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SUMMARY 

 

Some tests for material characterization of adobe blocks and adobe masonry have been carried out in universities 

and laboratories around the world. However, the number of tests is quite limited in comparison with those 

carried out with other structural materials, such as masonry or reinforced concrete, and even those tests just 

refers to elastic properties. The results of adobe tests (i.e. compression strength, elasticity modulus, shear 

strength, etc.), as well as the results of cyclic and dynamic tests on adobe masonry components and small 

buildings show that the mechanical properties of adobe masonry and the seismic performance of adobe 

constructions highly depend on the type of soil used for the production of units and mortar. Basic properties, 

such as elasticity modulus, can have significant variation from one soil type to another. 

 

The state-of-the-art for the numerical modelling of unreinforced masonry point to three main approaches: macro-

modelling, simplified micro-modelling and detailed micro-modelling. In all three approaches, the use of elastic 

and inelastic parameters is required. For adobe masonry, the lack of knowledge concerning some of the material 

properties makes numerical modelling more difficult. 

 

In the proposed work, the mechanical properties of the typical adobe masonry in Peru have been calibrated based 

on a cyclic in-plane test carried out on an adobe wall at the Catholic University of Peru (PUCP). The mechanical 

parameters calibration and the modelling results of the in-plane behaviour of the adobe wall are presented. 

Macro-modelling and simplified micro-modelling strategies are used in finite element software with an implicit 

solution strategy. The results of this work represent the first step for the numerical modelling of the seismic 

behaviour of adobe constructions. 

 

 

1.  INTRODUCTION 

 

Masonry is a composite material formed by units (bricks) and joints (mortar). Each of masonry constituents has 

its own material properties. Mortar is normally much weaker and softer than the bricks. However, masonry 

failure may involve crushing and tensile fracturing of masonry units and fracturing of masonry joints [14]. 

 

In the case of adobe structures, the bricks and mortar are made of similar materials, mainly soil. Therefore, 

allowing the composite to behave further as a homogeneous material. For this reason, the cracking pattern in 

adobe walls may not distinguish completely between blocks and mortars (Figure 1). 

 

Since adobe walls have very low tensile strength, the cracks typically initiate in zones subjected to higher tensile 

stress, such as corners of doors and windows. Usually, vertical cracks start at the intersection of the façade with 

the perpendicular walls and create a physical separation between them; besides, and horizontal crack is formed 

close to the base of the façade allowing it to overturn. The typical crack pattern due to in-plane shear forces is X-

diagonal shape (Figure 1). According to Webster [17], these kinds of cracks are not particularly serious unless 

the relative displacement across them becomes large, which triggers the overturning of the small wall blocks 
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formed by the cracks. Horizontal cracks may also be triggered by in-plane loading. The latter cracks are related 

to sliding failure modes. 

 

          
 

Figure 1.- Typical in-plane damage in adobe walls. 

 

 

2.  EXPERIMENTAL TESTS ON ADOBE WALLS 

 

Blondet et al. [4] carried out a displacement controlled cyclic test (push-pull) on a typical adobe wall at the 

Catholic University of Peru to analyze the cyclic response and the damage pattern evolution due to in-plane 

forces. The wall had an I-shape configuration (Figure 2), where the main longitudinal wall (with a central 

window opening) had 3.06 m length, 1.93 m height and a thickness of 0.30 m. Besides, this wall had two 

transverse walls of 2.48 m lengths to simulate the influence of connection to transversal walls common in typical 

buildings. The specimen was built over a reinforced concrete foundation beam. At the top of the adobe wall a 

reinforced concrete ring beam was built, providing the gravity loading corresponding to the roof of a typical 

dwelling and guarantying a more uniform distribution of the horizontal load in the wall. The horizontal cyclic 

loading imposed corresponds to a series of cycles with maximum displacement at the top of the wall of 1, 2, 5, 

10 and 20 mm, which corresponds to 0.052%, 0.10%, 0.26%, 0.51% and 1.02% of drift, respectively. Each 

displacement cycle was repeated twice. During the test, the majority of the cracks followed a diagonal pattern, 

starting at the opening corners. Beyond the 0.52% of drift, a clear reduction of the lateral strength was observed 

due to the formation of large cracks in the walls. For this reason, it was decided to consider the last limit state in 

the test related to 0.52% of drift [15]. 

 

Figure 3 shows the final damage pattern of the adobe wall after the cyclic test. The cracks observed at the end of 

the cycle of 0.052% drift are marked in blue; at 0.10% drift in red; at 0.26% drift in green; and, for drift values 

greater than 0.51% in black. 

