.

5.5.1 Note on computational complexity

Both families of algorithms discussed in this chapter, namely SVM-EM,

SVM-VEM and HGMM-EM, HGMM-VEM, require the images in the train-

ing set to be modelled using Gaussian mixture models. This is done using

the results from Chapter 4 and thus the discussion in Section 4.6.1 applies

here too.

For the training phase of SVM models the Kernel matrix has to be com-

puted which requires Nc × (Nc − 1)/2 evaluations of the PPK, equation

(5.20), where Nc is the number of training images for class c. Moreover, the

quadratic optimisation problem for SVMs scales as O(N3
c ) although modern

solvers exploiting the particular structure of the SVM optimisation problem

scale as O(N2
c ) (Bottou & Lin 2007). Additionally, in order to estimate the
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regularisation parameter C in equation (5.17) a cross validation scheme is

needed.

Despite the quadratic scaling of the training phase, the SVMs solutions

are usually sparse. That is, many of the parameters αn in equation (5.19)

are zero and thus predictions can bee made in a very efficient manner since

the Kernel function needs to be evaluated only for the set of images in the

training set with non-zero αn parameter. In the experiments presented in this

chapter the number of non-zero αn parameters for the each class was ranging

from 3, for classes with few training examples, to 116 for classes with many

training examples. However the query image also needs to be modelled by a

Gaussian mixture density and thus a EM or variational EM algorithm needs

to be run for each test image before prediction.

For the Naive Bayes classifiers using the hierarchical EM and hierarchical

VEM algorithms to model the class conditional densities, training time scales

linearly with the number of training examples for each class. Note however

that for the hierarchical EM algorithm a cross validation scheme is needed in

order to determine the optimal number of mixture components. In contrast

for the hierarchical VEM the number of mixture components is automatically

determined using a single run of the algorithm starting from a model with

many components.

For prediction using the Naive Bays classifiers the likelihood of the query

image has to be estimated for each class conditional density model. For each

class conditional density, estimation of the query image likelihood scales as

O(NQ ×Kc ×D) where NQ = 1, 457 is the number of feature vectors of the
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query image, Kc is the number of mixture components for class c and D = 70

is the dimensionality of the feature vectors.

5.6 Discussion

In this chapter we have presented classifiers for automatically annotating im-

ages into semantic categories in order to facilitate semantic retrieval using

keyword queries. Specifically we developed a generalisation of the image an-

notation algorithm of Carneiro et al. (2007) using the predictive likelihood for

the class conditional densities. Our algorithm differs in that instead of mak-

ing a single point estimate of the mixture model parameters, we marginalise

them using their posterior. In that way we avoid over-fitting and local max-

ima problems. Moreover the number of mixture components is automatically

estimated from the data and there is no need to manually tune algorithm

parameters. The only free model parameters are those associated with the

prior for which we can use the collection statistics.

We have also explored the applicability of kernel based classifiers such

as Support Vector Machines using the Probability Product Kernel (PPK)

(Jebara et al. 2004) for computing generalised inner products in the space of

probability density functions. In contrast to the Bag-of-Terms method, we

directly model the density of continuous image feature descriptors without

resorting to quantisation procedures such as K-means. The densities of fea-

ture descriptors for each image are modelled using Gaussian mixture models

for which we use the EM algorithm to obtain maximum likelihood parameter
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estimates and the variational EM to directly obtain the predictive densities.

To validate our approach we conduct experiments on the Corel 5K col-

lection and evaluate annotation and semantic retrieval performance. Our

results indicate that the predictive densities provide a better approximation

of the true models and thus result in statistically significant improvements.

In contrast to Csurka et al. (2004), in our experiments the SVM classifiers

do not achieve the same level of performance as the Naive Bayes classifiers.

This can be attributed to the nature of the image collection. In Csurka

et al. (2004) the collection used is more similar to the Caltech256 Griffin

et al. (2007) collection where each image is associated with one class. The

Corel5K collection is more challenging for SVMs since the training sets for

each binary classifier are overlapping across many different classes. More-

over, in Csurka et al. (2004), the same image representation is used for both

the Naive Bayes and SVM classifiers, i.e. images are represented by the fre-

quency of visual terms. In our approach the Naive Bayes classifiers utilise

the image feature descriptors of the test image and calculate their joint prob-

ability under each class conditional model. In contrast the SVM classifiers

approximate the density of the test image using a Gaussian mixture model.

Finally, although the asymptotic error of generative classifiers is much higher

than discriminative methods, they often perform better when the size of the

training set is small (Ng & Jordan 2001). In the Corel5K collection used here

the majority of the classes have very few training instances.



Chapter 6

Conclusions

In this thesis we have studied the application of Bayesian inference for devel-

oping image retrieval systems. We focused on a particular family of models

based on Gaussian mixtures modelling the distribution of image features in

images in a similar way language models for information retrieval are used

to model term frequencies in documents. Based on these models we de-

veloped algorithms for query by example and semantic image retrieval. The

following sections discuss our findings and provide interesting future research

directions.

6.1 Discussion

6.1.1 Bayesian inference for information retrieval

Bayesian inference provides a sound theoretical framework in which we can

interpret smoothing procedures frequently used in the development of infor-
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mation retrieval systems. Moreover it allows to handle the uncertainty in the

model parameters when making predictions by marginalising using the poste-

rior distribution. For models developed in the language modelling framework

for information retrieval the posterior and predictive distributions have exact

analytical form (Zaragoza et al. 2003) and thus they can be directly applied

in practical implementations. In Chapter 4 we show that this is also directly

applicable for Bag of Terms models for image retrieval.

