6,987 research outputs found

    An efficient methodology to estimate probabilistic seismic damage curves

    Get PDF
    The incremental dynamic analysis (IDA) is a powerful methodology that can be easily extended for calculating probabilistic seismic damage curves. These curves are metadata to assess the seismic risk of structures. Although this methodology requires a relevant computational effort, it should be the reference to correctly estimate the seismic risk of structures. Nevertheless, it would be of high practical interest to have a simpler methodology, based for instance on the pushover analysis (PA), to obtain similar results to those based on IDA. In this article, PA is used to obtain probabilistic seismic damage curves from the stiffness degradation and the energy of the nonlinear part of the capacity curve. A fully probabilistic methodology is tackled by means of Monte Carlo simulations with the purpose of establishing that the results based on the simplified proposed approach are compatible with those obtained with the IDA. Comparisons between the results of both approaches are included for a low- to midrise reinforced concrete building. The proposed methodology significantly reduces the computational effort when calculating probabilistic seismic damage curves.Peer ReviewedPostprint (author's final draft

    Comparison of wind turbine tower failure modes under seismic and wind loads

    Get PDF
    This paper studies the structural responses and failure modes of a 1.5-MW horizontal-axis wind turbine under strong ground motions and wind loading. Ground motions were selected and scaled to match the two design response spectra given by the seismic code, and wind loads were generated considering tropical cyclone scenarios. Nonlinear dynamic time-history analyses were conducted and structural performances under wind loads as well as short- and long-period ground motions compared. The results show that under strong wind loads the collapse of the wind turbine tower is driven by the formation of a plastic hinge at the lower section of the tower. This area is also critical when the tower is subject to most ground motions. However, some short-period earthquakes trigger the collapse of the middle and upper parts of the tower due to the increased contribution of high-order vibration modes. Although long-period ground motions tend to result in greater structural responses, short-period earthquakes may cause brittle failure modes in which the full plastic hinge develops quickly in regions of the tower with only a moderate energy dissipation capacity. Based on these results, recommendations for future turbine designs are proposed

    Evaluation of analytical methodologies to derive vulnerability functions

    Get PDF
    The recognition of fragility functions as a fundamental tool in seismic risk assessment has led to the development of more and more complex and elaborate procedures for their computation. Although vulnerability functions have been traditionally produced using observed damage and loss data, more recent studies propose the employment of analytical methodologies as a way to overcome the frequent lack of post-earthquake data. The variation of the structural modelling approaches on the estimation of building capacity has been the target of many studies in the past, however, its influence in the resulting vulnerability model, impact in loss estimations or propagation of the uncertainty to the seismic risk calculations has so far been the object of restricted scrutiny. Hence, in this paper, an extensive study of static and dynamic procedures for estimating the nonlinear response of buildings has been carried out in order to evaluate the impact of the chosen methodology on the resulting vulnerability and risk outputs. Moreover, the computational effort and numerical stability provided by each approach were evaluated and conclusions were obtained regarding which one offers the optimal balance between accuracy and complexity

    Numerical modelling of in-plane behaviour of adobe walls

    Get PDF
    Some tests for material characterization of adobe blocks and adobe masonry have been carried out in universities and laboratories around the world. However, the number of tests is quite limited in comparison with those carried out with other structural materials, such as masonry or reinforced concrete, and even those tests just refers to elastic properties. The results of adobe tests (i.e. compression strength, elasticity modulus, shear strength, etc.), as well as the results of cyclic and dynamic tests on adobe masonry components and small buildings show that the mechanical properties of adobe masonry and the seismic performance of adobe constructions highly depend on the type of soil used for the production of units and mortar. Basic properties, such as elasticity modulus, can have significant variation from one soil type to another. The state-of-the-art for the numerical modelling of unreinforced masonry point to three main approaches: macro-modelling, simplified micro-modelling and detailed micro-modelling. In all three approaches, the use of elastic and inelastic parameters is required. For adobe masonry, the lack of knowledge concerning some of the material properties makes numerical modelling more difficult. In the proposed work, the mechanical properties of the typical adobe masonry in Peru have been calibrated based on a cyclic in-plane test carried out on an adobe wall at the Catholic University of Peru (PUCP). The mechanical parameters calibration and the modelling results of the in-plane behaviour of the adobe wall are presented. Macro-modelling and simplified micro-modelling strategies are used in finite element software with an implicit solution strategy. The results of this work represent the first step for the numerical modelling of the seismic behaviour of adobe constructions

    Performance of Two 18-Story Steel Moment-Frame Buildings in Southern California During Two Large Simulated San Andreas Earthquakes

    Get PDF
    Using state-of-the-art computational tools in seismology and structural engineering, validated using data from the Mw=6.7 January 1994 Northridge earthquake, we determine the damage to two 18-story steel moment-frame buildings, one existing and one new, located in southern California due to ground motions from two hypothetical magnitude 7.9 earthquakes on the San Andreas Fault. The new building has the same configuration as the existing building but has been redesigned to current building code standards. Two cases are considered: rupture initiating at Parkfield and propagating from north to south, and rupture propagating from south to north and terminating at Parkfield. Severe damage occurs in these buildings at many locations in the region in the north-to-south rupture scenario. Peak velocities of 1 m.s−1 and 2 m.s−1 occur in the Los Angeles Basin and San Fernando Valley, respectively, while the corresponding peak displacements are about 1 m and 2 m, respectively. Peak interstory drifts in the two buildings exceed 0.10 and 0.06 in many areas of the San Fernando Valley and the Los Angeles Basin, respectively. The redesigned building performs significantly better than the existing building; however, its improved design based on the 1997 Uniform Building Code is still not adequate to prevent serious damage. The results from the south-to-north scenario are not as alarming, although damage is serious enough to cause significant business interruption and compromise life safety