 

        
    Figure 2.- Scheme of the tested wall [4].      Figure 3.- Damage pattern evolution during the cyclic test [4]. 
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This paper presents the results obtained with three different numerical models developed to represent the 

experimental test results. The models are developed in two finite element codes: Midas FEA [9] and 

Abaqus/Standard [1]. 

 

 

3.  MODELS FOR MASONRY 

 

Past researches have shown that failure analysis of masonry structures can be successfully described using 

modelling techniques usually applied to concrete mechanics [7]. According to Lourenço [8], the numerical 

modelling of masonry can be represented by the micro-modelling of each of its components or by macro-

modelling assuming the masonry to be homogeneous. Depending on the level of accuracy, the following 

strategies can be used (Figure 4): 

 

 detailed-micro modelling. Units and mortar joints are represented by continuum elements, where the 

unit-mortar interface is represented by discontinuous elements [2][12]; 

 

 simplified micro-modelling. The expanded units are represented by continuum elements, where the 

behaviour of the mortar joints and unit-mortar interface is lumped in discontinuous elements [3][10]; 

 

 macro-modelling. Units, mortar and unit-mortar interface are smeared out in the continuum and the 

masonry is treated as an isotropic material. 

 

          
a) Masonry sample                               b) Detailed micro-modelling 

 

                
                                   c) Simplified micro-modelling                   d) Masonry sample 

 

Figure 4.- Modelling strategies for masonry structures [8]. 

 

The first two approaches are computationally intensive for the analysis of large masonry structures; however, it 

can be an important research tool in comparison with the costly and often time-consuming laboratory 

experiments [6]. 

 

Lourenço [8] developed a new composite interface model for the masonry (Figure 5), capable of representing the 

typical failure modes as cracking of the joints, sliding along the bed or head joints at low values of normal stress, 

cracking of the units in direct tension, diagonal tensile cracking of the units at values of normal stress sufficient 

to develop friction in the joints, and splitting of the units in tension. The calibration and validation of the 

proposed model were based on the masonry tests carried out in Netherlands by CUR [5], Raijmakers and 

Vermeltfoort [11] and Vermeltfoort and Raijmakers [16][15]. 
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Figure 5.- Constitutive model proposed by Lourenço [8]. 

 

The objective of the model proposed by Lourenço [8] is to concentrate all the damage in the weak joints and in 

the potential pure tensile cracks placed vertically in the middle of each brick. This composite interface model 

involves the tension, shear and compression failure to represent the inelastic behaviour of the masonry, each of 

them associated with a hardening/softening rule. A tension cut-off it is taken for tension failure. For the shear 

failure, the softening process is given by the degradation of the cohesion in Coulomb friction models [10][13]. 

For the compression failure, Lourenço developed a suitable cap model. Since the masonry joints have extremely 

low dilatancy (almost zero), the model was formulated in the context of non-associated plasticity. 

 

3.1.  MIDAS FEA 

 

A constitutive model following the same principles of the one proposed by Lourenço [8] is developed in the FE 

code Midas FEA. The interface elements are used to model the discrete cracks in materials or relative 

movements at the boundaries of model components. This interface material model called Composite Interface 

model is appropriate to simulate fracture, frictional slip as well as crushing along material interfaces, for instance 

at joints in masonry.  

 

With Midas FEA it is even possible to create numerical models using a macro-modelling approach. In this case a 

smeared crack model (especially the total strain model) is used, where it is assumed that cracks are scattered and 

distributed along the entire surfaces of the elements. The total strain model is easy to understand since the model 

uses only one stress-strain relationship for tensile behaviour including cracks and one for compressive behaviour 

(Figure 6). 

     
a) Tensile behaviour                                                b) Compression behaviour 

 

Figure 6.- Plastic behaviour of quasi-brittle materials under tension and compression loads [9]. 

 

3.2.  ABAQUS 

 

ABAQUS does not have a specific constitutive model for masonry structures, but the ones given for concrete 

elements and other quasi-brittle materials could be properly used to model the masonry, for example, the 

concrete damage plasticity model, where the material is characterized for tensile cracking or compressive 

crushing. Even, damage and stiffness recovery factors in compression and tension could be specified (Figure 7).  
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Figure 7.- Uniaxial load cycle (tension-compression-tension) [1]. 

 

 

4.  NUMERICAL ANALYSES 

 

The adobe wall tested by Blondet et al. [4] is modelled using two different constitutive models in Midas FEA 

(combined interface model with solid elements and total strain model with shell elements) and one constitutive 

model in Abaqus/Standard (concrete damage plasticity with shell elements). As said previously, a complete 

database of material properties of the adobe typically used in Peru is not available; the few data refer just to 

compression strength and elastic properties (e.g. module of elasticity) and no data is available for the inelastic 

properties such as fracture energy values for compression and tension. For this reason there are large 

uncertainties. A viable solution can be pursuing through the calibration of the unknown parameters using the 

experimental tests on the wall tested. 