For most models of practical interest the posterior and predictive densi-

ties do not have closed form solutions. In Chapter 3 we discuss how we can

obtain samples from the posterior of Gaussian mixture models in order to

numerically estimate the predictive densities required for ranking images. We

have evaluated several MCMC algorithms in terms of efficiency and compu-

tational complexity. Our empirical findings suggest that Riemann manifold

MCMC algorithms (Girolami & Calderhead 2011) have better mixing and

convergence properties and require significantly less manual tuning provided

higher order derivatives of the joint log likelihood function and the Fisher

information are available. The Metropolis-Hastings although is the least ef-

ficient from the algorithms we evaluated allows for a generic implementation

since it only requires the joint log likelihood which is directly available for

generative probabilistic models.

The application of MCMC algorithms for practical information retrieval

systems is not straight forward however. In the language modelling frame-

work and for the models considered in this thesis we have to estimate the

posterior for every document or image in the collection. This means that for



CHAPTER 6. CONCLUSIONS 165

each image or document several chains have to be run in order to assess con-

vergence and then sub-sampled. The indexing structure has to store several

posterior samples of high dimension for every item in the collection and at

the retrieval phase these samples have to be used for obtaining a numerical

estimate of the predictive density. Finally, a less serious issue is that tun-

ing and monitoring of convergence cannot be easily automated. In Chapter

3 we discussed variational approximation as a viable alternative to MCMC

for information retrieval systems. In Chapters 4 and 5 we show that the

methodology can be applied in practice to develop image retrieval systems.

6.1.2 Predictive densities for image retrieval models

In Chapter 4 we generalise the image retrieval model proposed by Westerveld

et al. (2003) and Vasconcelos & Lippman (2000) using the predictive image

densities for ranking. We showed that retrieval performance is significantly

improved compared to maximum likelihood and maximum a posteriori esti-

mates while the variational EM algorithm has the same order of complexity

as the EM algorithm. In a Bayesian inference framework the number of mix-

ture components modelling the distribution of feature descriptors in images

can be automatically obtained without resorting to external optimisation

procedures such as cross validation. This is an important characteristic of

the proposed methodology as the number of components is optimised for

each image in the collection independently.

The methodology has been also applied for developing SVM and Naive

Bayes classifiers. The Naive Bayes classifier proposed in this thesis generalises
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the approach of Carneiro et al. (2007) and in Chapter 5 we show that the

proposed method significantly improves classification and semantic retrieval

performance.

6.1.3 Bag of Terms and generative probabilistic mod-

els

The Bag of Terms representation has allowed well studied information re-

trieval models to be applied for image retrieval. However, the quantisation

errors introduced at the code block generation stage have been shown to

negatively affect the discriminative ability of image descriptors Boiman et al.

(2008). Moreover, weighting and ranking functions used in information re-

trieval make particular assumptions about the distribution of terms in the

collection which are not necessarily valid for the visual vocabulary generated

by the K means algorithm. Finally, the quantisation and code block genera-

tion stages are computationally demanding tasks. Approximations using vo-

cabulary trees Nister & Stewenius (2006), Philbin et al. (2007) significantly

reduce the computational overhead but they exacerbate the quantisation

problems.

In Chapter 4 we compared algorithms based on the Bag of Terms rep-

resentation and algorithms that directly model the density of continuous

image features using Gaussian mixture models. Our results are in agreement

with previous research (Lavrenko et al. 2003, Yavlinsky et al. 2005, Boiman

et al. 2008) and suggest that the quantisation errors negatively affect re-

trieval performance. Indexing of the image collection is also simplified since
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the Variational EM algorithm for approximating the parameters posterior for

each image in the collection can be easily parallelised. In Chapter 4 we also

proposed to model the query density using a Gaussian mixture model and

rank images in the collection using the Probability Product Kernel between

densities. This simplifies the retrieval algorithm at the expense of retrieval

performance. Despite the superior retrieval performance of the mixture mod-

els compared to the Bag of Terns representation, scalability to large scale

collections remains an important issue since the predictive densities for all

images in the collection have to be evaluated for each query.

6.2 Future work

6.2.1 Approximate retrieval using LSH

In Chapter 4 we discussed the difficulty in designing efficient data structures

for image retrieval using Gaussian mixture models in order to allow algo-

rithms to scale for large image collections. Given the large relative difference

in retrieval performance compared to Bag of Terms models we believe that is

crucial to further investigate this issue. Even if approximations must be con-

sidered as we did in Section 4.4 the performance margin remains considerably

large.

Kulis & Grauman (2009) have recently developed the methodology for

performing Locality Sensitive Hashing (LSH) (Andoni & Indyk 2006) over

arbitrary kernel functions. Given the results in Section 4.4 for the Probability

Product Kernel we believe that this is a natural extension of our work.
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6.2.2 Modelling correlations between local descriptors

The models considered in this thesis assume that local image feature descrip-

tors are conditionally independent. This is an over simplifying assumption

necessary to obtain tractable models and is similar to the term independence

assumption in text document retrieval. It has been shown that by exploiting

correlations between local descriptors retrieval performance can be improved

(Philbin et al. 2007). However, for the Bag of Terms model such proce-

dures are applied in a post processing step (Lowe 2004) and are difficult to

be casted in a probabilistic framework. Fergus et al. (2003) have studied a

generative probabilistic model that takes into account the spatial geometry

of local feature descriptors for image classification although it also relies on

a Bag of Terms representation. Generalisations of this model such as those

presented in the chapter is an interesting future direction.
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Nowak, S., Llorente, A., Motta, E. & Rüger, S. (2010), The effect of semantic

relatedness measures on multi-label classification evaluation, in ‘Proceed-



BIBLIOGRAPHY 181

ings of the ACM International Conference on Image and Video Retrieval’,

CIVR ’10, ACM, New York, NY, USA, pp. 303–310.
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