    Manoeuvrability assessment of a hybrid compound helicopter configuration

    Get PDF
    The compound helicopter design could potentially satisfy the new emerging requirements placed on the next generation of rotorcraft. The main benefit of the compound helicopter is its ability to reach speeds that significantly surpass the conventional helicopter. However, it is possible that the compound helicopter design can provide additional benefits in terms of manoeuvrability. The paper features a conventional helicopter and a hybrid compound helicopter. The conventional helicopter features a standard helicopter design with a main rotor providing the propulsive and lifting forces, whereas a tail rotor, mounted at the rear of the aircraft provides the yaw control. The compound helicopter configuration, known as the hybrid compound helicopter, features both wing and thrust compounding. The wing offloads the main rotor at high speeds whereas two propellers provide additional axial thrust as well as yaw control. This study investigates the manoeuvrability of these two helicopter configurations using inverse simulation. The results predict that a hybrid compound helicopter configuration is capable of attaining greater load factors than its conventional counterpart, when flying a Pullup-Pushover manoeuvre. In terms of the Accel-Decel man oeuvre, the two helicopter configurations are capable of completing the manoeuvre in comparable time-scales. However, the addition of thrust compounding to the compound helicopter design reduces the pitch attitude required throughout the acceleration stage of the manoeuvre

    A nonlinear macroelement formulation for the seismic analysis of masonry buildings

    Get PDF
    A macroelement is presented for the nonlinear dynamic analysis of masonry structures under seismic actions. The macroelement, developed in the framework of the equivalent frame model, has a force-based formulation and accounts for flexural and shear failure mechanisms, by means of two flexural hinges at the ends and a shear link, respectively. The flexural hinges are formulated according to the Bouc-Wen model to describe the progressive development of cracks and the hysteresis loops under load reversals. The shear link, in addition to the aforementioned effects, accounts for the strength/stiffness decay and is formulated adopting the Bouc-Wen-Baber-Noori model. Numerical comparisons with experimental tests on masonry piers are presented, showing the suitability of the presented macroelement

    Assessment of FEMA356 nonlinear static procedure and modal pushover analysis for seismic evaluation of buildings

    Get PDF
    Nonlinear static analysis as an essential part of performance based design is now widely used especially at design offices because of its simplicity and ability to predict seismic demands on inelastic response of buildings. Since the accuracy of nonlinear static procedures (NSP) to predict seismic demands of buildings affects directly on the entire performance based design procedure, therefore lots of research has been performed on the area of evaluation of these procedures. In this paper, one of the popular NSP, FEMA356, is evaluated and compared with modal pushover analysis. The ability of these procedures to simulate seismic demands in a set of reinforced concrete (RC) buildings is explored with two level of base acceleration through a comparison with benchmark results determined from a set of nonlinear time history analyses. According to the results of this study, the modal pushover analysis procedure estimates seismic demands of buildings like inter story drifts and hinges plastic rotations more accurate than FEMA356 procedure

    Garigliano nuclear power plant: seismic evaluation of the turbine building

    Get PDF
    The Italian Garigliano Nuclear Power Plant (NPP) started its energy production in 1963. At present it is in the decommissioning stage. In order to get a proper management of the radioactive waste that will be produced during the dismantling operations it has been considered convenient to convert the turbine building of the plant into a temporary waste repository. This decision posed a remarkable seismic safety assessment issue. As a matter of fact, the challenge was to extend, in satisfactory safety conditions, the use of an important facility that has reached the end of its designed lifetime and to have this extended use approved by nuclear safety agencies. In this context many tasks have been accomplished, of which the most important are: (a) a new appraisal of site seismic hazard; (b) the execution of many investigations and testing on the construction materials; (c) the set up of a detailed 3D finite element model including the explicit representation of foundation piles and soil; (d) consideration of soil structure kinematic and dynamic nteraction effects. This paper describes the adopted seismic safety assessment criteria which are based on a performance objectives design approach. While performance based design is the approach currently recommended by European Regulations to manage seismic risk and it is fully incorporated in the Italian code for conventional buildings, bridges and plants, NPP are not explicitly considered. Therefore it was necessary to delineate a consistent interpretation of prescribed rules in order to properly select the maximum and operating design earthquakes on one side and corresponding acceptable limit states on the other side. The paper further provides an outline of the numerical analyses carried out, of the main results obtained and of the principal retrofitting actions that will be realized

    Maneuverability assessment of a compound helicopter configuration

    Get PDF
    The compound helicopter design could potentially satisfy the new emerging requirements placed on the next generation of rotorcraft. The main benefit of the compound helicopter is its ability to reach speeds that significantly surpass those of the conventional helicopter. However, it is possible that the compound helicopter design can provide additional benefits in terms of maneuverability. The paper features a conventional helicopter and a compound helicopter. The conventional helicopter features a standard helicopter design with a main rotor providing the propulsive and lifting forces, while a tail rotor, mounted at the rear of the aircraft, provides the yaw control. The compound helicopter configuration features both lift and thrust compounding. The wing offloads the main rotor at high speeds, and two propellers provide additional axial thrust as well as yaw control. This study investigates the maneuverability of these two helicopter configurations using inverse simulation. The results predict that a compound helicopter configuration is capable of attaining greater load factors than its conventional counterpart, when flying a pullup–pushover maneuver. In terms of the accel–decel maneuver, the compound helicopter configuration is capable of completing the maneuver in a shorter time than the conventional helicopter, but at the expense of greater installed engine power. The addition of thrust compounding to the compound helicopter design reduces the pitch attitude required throughout the acceleration stage of the maneuver
    corecore