 

The configurations of the numerical models in Midas FEA and Abaqus/Standard are showed in Figure 8. The 

models include the reinforced concrete beams (at the top and at the base), the adobe walls and the timber lintel. 

The base is fully fixed. Since the test was displacement controlled, in the numerical model a monotonic top-

displacement equal to 10 mm is applied at one vertical edge of the top concrete beam. Since the test was cyclic, 

further developments of these models will include the effect of cyclic loads and the analysis of stiffness recovery 

and damage factors for unloading. 

 

                           
a) Model in Midas FEA (solid elements)                b) Model in Midas FEA and Abaqus/Standard (shell elements) 

Figure 8.- Numerical models of the tested adobe wall. 

 

Beam 

Lintel 

Adobe 

Base 



6 SÍSMICA 2010 – 8º CONGRESSO DE SISMOLOGIA E ENGENHARIA SÍSMICA 

 

The process of loading is as follows: first, the gravity load is applied; then, the horizontal displacement is applied 

in a given number of steps. In Midas FEA, the lateral displacement is imposed incrementally following the arc-

length iterative method in combination with the initial stiffness method. The convergence criterion is controlled 

through a displacement and energy norm ratio, 0.005 for the former and 0.01 for the later. 

 

In Abaqus/Standard, the top-displacement is imposed following a Newton-Raphson iterative method. An 

automatic stabilization is selected for the criterion of convergence, with a specified dissipated energy fraction of 

0.001 and an adaptive stabilization with maximum ratio to stabilization to strain energy of 0.01. 

 

4.1.  Combined crushing-shearing-cracking model 

 

The adobe bricks, the concrete beams and the lintel are modelled using 8-node hexahedron elements and 

considering elastic and isotropic materials with full integration. The properties adopted for the different materials 

are shown in Table 1, where E is the elasticity of module, υ is the Poisson’s ratio, γm is the weight density. In this 

model, it is assumed that the crack propagation follows the mortar joints, which are modelled with the combined 

interface model with 4 integration points. The adobe blocks are modelled elastically. E is calibrated in order to 

have a similar initial stiffness as the one obtained from the experimental test. 

 

Table 1.- Elastic material properties. 

Adobe Concrete Timber 

E (MPa) υ γm (kN/mm
3
) E (MPa) υ γm (kN/mm

3
) E (MPa) υ γm (kN/mm

3
) 

230 0.2 2.16e-02 22000 0.25 2.35e-02 10000 0.15 6.87e-03 

 

Table 2 shows the material parameters used for the mortar joints to use in the combined crushing-shearing-

cracking model. kn is the normal stiffness modulus, kt is the shear stiffness modulus, c is the cohesion, φo is the 

frictional angle, ψ is the dilatancy angle, φr is the residual friction angle, ft is the tensile strength, GfI is the 

fracture energy for Mode I, a and b are factors to evaluate the fracture energy for Mode II (expressed as GII= 

a.σ+b), fc is the compression strength Cs is the shear tension contribution factor, Gfc is the compressive fracture 

energy, and kp is the peak equivalent plastic relative displacement. 

 

Table 2.- Material properties for the interface model. 

Structural Mode I Mode II 

kn 

(N/mm
3
)* 

kt 

(N/mm
3
)* 

c 

(N/mm
2
)  

φo 

(deg) 

Ψ 

(deg) 

φr 

(deg) 

ft 

(N/mm
2
)* 

GfI 

(N/mm)* 

a 

(mm)* 

b 

(N/mm)* 

8 3.2 0.05 30 0 30 0.01 0.0008 0 0.01 

 

Compression cap 

fc (N/mm
2
) Cs Gfc (N/mm)* kp (mm)* 

0.25 9 0.02 0.09 

 

* The soil mortar properties are taken as lower values than the ones given for adobe blocks (see Table 3), which 

could be reasonable. Even, the soil mortar properties are calibrated based on the experimental pushover curve 

and on the real the failure pattern. The hardening/softening curves follow the same shape as the ones specified by 

Lourenço [8] for clay masonry. 

 

The damaged pattern and deformation at the end of the loading is showed in Figure 9. The crack pattern follows 

the experimental results: the cracks go from the top left (where the load is applied) to the right bottom of the wall 

(Figure 3). Since the load applied is monotonic, the FE model cannot capture the X-shape failure. The presence 

of the two transversal walls prevents the rocking behaviour, representing correctly the testes wall. The maximum 

displacement reached at the top of the wall is around 6.2 mm, after this the program stopped due to convergence 

problems. 

 



SÍSMICA 2010 – 8º CONGRESSO DE SISMOLOGIA E ENGENHARIA SÍSMICA 7 

 

      
 

Figure 9.- Deformation pattern of the adobe wall for a lateral displacement considering the combined interface 

model. 

 

4.2.  Total strain model 

 

The total strain model in Midas FEA makes use of the tension and compression hardening/softening curve of the 

masonry in terms of stress versus strain (Figure 10). An exponential function is defined for the tension behaviour 

and a parabolic one (similar to the function given by Lourenço [8]) is given for the compression. Since 

experimental data for the softening behaviour in tension and compression is not available, the inelastic strain 

values are assumed based on the ones for clay masonry and calibrated with the pushover curve. The inelastic 

behaviour in tension and compression are described by the integral of the diagram in Figure 10 (only for the 

inelastic part). It can be assumed that the adobe material has a brittle behaviour in tension; however, it is 

believed that rigorous fracture energy should be considered in a more precise model. 
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a) Tension                                                   b) Compression 

 

Figure 10.- Constitutive laws for the material model in Midas FEA. 

 

It is assumed that adobe masonry behaves as a homogeneous material and cracks are assumed to be smeared. 

The model is built with rectangular 4 nodes-shell elements. The size of each element is about 100 x 100 mm. 

The characteristic element length h in Midas FEA is given by 2 A , where A is the area of the element. 

 

The elastic module E for the complete wall was selected from the adobe masonry tests [15] and then calibrated to 

have a similar initial stiffness in the pushover curve as the one observed in the test. A compression strength f’c 

close to 0.7 MPa is specified in the literature [15], but the complete definition of the uniaxial behaviour law are 

not available. f’c is obtained from tests on adobe piles (usually 5 adobe blocks placed vertically with earth 

mortar). The compressive strength of the adobe masonry can be lower than the value obtained from adobe piles 

tests. Compression tests should be performed on larger specimens in order to have results that can be used in the 

model considering a homogeneous material (Table 3). 

 

Tensile strength and fracture energy are calibrated in this model using the test results, since no data were found 

in the literature. Since a fixed crack model is selected, a reduction of the shear stiffness β= 0.1 has been assumed. 
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The material properties for the concrete and timber are the same as those used in the previous model, presented 

in section 4.1 (Table 1). 

 

Table 3.- Adobe masonry material properties used for the total strain model. 

Elastic Tension Compression 

E 

(N/mm
2
)* 

υ γm 

(N/mm
3
) 

h 

(mm) 

ft 

(N/mm
2
)* 

GfI 

(N/mm)* 

fc 

(N/mm
2
)* 

Gfc 

(N/mm)* 

εp 

(mm/mm)* 

200 0.2 2.16e-05 140 0.04 0.01 0.3 0.068 0.00325 

* calibrated values for adobe masonry. 

 

It is important to remark that properties in Table 2 and Table 3 are different because the former refers to 

properties for the soil mortar joints; where a tension, compression and shear failure can be located. However, 

Table 3 refers to properties of masonry walls by using a smeared crack model.  

 

Figure 11 shows the deformation of the wall and Figure 12 shows the cracks pattern of the model (e.g. closed, 

partially open, fully open, etc.), which is in good agreement with the failure pattern observed in the test (Figure 

3). Due to problems with the convergence, the maximum displacement reached at the top of the wall is 7.84 mm. 

As in the previous model, cracks start at the openings corners and progresses diagonally to the wall edges. Figure 

13 shows that the maximum strains are reached at the contact zone of the wall with the timber lintel and at the 

corner openings, this is due to high stress concentration at those zones. 

 

  
Figure 11.- Deformation of the adobe wall considering the total strain model. 

   
                       Figure 12.- Crack status                      Figure 13.- Element strain at the last step (units in mm/mm). 

       (P: partially open; O: fully open; C: closed). 

 

4.3.  Concrete damage plasticity 

 

Similar to the total strain model, in the concrete damage plasticity model the inelasticity of the material is 

represented separately for the tension and compression behaviour laws. In Abaqus/Standard, the material 
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properties are defined by the stress versus plastic strains constitutive laws (Figure 14). The material properties 

used in this model are the same as those specified in Table 3. 
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a) Tension                                                   b) Compression 

 

Figure 14.- Constitutive laws for the material model in Abaqus/Standard. 

 

Figure 15 shows the wall displacement at the last step of the loading. Figure 16 shows the damage pattern, again 

the diagonal cracks control the wall behaviour and extend from the opening corners to the wall corners, the red 

arrows show the tensile plastic strain sand the yellow the compression plastic strains. Figure 16 on the right 

shows the maximum plastic strains at a displacement of 10 mm at the wall top. It is evident that the high strain 

values are observed at points in the contact between the timber lintel and the wall and at the opening corners. 

The inelastic behaviour (fracture energy) in tension and compression are described by the integral of the diagram 

presented in Figure 14. 

 

   
Figure 15.- Displacement of the adobe wall considering the concrete damage plasticity model (units in mm). 

 

          
Figure 16.- Maximum plastic strain distribution in Abaqus/Standard (units in mm/mm). 
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5.  ANALYSIS OF THE PUSHOVER CURVES 

 

As it was said before, the ultimate limit state in the adobe wall was considered as 0.52% of drift (10 mm 

displacement). The maximum force related to this drift was 37.5 kN. All the numerical models reproduced fairly 

well the general response, the stress distribution and the crack pattern of the wall. Therefore, all the material 

parameters (elastic and inelastic ones), or at least the ones with larger influence in the masonry response, can be 

considered correctly calibrated. 

 

The numerical pushover curves represent fairly well the experimental one (Figure 17), especially the first branch, 

which could be related to the elastic behaviour. When the wall enters in the inelastic range (approximately after 1 

mm of top displacement) a dispersion of the numerical pushover curves is observed; however, after 2 mm all the 

curves match again well the experimental one.  It should be noted that this uncertainty is inherent with the nature 

of the problem and it is found also in the experimental data. 

 

The model with the combined interface law seems to be less ductile than the other ones. This is due to the 

assumption that the adobe blocks are assumed to be elastic; therefore no tension or compression damage is 

expected to occur. When the interfaces (mortar) reach the maximum strength in tension or compression, a 

relative displacement amongst blocks occurs and the pushover curve becomes non-linear. The other numerical 

models (considering the total strain model and the concrete plasticity model) are more ductile due to the fact that 

the inelastic properties are distributed all over the wall and not just concentrated at the mortar joins. The first 

elements that reach the maximum tensile strength are those located at the opening and lintel corners, where stress 

concentration is expected. Also, horizontal cracks appear at the transversal walls. 
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Figure 17.- Pushover curves: experimental results and numerical modelling. 

 

The pushover curve is more sensitive to the variation of tensile strength than to variation of compressive 

strength. To compare the effect of strength variability, an additional analysis considering f’c= 0.4 and 0.7 MPa 

(corresponding to the values obtained from test on the adobe piles), with a fracture energy proportional to the 

one considered for f’c= 0.3 MPa, is performed and the results obtained are shown in Figure 18. 

 

For the constitutive model used, large compression strength induces an increment in the tensile strength due to 

biaxial effect. However, after the first diagonal cracks, the pushover curve drops and tends to approach the curve 

obtained for the nominal strength and experimental results. 

 

Another analysis is done considering no softening in tension (brittle model in Midas FEA). The results, shown in 

variation of f’c.                    Figure 19, reveals a lower wall strength value than the one obtained from the 

experimental test, which underlines the importance of a correct definition of the fracture energy in tension to 

properly represent the behaviour of adobe walls.  
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Figure 18.- Pushover curves: variation of f’c.                    Figure 19.-  Pushover curves: Variation of                                 

softening in tension. 

 

 

6.  CONCLUSIONS 

 

The material properties used reproduced well the in-plane behaviour of the adobe wall tested. Three numerical 

models were developed, the first one considers the nonlinearity at the mortar joints, and the other two consider 

the nonlinearity smeared. 

 

In this work, a variation in the compressive strength was done to see its influence; however, minor effect was 

observed in the global behaviour of the adobe wall. The results showed that the tensile strength controls the 

global behaviour. When the maximum tensile strength is reached in one element, stress redistribution occurs and 

the wall response initiates to be nonlinear. Brittle materials fail due to the progress of internal cracks, inducing a 

softening behaviour. For the calibration of the softening response of the wall, the constitutive law for tension 

revealed to be essential to properly reproduce the experimental results. 

 

The lack of experimental data for the evaluation of the hardening/softening behaviour of the adobe material 

makes difficult to predict numerically the adobe wall behaviour; although, the calibrated material properties 

represent well the experimental pushover curve. The authors sustained that there is a need of an experimental 

testing campaign on adobe materials to collect the data necessary to develop and calibrate reliable models. 

 

On-going work includes the analyses for reversal loads and the calibration of the damage parameters, which 

takes into account residual strains and stiffness recovery (see Figure 7). 
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